1
|
Qi F, Fan S, Fang C, Ge L, Lyu J, Huang Z, Zhao S, Zou Y, Huang L, Liu X, Liang Y, Zhang Y, Zhong Y, Zhang H, Xiao L, Zhang X. Orally administrated Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 can restore the vaginal health of patients recovering from bacterial vaginosis. Front Immunol 2023; 14:1125239. [PMID: 37575226 PMCID: PMC10415204 DOI: 10.3389/fimmu.2023.1125239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial vaginosis (BV) is a common infection of the lower genital tract with a vaginal microbiome dysbiosis caused by decreasing of lactobacilli. Previous studies suggested that supplementation with live Lactobacillus may benefit the recovery of BV, however, the outcomes vary in people from different regions. Herein, we aim to evaluate the effectiveness of oral Chinese-origin Lactobacillus with adjuvant metronidazole (MET) on treating Chinese BV patients. In total, 67 Chinese women with BV were enrolled in this parallel controlled trial and randomly assigned to two study groups: a control group treated with MET vaginal suppositories for 7 days and a probiotic group treated with oral Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 as an adjuvant to MET for 30 days. By comparing the participants with Nugent Scores ≥ 7 and < 7 on days 14, 30, and 90, we found that oral administration of probiotics did not improve BV cure rates (72.73% and 84.00% at day 14, 57.14% and 60.00% at day 30, 32.14% and 48.39% at day 90 for probiotic and control group respectively). However, the probiotics were effective in restoring vaginal health after cure by showing higher proportion of participants with Nugent Scores < 4 in the probiotic group compared to the control group (87.50% and 71.43% on day 14, 93.75% and 88.89% on day 30, and 77.78% and 66.67% on day 90). The relative abundance of the probiotic strains was significantly increased in the intestinal microbiome of the probiotic group compared to the control group at day 14, but no significance was detected after 30 and 90 days. Also, the probiotics were not detected in vaginal microbiome, suggesting that L. gasseri TM13 and L. crispatus LG55 mainly acted through the intestine. A higher abundance of Prevotella timonensis at baseline was significantly associated with long-term cure failure of BV and greatly contributed to the enrichment of the lipid IVA synthesis pathway, which could aggravate inflammation response. To sum up, L. gasseri TM13 and L. crispatus LG55 can restore the vaginal health of patients recovering from BV, and individualized intervention mode should be developed to restore the vaginal health of patients recovering from BV. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/, identifier NCT04771728.
Collapse
Affiliation(s)
- Fengyuan Qi
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Lan Ge
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Jinli Lyu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhuoqi Huang
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaowei Zhao
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongke Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiyi Zhong
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Haifeng Zhang
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
Armstrong E, Hemmerling A, Joag V, Huibner S, Kulikova M, Crawford E, Castañeda GR, Anzala O, Obila O, Shahabi K, Ravel J, Coburn B, Cohen CR, Kaul R. Treatment Success Following Standard Antibiotic Treatment for Bacterial Vaginosis Is Not Associated With Pretreatment Genital Immune or Microbial Parameters. Open Forum Infect Dis 2023; 10:ofad007. [PMID: 36726539 PMCID: PMC9887266 DOI: 10.1093/ofid/ofad007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Background Bacterial vaginosis (BV) is a proinflammatory genital condition associated with adverse reproductive health outcomes, including increased HIV incidence. However, BV recurrence rates are high after standard antibiotic treatment. While the composition of the vaginal microbiota before BV treatment may be linked to BV recurrence, it is unclear whether the preceding genital immune milieu is predictive of treatment success. Methods Here we assessed whether baseline vaginal soluble immune factors or the composition of the vaginal microbiota predicted treatment success 1 month after metronidazole treatment in 2 separate cohorts of women with BV, 1 in the United States and 1 in Kenya; samples within 48 hours of BV treatment were also available for the US cohort. Results Neither soluble immune factors nor the composition of the vaginal microbiota before BV treatment was associated with treatment response in either cohort. In the US cohort, although the absolute abundances of key vaginal bacterial taxa pretreatment were not associated with treatment response, participants with sustained BV clearance had a more pronounced reduction in the absolute abundance of Gardnerella vaginalis immediately after treatment. Conclusions Pretreatment immune and microbial parameters were not predictive of BV treatment success in these clinical cohorts.
Collapse
Affiliation(s)
- Eric Armstrong
- Correspondence: Eric Armstrong, BSc, 1 King’s College Circle, Room 6356 Toronto, ON, Canada M5S 1A8 (); or Rupert Kaul, MD, PhD, 1 King’s College Circle, Room 6356, Toronto, ON, Canada M5S 1A8 ()
| | - Anke Hemmerling
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Vineet Joag
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria Kulikova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Emily Crawford
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | | | - Omu Anzala
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Onyango Obila
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kamnoosh Shahabi
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bryan Coburn
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Rupert Kaul
- Correspondence: Eric Armstrong, BSc, 1 King’s College Circle, Room 6356 Toronto, ON, Canada M5S 1A8 (); or Rupert Kaul, MD, PhD, 1 King’s College Circle, Room 6356, Toronto, ON, Canada M5S 1A8 ()
| |
Collapse
|
3
|
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, Wang C, Li H, Qi W, Wang Y, Fan A, Han C, Xue F. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol 2023; 13:1124591. [PMID: 36909729 PMCID: PMC9998931 DOI: 10.3389/fcimb.2023.1124591] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
The female reproductive tract harbours hundreds of bacterial species and produces numerous metabolites. The uterine cervix is located between the upper and lower parts of the female genital tract. It allows sperm and birth passage and hinders the upward movement of microorganisms into a relatively sterile uterus. It is also the predicted site for sexually transmitted infection (STI), such as Chlamydia, human papilloma virus (HPV), and human immunodeficiency virus (HIV). The healthy cervicovaginal microbiota maintains cervical epithelial barrier integrity and modulates the mucosal immune system. Perturbations of the microbiota composition accompany changes in microbial metabolites that induce local inflammation, damage the cervical epithelial and immune barrier, and increase susceptibility to STI infection and relative disease progression. This review examined the intimate interactions between the cervicovaginal microbiota, relative metabolites, and the cervical epithelial-, immune-, and mucus barrier, and the potent effect of the host-microbiota interaction on specific STI infection. An improved understanding of cervicovaginal microbiota regulation on cervical microenvironment homeostasis might promote advances in diagnostic and therapeutic approaches for various STI diseases.
Collapse
Affiliation(s)
- Mengting Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalan Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junyi Bai
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Ma
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bijun Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhui Qi
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| | - Fengxia Xue
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| |
Collapse
|
4
|
Gustin A, Cromarty R, Schifanella L, Klatt NR. Microbial mismanagement: how inadequate treatments for vaginal dysbiosis drive the HIV epidemic in women. Semin Immunol 2021; 51:101482. [PMID: 34120819 DOI: 10.1016/j.smim.2021.101482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Women and girls represent a key population driving new HIV infections and persistence of the HIV pandemic. A key determinant of HIV susceptibility is the composition of the vaginal microbiome, which can influence the local immune cell population, inflammation status, and HIV prevention drug levels. While a low-diversity composition dominated by Lactobacillus crispatus is associated with a decreased risk of HIV acquisition, high diversity environments associated with bacterial vaginosis increase risk of HIV. Given the important role of the vaginal microbiome in determining HIV susceptibility, altering the microbiome towards a Lactobacillus-dominated state is an attractive complementary strategy to reduce HIV incidence rates. Here, we provide an overview of the mechanisms by which the vaginal microbiome may contribute to HIV acquisition risk. Furthermore, we address the advantages and limitations of historical treatments and emerging technologies under investigation to modify the vaginal microbiome, including: antibiotics, bacteriophages, probiotics, topicals, and engineered bacteria. By addressing the current state of vaginal microbiome knowledge and strategies for manipulation, we hope to amplify the growing calls for increased resources and research into vaginal microbial health, which will be essential to accelerating preventative efforts amongst the world's most vulnerable populations.
Collapse
Affiliation(s)
- Andrew Gustin
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ross Cromarty
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA
| | - Nichole R Klatt
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Ruiz-Perez D, Coudray MS, Colbert B, Krupp K, Kumari H, Stebliankin V, Mathee K, Cook RL, Schwebke J, Narasimhan G, Madhivanan P. Effect of metronidazole on vaginal microbiota associated with asymptomatic bacterial vaginosis. Access Microbiol 2021; 3:000226. [PMID: 34151180 PMCID: PMC8209634 DOI: 10.1099/acmi.0.000226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Vaginal dysbiosis-induced by an overgrowth of anaerobic bacteria is referred to as bacterial vaginosis (BV). The dysbiosis is associated with an increased risk for acquisition of sexually transmitted infections. Women with symptomatic BV are treated with oral metronidazole (MET), but its effectiveness remains to be elucidated. This study used whole-genome sequencing (WGS) to determine the changes in the microbiota among women treated with MET. WGS was conducted on DNA obtained from 20 vaginal swabs collected at four time points over 12 months from five randomly selected African American (AA) women. The baseline visit included all women who were diagnosed with asymptomatic BV and were untreated. All subjects were tested subsequently once every 2 months and received a course of MET for each BV episode during the 12 months. The BV status was classified according to Nugent scores (NSs) of vaginal smears. The microbial and resistome profiles were analysed along with the sociodemographic metadata. Despite treatment, none of the five participants reverted to normal vaginal flora - two were consistently positive for BV, and the rest experienced episodic cases of BV. WGS analyses showed Gardnerella spp. as the most abundant organism. After treatment with MET, there was an observed decline of Lactobacillus and Prevotella species. One participant had a healthy vaginal microbiota based on NS at one follow-up time point. Resistance genes including tetM and lscA were detected. Though limited in subjects, this study shows specific microbiota changes with treatment, presence of many resistant genes in their microbiota, and recurrence and persistence of BV despite MET treatment. Thus, MET may not be an effective treatment option for asymptomatic BV, and whole metagenome sequence would better inform the choice of antibiotics.
Collapse
Affiliation(s)
- Daniel Ruiz-Perez
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, College of Engineering and Computing, Florida International University (FIU), Miami, FL, USA
| | - Makella S Coudray
- Department of Epidemiology, Stempel College of Public Health, FIU, Miami, FL, USA.,Present address: Department of Population Health Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Brett Colbert
- Department of Biological Sciences, College of Arts, Sciences and Education, FIU, Miami, FL, USA.,Present address: Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karl Krupp
- Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, FIU, Miami, FL, USA
| | - Vitalii Stebliankin
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, College of Engineering and Computing, Florida International University (FIU), Miami, FL, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, FIU, Miami, FL, USA.,Biomolecular Sciences Institute, FIU, Miami, FL, USA
| | - Robert L Cook
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida (UF), Gainesville, FL 32611, USA.,Department of Medicine, Division of General Internal Medicine, UF, Gainesville, FL 32611, USA
| | - Jane Schwebke
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, College of Engineering and Computing, Florida International University (FIU), Miami, FL, USA.,Biomolecular Sciences Institute, FIU, Miami, FL, USA
| | - Purnima Madhivanan
- Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.,Division of Infectious Diseases, College of Medicine, University of Arizona (UA), Tucson, AZ, USA.,Department of Family & Community Medicine, UA, Tucson, AZ, USA.,Public Health Research Institute of India, Mysore, Karnataka, India
| |
Collapse
|
6
|
Lee CY, Cheu RK, Lemke MM, Gustin AT, France MT, Hampel B, Thurman AR, Doncel GF, Ravel J, Klatt NR, Arnold KB. Quantitative modeling predicts mechanistic links between pre-treatment microbiome composition and metronidazole efficacy in bacterial vaginosis. Nat Commun 2020; 11:6147. [PMID: 33262350 PMCID: PMC7708644 DOI: 10.1038/s41467-020-19880-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis is a condition associated with adverse reproductive outcomes and characterized by a shift from a Lactobacillus-dominant vaginal microbiota to a polymicrobial microbiota, consistently colonized by strains of Gardnerella vaginalis. Metronidazole is the first-line treatment; however, treatment failure and recurrence rates remain high. To understand complex interactions between Gardnerella vaginalis and Lactobacillus involved in efficacy, here we develop an ordinary differential equation model that predicts bacterial growth as a function of metronidazole uptake, sensitivity, and metabolism. The model shows that a critical factor in efficacy is Lactobacillus sequestration of metronidazole, and efficacy decreases when the relative abundance of Lactobacillus is higher pre-treatment. We validate results in Gardnerella and Lactobacillus co-cultures, and in two clinical cohorts, finding women with recurrence have significantly higher pre-treatment levels of Lactobacillus relative to bacterial vaginosis-associated bacteria. Overall results provide mechanistic insight into how personalized differences in microbial communities influence vaginal antibiotic efficacy.
Collapse
Affiliation(s)
- Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ryan K Cheu
- University of Miami Department of Pediatrics, University of Miami, Miami, FL, USA
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Melissa M Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrew T Gustin
- University of Miami Department of Pediatrics, University of Miami, Miami, FL, USA
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Michael T France
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin Hampel
- Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zürich, Switzerland
| | | | | | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nichole R Klatt
- University of Miami Department of Pediatrics, University of Miami, Miami, FL, USA.
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Kunze AN, Larsen B. Current Concepts of <i>Gardnerella vaginalis</i> Biofilm: Significance in Bacterial Vaginosis. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/ojog.2019.912153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
|
9
|
Metatranscriptome Analysis of the Vaginal Microbiota Reveals Potential Mechanisms for Protection against Metronidazole in Bacterial Vaginosis. mSphere 2018; 3:3/3/e00262-18. [PMID: 29875146 PMCID: PMC5990888 DOI: 10.1128/mspheredirect.00262-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Bacterial vaginosis is a serious issue for women in their reproductive years. Although it can usually be cured by antibiotics, the recurrence rate is very high, and some women do not respond to antibiotic therapy. The reasons for that are not known. Therefore, we undertook a study to detect the activity of the complete microbiota in the vaginal fluid of women who responded to antibiotic therapy and compared it to the activity of the microbiota in women who did not respond. We found that one of the most important pathogens in bacterial vaginosis, Gardnerella vaginalis, has activated genes that can repair the DNA damage caused by the antibiotic in those women that do not respond to therapy. Suppressing these genes might be a possibility to improve the antibiotic therapy of bacterial vaginosis. Bacterial vaginosis (BV) is a prevalent multifactorial disease of women in their reproductive years characterized by a shift from the Lactobacillus species-dominated microbial community toward a taxonomically diverse anaerobic community. For unknown reasons, some women do not respond to therapy. In our recent clinical study, among 37 women diagnosed with BV, 31 were successfully treated with metronidazole, while 6 still had BV after treatment. To discover possible reasons for the lack of response in those patients, we performed a metatranscriptome analysis of their vaginal microbiota, comparing them to the patients who responded. Seven of 8 clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) genes of Gardnerella vaginalis were highly upregulated in nonresponding patients. Cas genes, in addition to protecting against phages, might be involved in DNA repair, thus mitigating the bactericidal effect of DNA-damaging agents such as metronidazole. In the second part of our study, we analyzed the vaginal metatranscriptomes of four patients over 3 months and showed high in vivo expression of genes for pore-forming toxins in L. iners and of genes encoding enzymes for the production of hydrogen peroxide and d-lactate in L. crispatus. IMPORTANCE Bacterial vaginosis is a serious issue for women in their reproductive years. Although it can usually be cured by antibiotics, the recurrence rate is very high, and some women do not respond to antibiotic therapy. The reasons for that are not known. Therefore, we undertook a study to detect the activity of the complete microbiota in the vaginal fluid of women who responded to antibiotic therapy and compared it to the activity of the microbiota in women who did not respond. We found that one of the most important pathogens in bacterial vaginosis, Gardnerella vaginalis, has activated genes that can repair the DNA damage caused by the antibiotic in those women that do not respond to therapy. Suppressing these genes might be a possibility to improve the antibiotic therapy of bacterial vaginosis.
Collapse
|