1
|
Laxton CS, Toekiran FL, Lin TY, Lomeda BD, Hislop MS, Keller L, Allicock OM, Wyllie AL. An abundance of aliC and aliD genes were identified in saliva using a novel multiplex qPCR to characterize group II non-encapsulated pneumococci with improved specificity. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40279151 DOI: 10.1099/mic.0.001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pneumococcal surveillance studies are reporting increasing prevalence of non-encapsulated pneumococci (NESp). NESp are an important reservoir for genetic exchange among streptococci, including for antimicrobial resistance, and are increasingly implicated in disease. Disease-associated NESp commonly carries the virulence genes pspK, or aliC and aliD in their cps locus instead of capsule genes. While molecular methods targeting the cps region are widely used for serotyping encapsulated strains, there are few assays available for the classification of NESp, meaning it is not widely undertaken. Therefore, we exploited these genes as targets for a novel qPCR assay for detecting and classifying NESp strains with improved efficiency and specificity. We conducted bioinformatic analysis on sequences from 402 NESp and 45 other mitis-group streptococci and developed a multiplex-qPCR, targeting pspK, aliD and two regions of aliC. The assay was validated using 16 previously identified NESp isolates. We then applied the assay to DNA extracted from culture-enriched saliva and isolated and characterized suspected NESp colonies, with confirmation by whole genome sequencing. Bioinformatic analyses demonstrated that previously published primers for aliC and aliD had low pneumococcal specificity but indicated that targeting two regions of aliC would improve species specificity, without compromising sensitivity. Our novel multiplex assay accurately typed all isolates. When screening saliva, we found a high prevalence of aliC and aliD, even in samples negative for pneumococcal genes lytA and piaB. Isolated colonies which were aliC and aliD positive could be differentiated as non-pneumococcal streptococci using our assay. Our multiplex-qPCR assay can be used to efficiently screen even highly polymicrobial samples, such as saliva, for NESp genes, to detect and differentiate potentially pathogenic NESp clades from closely related mitis-group streptococci. This will allow for a better understanding of the true prevalence of NESp and its impact on pneumococcal carriage and disease.
Collapse
Affiliation(s)
- Claire S Laxton
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Femke L Toekiran
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Tzu-Yi Lin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Beta D Lomeda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Maikel S Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Lance Keller
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
2
|
Fritsch KJ, Krüger L, Handtke S, Kohler TP, Ozhiganova A, Jahn K, Wesche J, Greinacher A, Hammerschmidt S. Pneumococcal Neuraminidases Increase Platelet Killing by Pneumolysin. Thromb Haemost 2025; 125:243-254. [PMID: 39029905 DOI: 10.1055/a-2369-8680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
BACKGROUND Platelets prevent extravasation of capillary fluids into the pulmonary interstitial tissue by sealing gaps in inflamed endothelium. This reduces respiratory distress associated with pneumonia. Streptococcus pneumoniae is the leading cause of severe community-acquired pneumonia. Pneumococci produce pneumolysin (PLY), which forms pores in membranes of eukaryotic cells including platelets. Additionally, pneumococci express neuraminidases, which cleave sialic acid residues from eukaryotic glycoproteins. In this study, we investigated the effect of desialylation on PLY binding and pore formation on platelets. MATERIALS AND METHODS We incubated human platelets with purified neuraminidases and PLY, or nonencapsulated S. pneumoniae D39/TIGR4 and isogenic mutants deficient in PLY and/or NanA. We assessed platelet desialylation, PLY binding, and pore formation by flow cytometry. We also analyzed the inhibitory potential of therapeutic immunoglobulin G preparations (IVIG [intravenous immunoglobulin]). RESULTS Wild-type pneumococci cause desialylation of platelet glycoproteins by neuraminidases, which is reduced by 90 to 100% in NanA-deficient mutants. NanC, cleaving only α2,3-linked sialic acid, induced platelet desialylation. PLY binding to platelets then x2doubled (p = 0.0166) and pore formation tripled (p = 0.0373). A neuraminidase cleaving α2,3-, α2,6-, and α2,8-linked sialic acid like NanA was even more efficient. Addition of polyvalent IVIG (5 mg/mL) decreased platelet desialylation induced by NanC up to 90% (p = 0.263) and reduced pore formation >95% (p < 0.0001) when incubated with pneumococci. CONCLUSION Neuraminidases are key virulence factors of pneumococci and desialylate platelet glycoproteins, thereby unmasking PLY-binding sites. This enhances binding of PLY and pore formation showing that pneumococcal neuraminidases and PLY act in concert to kill platelets. However, human polyvalent immunoglobulin G preparations are promising agents for therapeutic intervention during severe pneumococcal pneumonia.
Collapse
Affiliation(s)
- Kristin J Fritsch
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Laura Krüger
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefan Handtke
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Rostock, Rostock, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Arina Ozhiganova
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Kristin Jahn
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Wesche
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Jain SS, Singh VK, Kante RK, Jana SK, Patil RH. Current trends in development and manufacturing of higher-valent pneumococcal polysaccharide conjugate vaccine and its challenges. Biologicals 2024; 87:101784. [PMID: 39053122 DOI: 10.1016/j.biologicals.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Pneumococcal conjugate vaccines (PCVs) have been developed to protect against pneumococcal diseases caused by the more than 100 serotypes of the bacterium Streptococcus pneumoniae. PCVs primarily prevent pneumococcal infections such as sepsis, bacteraemia, meningitis, otitis media, pneumonia, septicaemia, and sinusitis among infants, adults, elderly, and immunocompromised individuals. The current available PCVs only cover a limited number of serotypes, and there is an immense need for developing higher-valent PCVs that can protect against non-vaccine serotypes to overcome challenges like serotype replacement and antibiotic resistance. The main challenges for developing higher valent PCVs are the complexity of the manufacturing process comprising polysaccharide fermentation, purification, modification or sizing of multiple polysaccharides and conjugation between polysaccharides and carrier proteins, the stability of the conjugates, and the immunogenicity of the vaccine. Different manufacturing processes have been explored to produce higher valent PCVs using different serotypes of S. pneumoniae and conjugation with different carrier proteins. The global coverage of higher valent PCVs are still low, mainly due to the high cost and limited supply of the vaccine. This review focuses on the existing and emerging manufacturing processes and challenges associated with higher-valent pneumococcal PCV development.
Collapse
Affiliation(s)
- Shital S Jain
- Savitribai Phule Pune University, Department of Biotechnology, Pune, Maharashtra, 411007, India; Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Vikas K Singh
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Rajesh Kumar Kante
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Swapan Kumar Jana
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Rajendra H Patil
- Savitribai Phule Pune University, Department of Biotechnology, Pune, Maharashtra, 411007, India.
| |
Collapse
|
4
|
Emgård M, Andersson M, Gonzales-Siles L, Msuya SE, Nyombi BM, Nordén R, Muro F, Lindh M, Andersson R, Skovbjerg S. Co-occurrence of bacteria and viruses and serotype distribution of Streptococcus pneumoniae in the nasopharynx of Tanzanian children below 2 years of age following introduction of the PCV13. Front Public Health 2024; 12:1298222. [PMID: 38317802 PMCID: PMC10839969 DOI: 10.3389/fpubh.2024.1298222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Pneumococcal conjugate vaccines have reduced severe disease attributed to vaccine-type pneumococci in children. However, the effect is dependent on serotype distribution in the population and disease development may be influenced by co-occurrence of viral and bacterial pathogens in the nasopharynx. Methods Following introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Tanzania we performed repeated cross-sectional surveys, including 775 children below 2 years of age attending primary healthcare centers. All children were sampled from nasopharynx and pneumococci were detected by single-target PCR. Pneumococcal serotypes/groups and presence of viruses and other bacteria were determined by two multiplex PCR assays. Results The prevalence of PCV13 vaccine-type pneumococci decreased by 50%, but residual vaccine-types were still detected in 21% of the children 2 years after PCV13 introduction. An increase in the non-vaccine-type 15 BC was observed. Pneumococci were often co-occurring with Haemophilus influenzae, and detection of rhino/enterovirus was associated with higher pneumococcal load. Discussion We conclude that presence of residual vaccine-type and emerging non-vaccine-type pneumococci in Tanzanian children demand continued pneumococcal surveillance. High co-occurrence of viral and bacterial pathogens may contribute to the disease burden and indicate the need of multiple public health interventions to improve child health in Tanzania.
Collapse
Affiliation(s)
- Matilda Emgård
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sia E. Msuya
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Balthazar M. Nyombi
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florida Muro
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Department of Community Medicine, Kilimanjaro Christian Medical Center (KCMC), Moshi, Tanzania
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Abdul Rahman NA, Mohd Desa MN, Masri SN, Taib NM, Sulaiman N, Hazman H, John J. The Molecular Approaches and Challenges of Streptococcus pneumoniae Serotyping for Epidemiological Surveillance in the Vaccine Era. Pol J Microbiol 2023; 72:103-115. [PMID: 37314355 DOI: 10.33073/pjm-2023-023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) belongs to the Gram-positive cocci. This bacterium typically colonizes the nasopharyngeal region of healthy individuals. It has a distinct polysaccharide capsule - a virulence factor allowing the bacteria to elude the immune defense mechanisms. Consequently, it might trigger aggressive conditions like septicemia and meningitis in immunocompromised or older individuals. Moreover, children below five years of age are at risk of morbidity and mortality. Studies have found 101 S. pneumoniae capsular serotypes, of which several correlate with clinical and carriage isolates with distinct disease aggressiveness. Introducing pneumococcal conjugate vaccines (PCV) targets the most common disease-associated serotypes. Nevertheless, vaccine selection pressure leads to replacing the formerly dominant vaccine serotypes (VTs) by non-vaccine types (NVTs). Therefore, serotyping must be conducted for epidemiological surveillance and vaccine assessment. Serotyping can be performed using numerous techniques, either by the conventional antisera-based (Quellung and latex agglutination) or molecular-based approaches (sequetyping, multiplex PCR, real-time PCR, and PCR-RFLP). A cost-effective and practical approach must be used to enhance serotyping accuracy to monitor the prevalence of VTs and NVTs. Therefore, dependable pneumococcal serotyping techniques are essential to precisely monitor virulent lineages, NVT emergence, and genetic associations of isolates. This review discusses the principles, associated benefits, and drawbacks of the respective available conventional and molecular approaches, and potentially the whole genome sequencing (WGS) to be directed for future exploration.
Collapse
Affiliation(s)
- Nurul Asyikin Abdul Rahman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- 2School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Kuala Pilah, Malaysia
| | - Mohd Nasir Mohd Desa
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Norbaya Masri
- 3Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Niazlin Mohd Taib
- 3Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurshahira Sulaiman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hazmin Hazman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - James John
- 4Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
6
|
Elfving K, Strömberg LG, Geravandi S, Andersson M, Bachelard M, Msellem M, Shakely D, Trollfors B, Nordén R, Mårtensson A, Björkman A, Lindh M. Pneumococcal concentration and serotype distribution in preschool children with radiologically confirmed pneumonia compared to healthy controls prior to introduction of pneumococcal vaccination in Zanzibar: an observational study. BMC Infect Dis 2022; 22:925. [PMID: 36496395 PMCID: PMC9737767 DOI: 10.1186/s12879-022-07902-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The World Health Organization recommends pneumococcal vaccination (PCV) in the first year of life. We investigated pneumococcal serotypes in children with clinical or radiologically confirmed pneumonia and healthy controls prior to PCV13 vaccine introduction in Zanzibar. METHODS Children (n = 677) with non-severe acute febrile illness aged 2-59 months presenting to a health centre in Zanzibar, Tanzania April-July 2011 were included. Nasopharyngeal swabs collected at enrolment were analysed by real-time PCR to detect and quantify pneumococcal serotypes in patients (n = 648) and in healthy asymptomatic community controls (n = 161). Children with clinical signs of pneumonia according to the Integrated Management of Childhood illness guidelines ("IMCI pneumonia") were subjected to a chest-X-ray. Consolidation on chest X-ray was considered "radiological pneumonia". RESULTS Pneumococcal DNA was detected in the nasopharynx of 562/809 (69%) children (70% in patients and 64% in healthy controls), with no significant difference in proportions between patients with or without presence of fever, malnutrition, IMCI pneumonia or radiological pneumonia. The mean pneumococcal concentration was similar in children with and without radiological pneumonia (Ct value 26.3 versus 27.0, respectively, p = 0.3115). At least one serotype could be determined in 423 (75%) participants positive for pneumococci of which 33% had multiple serotypes detected. A total of 23 different serotypes were identified. One serotype (19F) was more common in children with fever (86/648, 13%) than in healthy controls (12/161, 7%), (p = 0.043). Logistic regression adjusting for age and gender showed that serotype 9A/V [aOR = 10.9 (CI 2.0-60.0, p = 0.006)] and 14 [aOR = 3.9 (CI 1.4-11.0, p = 0.012)] were associated with radiological pneumonia. The serotypes included in the PCV13 vaccine were found in 376 (89%) of the 423 serotype positive participants. CONCLUSION The PCV13 vaccine introduced in 2012 targets a great majority of the identified serotypes. Infections with multiple serotypes are common. PCR-determined concentrations of pneumococci in nasopharynx were not associated with radiologically confirmed pneumonia. Trial registration Clinicaltrials.gov (NCT01094431).
Collapse
Affiliation(s)
- Kristina Elfving
- grid.8761.80000 0000 9919 9582School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden ,grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden ,grid.8761.80000 0000 9919 9582Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lucia Gonzales Strömberg
- grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Shadi Geravandi
- grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Maria Andersson
- grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Marc Bachelard
- grid.8761.80000 0000 9919 9582Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Mwinyi Msellem
- grid.415734.00000 0001 2185 2147Department of Planning, Policy and Research, Ministry of Health, Zanzibar, Tanzania
| | - Delér Shakely
- grid.8761.80000 0000 9919 9582School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Birger Trollfors
- grid.8761.80000 0000 9919 9582Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Rickard Nordén
- grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Andreas Mårtensson
- grid.8993.b0000 0004 1936 9457Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Anders Björkman
- grid.4714.60000 0004 1937 0626Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Magnus Lindh
- grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
7
|
Household fuel use and its association with potential respiratory pathogens among healthy mothers and children in Ethiopia. PLoS One 2022; 17:e0277348. [DOI: 10.1371/journal.pone.0277348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background
Over 90% of Ethiopians still rely on solid fuels for cooking food. The pollution from the burning process causes adverse respiratory outcomes including respiratory infections. This study aimed to assess the association of the pollution with nasopharyngeal occurrence of potential pathogens.
Methods
We conducted a comparative cross-sectional study in urban and rural settings in Ethiopia in 2016. Questionnaire-based data were collected from 168 mothers and 175 children aged below two years. Multiplex real-time PCR assays were performed on nasopharyngeal secretions for detection of bacteria and viruses and for the identification of pneumococcal serotypes/groups.
Results
High rates of bacteria and viruses in the nasopharynx were detected by PCR among both the children and the mothers. Among the detected viruses, enterovirus was more commonly detected among rural children than among children from urban areas. Streptococcus pneumoniae and Haemophilus influenzae were both more prevalent among children and mothers from rural areas compared with urban groups and among those using solid fuels compared with cleaner fuel users. Children from rural households using solid fuels and children whose mothers had educational status below high school had four times higher odds for detection of S. pneumoniae compared with those households using cleaner energy or those children having mothers with a higher educational status, respectively. One or more serotype/serogroup was identified in about 40% of the samples that were positive for pneumococci. Out of all identified serotypes/serogroups, 43% in the children and 45% in the mothers belonged to PCV13, indicating the larger majority of detected pneumococci being non-PCV13 serotypes.
Conclusion
This study presented a high carriage rate of S. pneumoniae and H. influenzae among both children and their mothers, especially in rural areas and among solid fuel users. Thus, interventions should target cleaner energy sources to the public and promote maternal education.
Collapse
|
8
|
Zhou ML, Wang ZR, Li YB, Kudinha T, Wang J, Wang Y, Xiao M, Xu YC, Liu ZY, Hsueh PR. Rapid identification of Streptococcus pneumoniae serotypes by cpsB gene-based sequetyping combined with multiplex PCR. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:870-879. [PMID: 34924338 DOI: 10.1016/j.jmii.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/PURPOSE Streptococcus pneumoniae is an important human pathogen that causes invasive infections in adults and children. Accurate serotyping is important to study its epidemiological distribution and to assess vaccine efficacy. METHODS Invasive S. pneumoniae isolates (n = 300) from 27 teaching hospitals in China were studied. The Quellung reaction was used as the gold standard to identify the S. pneumoniae serotypes. Subsequently, multiplex PCR and cpsB gene-based sequetyping methods were used to identify the serotypes. RESULTS Based on the Quellung reaction, 299 S. pneumoniae isolates were accurately identified to the serotype level and 40 different serotypes were detected. Only one strain was non-typeable, and five most common serotypes were identified: 23F (43, 14.3%), 19A (41, 13.7%), 19F (41, 13.7%), 3 (31, 10.3%), and 14 (27, 9.0%). Overall, the multiplex PCR method identified 73.3 and 20.7% of the isolates to the serotype and cluster levels, respectively, with 1.7% of the isolates misidentified. In contrast, the cpsB sequetyping method identified 59.0 and 30.3% of the isolates to the serotype and cluster levels, respectively, and 7% were misidentified. CONCLUSIONS The cpsB gene sequetyping method combined with multiplex PCR, can greatly improve the accuracy and efficiency of serotyping, besides reducing the associated costs.
Collapse
Affiliation(s)
- Meng-Lan Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Zi-Ran Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yan-Bing Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, NSW, Australia; Regional and Rural, NSW Health Pathology, Orange Hospital, NSW 2800, Australia
| | - Jian Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yao Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| | - Zheng-Yin Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Ph.D Programme for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
9
|
Downs SL, Madhi SA, Van der Merwe L, Nunes MC, Olwagen CP. High-throughput nanofluidic real-time PCR to discriminate Pneumococcal Conjugate Vaccine (PCV)-associated serogroups 6, 18, and 22 to serotypes using modified oligonucleotides. Sci Rep 2021; 11:23728. [PMID: 34887480 PMCID: PMC8660885 DOI: 10.1038/s41598-021-03127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
Current real-time high-throughput Polymerase Chain Reaction (qPCR) methods do not distinguish serotypes 6A from 6B, 18C from 18A/B and 22F from 22A. We established a nanofluidic real-time PCR (Fluidigm) for serotyping that included Dual-Priming-Oligonucleotides (DPO), a Locked-Nucleic-Acid (LNA) probe and TaqMan assay-sets for high-throughput serotyping. The designed assay-sets target capsular gene wciP in serogroup 6, wciX and wxcM in serogroup 18, and wcwA in serogroup 22. An algorithm combining results from published assay-sets (6A/B/C/D; 6C/D; 18A/B/C; 22A/F) and designed assay-sets for 6A/C; 18B/C/F; 18C/F, 18F and 22F was validated through blind analysis of 1973 archived clinical samples collected from South African children ≤ 5-years-old (2009–2011), previously serotyped with the culture-based Quellung method. All assay-sets were efficient (92–101%), had low variation between replicates (R2 > 0.98), and were able to detect targets at a limit of detection (LOD) of < 100 Colony-Forming-Units (CFU)/mL of sample. There was high concordance (Kappa = 0.73–0.92); sensitivity (85–100%) and specificity (96–100%) for Fluidigm compared with Quellung for serotyping 6A; 6B; 6C; 18C and 22F. Fluidigm distinguishes vaccine-serotypes 6A, 6B, 18C, next-generation PCV-serotype 22F and non-vaccine-serotypes 6C, 6D, 18A, 18B, 18F and 22A. Discriminating single serotypes is important for assessing serotype replacement and the impact of PCVs on vaccine- and non-vaccine serotypes.
Collapse
Affiliation(s)
- S L Downs
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - S A Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - L Van der Merwe
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - M C Nunes
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C P Olwagen
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
10
|
Birindwa AM, Kasereka JK, Gonzales-Siles L, Geravandi S, Mwilo M, Tudiakwile LK, Mwinja NL, Muhigirwa B, Kashosi T, Manegabe JT, Bugashane EB, Saili SM, Mungo C, Nordén R, Andersson R, Skovbjerg S. Bacteria and viruses in the upper respiratory tract of Congolese children with radiologically confirmed pneumonia. BMC Infect Dis 2021; 21:837. [PMID: 34412597 PMCID: PMC8374414 DOI: 10.1186/s12879-021-06570-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Acute pneumonia remains a leading cause of death among children below 5 years of age in the Democratic Republic of the Congo (DR Congo), despite introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in 2013. Potential pathogens in the nasopharynx of hospitalised children with pneumonia have not been studied previously in DR Congo. Here we compare clinical characteristics, risk factors and nasopharyngeal occurrence of bacteria and viruses between children with severe and non-severe pneumonia. METHODS Between June 2015 and June 2017, 116 children aged from 2 to 59 months hospitalised due to radiologically confirmed pneumonia at Panzi referral university hospital, Bukavu, Eastern DR Congo were included in the study and sampled from nasopharynx. A multiplex real-time PCR assay for detection of 15 different viruses and 5 bacterial species was performed and another multiplex PCR assay was used for pneumococcal serotype/serogroup determination. RESULTS During the study period 85 (73%) of the children with radiologically confirmed pneumonia met the WHO classification criteria of severe pneumonia and 31 (27%) had non-severe pneumonia. The fatality rate was 9.5%. Almost all (87%) children were treated with antibiotics before they were hospitalised, in most cases with amoxicillin (58%) or trimethoprim-sulfamethoxazole (20%). The frequency of potential pathogens in the nasopharynx of the children was high, and any viral or bacterial nucleic acids present at high levels, irrespective of species or type, were significantly associated with severe pneumonia as compared with non-severe cases (52% versus 29%, p = 0.032). White blood cell count > 20,000/μL and C-Reactive Protein > 75 mg/dL were associated with severe pneumonia at admission. Fatal outcome was in the multivariable analysis associated with having a congenital disease as an underlying condition. One or more pneumococcal serotypes/serogroups could be identified in 61 patients, and out of all identified serotypes 31/83 (37%) were non-PCV13 serotypes. CONCLUSIONS The occurrence of any bacteria or any viruses at high levels was associated with severe pneumonia at admission. Children with congenital disorders might need a higher attention when having symptoms of acute respiratory infection, as developed pneumonia could lead to fatal outcome.
Collapse
Affiliation(s)
- Archippe M Birindwa
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
- Panzi Hospital, Bukavu, Democratic Republic of the Congo.
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo.
- Hôpital Général de Référence de Panzi, BP: 266, Bukavu, Democratic Republic of the Congo.
| | - Jerry K Kasereka
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Shadi Geravandi
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mambo Mwilo
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Léonard K Tudiakwile
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Néné L Mwinja
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | | | - Théophile Kashosi
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | | | | | - Stay M Saili
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
| | - Clement Mungo
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- CARe - Centre for Antibiotic Resistance Research, Gothenburg University, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- CARe - Centre for Antibiotic Resistance Research, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
11
|
Goodswen SJ, Barratt JLN, Kennedy PJ, Kaufer A, Calarco L, Ellis JT. Machine learning and applications in microbiology. FEMS Microbiol Rev 2021; 45:6174022. [PMID: 33724378 PMCID: PMC8498514 DOI: 10.1093/femsre/fuab015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022] Open
Abstract
To understand the intricacies of microorganisms at the molecular level requires making sense of copious volumes of data such that it may now be humanly impossible to detect insightful data patterns without an artificial intelligence application called machine learning. Applying machine learning to address biological problems is expected to grow at an unprecedented rate, yet it is perceived by the uninitiated as a mysterious and daunting entity entrusted to the domain of mathematicians and computer scientists. The aim of this review is to identify key points required to start the journey of becoming an effective machine learning practitioner. These key points are further reinforced with an evaluation of how machine learning has been applied so far in a broad scope of real-life microbiology examples. This includes predicting drug targets or vaccine candidates, diagnosing microorganisms causing infectious diseases, classifying drug resistance against antimicrobial medicines, predicting disease outbreaks and exploring microbial interactions. Our hope is to inspire microbiologists and other related researchers to join the emerging machine learning revolution.
Collapse
Affiliation(s)
- Stephen J Goodswen
- School of Life Sciences, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Joel L N Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul J Kennedy
- School of Computer Science, Faculty of Engineering and Information Technology and the Australian Artificial Intelligence Institute, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Alexa Kaufer
- School of Life Sciences, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Larissa Calarco
- School of Life Sciences, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - John T Ellis
- School of Life Sciences, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| |
Collapse
|
12
|
Muhandule Birindwa A, Gonzales-Siles L, Nordén R, Geravandi S, Tumusifu Manegabe J, Morisho L, Saili Mushobekwa S, Andersson R, Skovbjerg S. High bacterial and viral load in the upper respiratory tract of children in the Democratic Republic of the Congo. PLoS One 2020; 15:e0240922. [PMID: 33119683 PMCID: PMC7595347 DOI: 10.1371/journal.pone.0240922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Respiratory pathogens including Streptococcus pneumoniae and Haemophilus influenzae, are implicated in the pathogenicity of acute lower respiratory infection (ALRI). These are also commonly found in both healthy and sick children. In this study, we describe the first data on the most frequent bacteria and viruses detected in the nasopharynx of children from the general population in the Eastern DR Congo. METHODS From January 2014 to June 2015, nasopharyngeal samples from 375 children aged from 2 to 60 months attending health centres for immunisation or growth monitoring were included in the study. Multiplex real-time PCR assays were used for detection of 15 different viruses and 5 bacterial species and for determination of pneumococcal serotypes/serogroups in the nasopharyngeal secretions. RESULTS High levels of S. pneumoniae were detected in 77% of cases, and H. influenzae in 51%. Rhinovirus and enterovirus were the most commonly found viruses, while respiratory syncytial virus (RSV) was rare (1%). Co-occurrence of both bacteria and viruses at high levels was detected in 33% of the children. The pneumococcal load was higher in those children who lived in a dwelling with an indoor kitchen area with an open fire, i.e. a kitchen with an open fire for cooking located inside the dwelling with the resultant smoke passing to the living room and/or bedrooms; this was also higher in children from rural areas as compared to children from urban areas or children not living in a dwelling with an indoor kitchen area with an open fire/not living in this type of dwelling. Immunization with 2-3 doses of PCV13 was associated with lower rates of pneumococcal detection. Half of the identified serotypes were non-PCV13 serotypes. The most common non-PCV13 serotypes/serogroups were 15BC, 10A, and 12F, while 5, 6, and 19F were the most prevalent PCV13 serotypes/serogroups. CONCLUSIONS The burden of respiratory pathogens including S. pneumoniae in Congolese children was high but relatively few children had RSV. Non-PCV13 serotypes/serogroups became predominant soon after PCV13 was introduced in DR Congo.
Collapse
Affiliation(s)
- Archippe Muhandule Birindwa
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
- Institut Superieur Technique Medical, Uvira, Democratic Republic of the Congo
- * E-mail: ,
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| | - Shadi Geravandi
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| |
Collapse
|
13
|
Gonzales-Siles L, Karlsson R, Schmidt P, Salvà-Serra F, Jaén-Luchoro D, Skovbjerg S, Moore ERB, Gomila M. A Pangenome Approach for Discerning Species-Unique Gene Markers for Identifications of Streptococcus pneumoniae and Streptococcus pseudopneumoniae. Front Cell Infect Microbiol 2020; 10:222. [PMID: 32509595 PMCID: PMC7248185 DOI: 10.3389/fcimb.2020.00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 01/28/2023] Open
Abstract
Correct identifications of isolates and strains of the Mitis-Group of the genus Streptococcus are particularly difficult, due to high genetic similarity, resulting from horizontal gene transfer and homologous recombination, and unreliable phenotypic and genotypic biomarkers for differentiating the species. Streptococcus pneumoniae and Streptococcus pseudopneumoniae are the most closely related species of the clade. In this study, publicly-available genome sequences for Streptococcus pneumoniae and S. pseudopneumoniae were analyzed, using a pangenomic approach, to find candidates for species-unique gene markers; ten species-unique genes for S. pneumoniae and nine for S. pseudopneumoniae were identified. These species-unique gene marker candidates were verified by PCR assays for identifying S. pneumoniae and S. pseudopneumoniae strains isolated from clinical samples. All determined species-level unique gene markers for S. pneumoniae were detected in all S. pneumoniae clinical isolates, whereas fewer of the unique S. pseudopneumoniae gene markers were present in more than 95% of the clinical isolates. In parallel, taxonomic identifications of the clinical isolates were confirmed, using conventional optochin sensitivity testing, targeted PCR-detection for the “Xisco” gene, as well as genomic ANIb similarity analyses for the genome sequences of selected strains. Using mass spectrometry-proteomics, species-specific peptide matches were observed for four of the S. pneumoniae gene markers and for three of the S. pseudopneumoniae gene markers. Application of multiple species-level unique biomarkers of S. pneumoniae and S. pseudopneumoniae, is proposed as a protocol for the routine clinical laboratory for improved, reliable differentiation, and identification of these pathogenic and commensal species.
Collapse
Affiliation(s)
- Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Patrik Schmidt
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biology-Microbiology, Universitat de les Illes Balears, Palma, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Gomila
- Department of Biology-Microbiology, Universitat de les Illes Balears, Palma, Spain
| |
Collapse
|