1
|
Kompes G, Duvnjak S, Reil I, Mihaljević Ž, Habrun B, Benić M, Cvetnić L, Špičić S, Bagarić A. Antimicrobial Resistance Profile, Whole-Genome Sequencing and Core Genome Multilocus Sequence Typing of B. anthracis Isolates in Croatia from 2001 to 2022. Antibiotics (Basel) 2024; 13:639. [PMID: 39061321 PMCID: PMC11274125 DOI: 10.3390/antibiotics13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. It is also considered one of the most important pathogens of bioterrorism. Rapid and reliable diagnosis and administration of antimicrobials are essential for effective anthrax treatment. In this study, we determined the in vitro susceptibilities of 40 isolates of B. anthracis isolated in Croatia over the recent two decades to 18 antimicrobials. Whole-genome sequencing was performed, and bioinformatics tools were used to determine virulence factors and antimicrobial resistance genes. Core genome-based multilocus sequence typing was used for isolate comparison and phylogenetic analysis. All isolates were susceptible to all antimicrobials recommended for post-exposure prophylaxis or anthrax therapy. Susceptibility was found to all other tested antimicrobials that are an alternative for primary therapy. We found two beta-lactamase genes, but their expression is not sufficient to confer resistance. In all isolates used in this study, we found 21 virulence genes, 8 of which are responsible for toxin and capsule production. As far as phylogenetic analysis is concerned, the B. anthracis isolates from Croatia are categorised into two clades. The first is clade A, subclade Trans Eurasia, and the other is clade B, subclade B2.
Collapse
Affiliation(s)
- Gordan Kompes
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| | - Sanja Duvnjak
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Irena Reil
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Željko Mihaljević
- Laboratory for Pathology, Department for Pathology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Boris Habrun
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| | - Miroslav Benić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (M.B.); (L.C.)
| | - Luka Cvetnić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (M.B.); (L.C.)
| | - Silvio Špičić
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Antonela Bagarić
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| |
Collapse
|
2
|
Al-Obaidi MMJ, Desa MNM. Mechanisms of Blood Brain Barrier Disruption by Different Types of Bacteria, and Bacterial-Host Interactions Facilitate the Bacterial Pathogen Invading the Brain. Cell Mol Neurobiol 2018; 38:1349-1368. [PMID: 30117097 PMCID: PMC11481977 DOI: 10.1007/s10571-018-0609-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
This review aims to elucidate the different mechanisms of blood brain barrier (BBB) disruption that may occur due to invasion by different types of bacteria, as well as to show the bacteria-host interactions that assist the bacterial pathogen in invading the brain. For example, platelet-activating factor receptor (PAFR) is responsible for brain invasion during the adhesion of pneumococci to brain endothelial cells, which might lead to brain invasion. Additionally, the major adhesin of the pneumococcal pilus-1, RrgA is able to bind the BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), thus leading to invasion of the brain. Moreover, Streptococcus pneumoniae choline binding protein A (CbpA) targets the common carboxy-terminal domain of the laminin receptor (LR) establishing initial contact with brain endothelium that might result in BBB invasion. Furthermore, BBB disruption may occur by S. pneumoniae penetration through increasing in pro-inflammatory markers and endothelial permeability. In contrast, adhesion, invasion, and translocation through or between endothelial cells can be done by S. pneumoniae without any disruption to the vascular endothelium, upon BBB penetration. Internalins (InlA and InlB) of Listeria monocytogenes interact with its cellular receptors E-cadherin and mesenchymal-epithelial transition (MET) to facilitate invading the brain. L. monocytogenes species activate NF-κB in endothelial cells, encouraging the expression of P- and E-selectin, intercellular adhesion molecule 1 (ICAM-1), and Vascular cell adhesion protein 1 (VCAM-1), as well as IL-6 and IL-8 and monocyte chemoattractant protein-1 (MCP-1), all these markers assist in BBB disruption. Bacillus anthracis species interrupt both adherens junctions (AJs) and tight junctions (TJs), leading to BBB disruption. Brain microvascular endothelial cells (BMECs) permeability and BBB disruption are induced via interendothelial junction proteins reduction as well as up-regulation of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, macrophage inflammatory proteins-1 alpha (MIP1α) markers in Staphylococcus aureus species. Streptococcus agalactiae or Group B Streptococcus toxins (GBS) enhance IL-8 and ICAM-1 as well as nitric oxide (NO) production from endothelial cells via the expression of inducible nitric oxide synthase (iNOS) enhancement, resulting in BBB disruption. While Gram-negative bacteria, Haemophilus influenza OmpP2 is able to target the common carboxy-terminal domain of LR to start initial interaction with brain endothelium, then invade the brain. H. influenza type b (HiB), can induce BBB permeability through TJ disruption. LR and PAFR binding sites have been recognized as common routes of CNS entrance by Neisseria meningitidis. N. meningitidis species also initiate binding to BMECs and induces AJs deformation, as well as inducing specific cleavage of the TJ component occludin through the release of host MMP-8. Escherichia coli bind to BMECs through LR, resulting in IL-6 and IL-8 release and iNOS production, as well as resulting in disassembly of TJs between endothelial cells, facilitating BBB disruption. Therefore, obtaining knowledge of BBB disruption by different types of bacterial species will provide a picture of how the bacteria enter the central nervous system (CNS) which might support the discovery of therapeutic strategies for each bacteria to control and manage infection.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Kenny LC, Kell DB. Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father. Front Med (Lausanne) 2018; 4:239. [PMID: 29354635 PMCID: PMC5758600 DOI: 10.3389/fmed.2017.00239] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Although it is widely considered, in many cases, to involve two separable stages (poor placentation followed by oxidative stress/inflammation), the precise originating causes of preeclampsia (PE) remain elusive. We have previously brought together some of the considerable evidence that a (dormant) microbial component is commonly a significant part of its etiology. However, apart from recognizing, consistent with this view, that the many inflammatory markers of PE are also increased in infection, we had little to say about immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female urinary tract microbiomes as the main sources of the infection. We here marshall further evidence for an infectious component in PE, focusing on the immunological tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the father's semen assists this immunological tolerance. As well as these benefits, however, semen is not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that semen may be responsible for inoculating the developing conceptus (and maybe the placenta) with microbes, not all of which are benign. It is suggested that when they are not, this may be a significant cause of PE. A variety of epidemiological and other evidence is entirely consistent with this, not least correlations between semen infection, infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we argue for a significant paternal role in the development of PE through microbial infection of the mother via insemination.
Collapse
Affiliation(s)
- Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Schacherl M, Baumann U. Feeding Anthrax: The Crystal Structure of Bacillus anthracis InhA Protease. Structure 2016; 24:1-2. [PMID: 26745525 DOI: 10.1016/j.str.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pathogenic bacteria secrete proteases to evade host defense and to acquire nutrients. In this issue of Structure, Arolas et al. (2016) describe the structural basis of activation and latency of InhA, a major secreted protease of Bacillus anthracis.
Collapse
Affiliation(s)
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
5
|
Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 2015; 42:866-82. [PMID: 26485450 DOI: 10.3109/1040841x.2015.1080214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both coagulation and fibrinolysis are tightly connected with the innate immune system. Infection and inflammation cause profound alterations in the otherwise well-controlled balance between coagulation and fibrinolysis. Many pathogenic bacteria directly exploit the host's hemostatic system to increase their virulence. Here, we review the capacity of bacteria to activate plasminogen. The resulting proteolytic activity allows them to breach tissue barriers and evade innate immune defense, thus promoting bacterial spreading. Yersinia pestis, streptococci of group A, C and G and Staphylococcus aureus produce a specific bacterial plasminogen activator. Moreover, surface plasminogen receptors play an established role in pneumococcal, borrelial and group B streptococcal infections. This review summarizes the mechanisms of bacterial activation of host plasminogen and the role of the fibrinolytic system in infections caused by these pathogens.
Collapse
Affiliation(s)
- Marijke Peetermans
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Thomas Vanassche
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | | | - Roger H Lijnen
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Peter Verhamme
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| |
Collapse
|
6
|
Whole proteome analysis of mouse lymph nodes in cutaneous anthrax. PLoS One 2014; 9:e110873. [PMID: 25329596 PMCID: PMC4203832 DOI: 10.1371/journal.pone.0110873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022] Open
Abstract
This study aimed to characterize a soluble proteome of popliteal lymph nodes during lymphadenitis induced by intradermal injection of Bacillus anthracis Sterne spores in mice using tandem LC-MS/MS and reverse-phase protein microarray with antibodies specific to epitopes of phosphorylated proteins. More than 380 proteins were detected in the normal intra-nodal lymph, while the infectious process resulted in the profound changes in the protein abundances and appearance of 297 unique proteins. These proteins belong to an array of processes reflecting response to wounding, inflammation and perturbations of hemostasis, innate immune response, coagulation and fibrinolysis, regulation of body fluid levels and vascular disturbance among others. Comparison of lymph and serum revealed 83 common proteins. Also, using 71 antibodies specific to total and phosphorylated forms of proteins we carried initial characterization of circulating lymph phosphoproteome which brought additional information regarding signaling pathways operating in the lymphatics. The results demonstrate that the proteome of intra-nodal lymph serves as a sensitive sentinel of the processes occurring within the lymph nodes during infection. The acute innate response of the lymph nodes to anthrax is accompanied by cellular damage and inflammation with a large number of up- and down-regulated proteins many of which are distinct from those detected in serum. MS data are available via ProteomeXchange with identifier PXD001342.
Collapse
|
7
|
Modulation of the Bacillus anthracis secretome by the immune inhibitor A1 protease. J Bacteriol 2013; 196:424-35. [PMID: 24214942 DOI: 10.1128/jb.00690-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Bacillus anthracis secretome includes protective antigen, lethal factor, and edema factor, which are the components of anthrax toxin, and other proteins with known or potential roles in anthrax disease. Immune inhibitor A1 (InhA1) is a secreted metalloprotease that is unique to pathogenic members of the Bacillus genus and has been associated with cleavage of host proteins during infection. Here, we report the effect of InhA1 on the B. anthracis secretome. Differential in-gel electrophoresis of proteins present in culture supernatants from a parent strain and an isogenic inhA1-null mutant revealed multiple differences. Of the 1,340 protein spots observed, approximately one-third were less abundant and one-third were more abundant in the inhA1 secretome than in the parent strain secretome. Proteases were strongly represented among those proteins exhibiting a 9-fold or greater change. InhA1 purified from a B. anthracis culture supernatant directly cleaved each of the anthrax toxin proteins as well as an additional secreted protease, Npr599. The conserved zinc binding motif HEXXH of InhA1 (HEYGH) was critical for its proteolytic activity. Our data reveal that InhA1 directly and indirectly modulates the form and/or abundance of over half of all the secreted proteins of B. anthracis. The proteolytic activity of InhA1 on established secreted virulence factors, additional proteases, and other secreted proteins suggests that this major protease plays an important role in virulence not only by cleaving mammalian substrates but also by modulating the B. anthracis secretome itself.
Collapse
|
8
|
Remy KE, Qiu P, Li Y, Cui X, Eichacker PQ. B. anthracis associated cardiovascular dysfunction and shock: the potential contribution of both non-toxin and toxin components. BMC Med 2013; 11:217. [PMID: 24107194 PMCID: PMC3851549 DOI: 10.1186/1741-7015-11-217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 09/13/2013] [Indexed: 01/31/2023] Open
Abstract
The development of cardiovascular dysfunction and shock in patients with invasive Bacillus anthracis infection has a particularly poor prognosis. Growing evidence indicates that several bacterial components likely play important pathogenic roles in this injury. As with other pathogenic Gram-positive bacteria, the B. anthracis cell wall and its peptidoglycan constituent produce a robust inflammatory response with its attendant tissue injury, disseminated intravascular coagulation and shock. However, B. anthracis also produces lethal and edema toxins that both contribute to shock. Growing evidence suggests that lethal toxin, a metalloprotease, can interfere with endothelial barrier function as well as produce myocardial dysfunction. Edema toxin has potent adenyl cyclase activity and may alter endothelial function, as well as produce direct arterial and venous relaxation. Furthermore, both toxins can weaken host defense and promote infection. Finally, B. anthracis produces non-toxin metalloproteases which new studies show can contribute to tissue injury, coagulopathy and shock. In the future, an understanding of the individual pathogenic effects of these different components and their interactions will be important for improving the management of B. anthracis infection and shock.
Collapse
Affiliation(s)
- Kenneth E Remy
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
9
|
Coggeshall KM, Lupu F, Ballard J, Metcalf JP, James JA, Farris D, Kurosawa S. The sepsis model: an emerging hypothesis for the lethality of inhalation anthrax. J Cell Mol Med 2013; 17:914-20. [PMID: 23742651 PMCID: PMC3729634 DOI: 10.1111/jcmm.12075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/29/2013] [Indexed: 01/19/2023] Open
Abstract
Inhalation anthrax is often described as a toxin-mediated disease. However, the toxaemia model does not account for the high mortality of inhalation anthrax relative to other forms of the disease or for the pathology present in inhalation anthrax. Patients with inhalation anthrax consistently show extreme bacteraemia and, in contrast to animals challenged with toxin, signs of sepsis. Rather than toxaemia, we propose that death in inhalation anthrax results from an overwhelming bacteraemia that leads to severe sepsis. According to our model, the central role of anthrax toxin is to permit the vegetative bacteria to escape immune detection. Other forms of B. anthracis infection have lower mortality because their overt symptoms early in the course of disease cause patients to seek medical care at a time when the infection and its sequelae can still be reversed by antibiotics. Thus, the sepsis model explains key features of inhalation anthrax and may offer a more complete understanding of disease pathology for researchers as well as those involved in the care of patients.
Collapse
Affiliation(s)
- Kenneth Mark Coggeshall
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Qiu P, Li Y, Shiloach J, Cui X, Sun J, Trinh L, Kubler-Kielb J, Vinogradov E, Mani H, Al-Hamad M, Fitz Y, Eichacker PQ. Bacillus anthracis cell wall peptidoglycan but not lethal or edema toxins produces changes consistent with disseminated intravascular coagulation in a rat model. J Infect Dis 2013; 208:978-89. [PMID: 23737601 DOI: 10.1093/infdis/jit247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Disseminated intravascular coagulation (DIC) appears to be important in the pathogenesis of Bacillus anthracis infection, but its causes are unclear. Although lethal toxin (LT) and edema toxin (ET) could contribute, B. anthracis cell wall peptidoglycan (PGN), not the toxins, stimulates inflammatory responses associated with DIC. METHODS AND RESULTS To better understand the pathogenesis of DIC during anthrax, we compared the effects of 24-hour infusions of PGN, LT, ET, or diluent (control) on coagulation measures 6, 24, or 48 hours after infusion initiation in 135 rats. No control recipient died. Lethality rates (approximately 30%) did not differ among PGN, LT, and ET recipients (P = .78). Thirty-three of 35 deaths (94%) occurred between 6 and 24 hours after the start of challenge. Among challenge components, PGN most consistently altered coagulation measures. Compared with control at 6 hours, PGN decreased platelet and fibrinogen levels and increased prothrombin and activated partial thromboplastin times and tissue factor, tissue factor pathway inhibitor, protein C, plasminogen activator inhibitor (PAI), and thrombin-antithrombin complex levels, whereas LT and ET only decreased the fibrinogen level or increased the PAI level (P ≤ .05). Nearly all effects associated with PGN infusion significantly differed from changes associated with toxin infusion (P ≤ .05 for all comparisons except for PAI level). CONCLUSION DIC during B. anthracis infection may be related more to components such as PGN than to LT or ET.
Collapse
Affiliation(s)
- Ping Qiu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kau JH, Shih YL, Lien TS, Lee CC, Huang HH, Lin HC, Sun DS, Chang HH. Activated protein C ameliorates Bacillus anthracis lethal toxin-induced lethal pathogenesis in rats. J Biomed Sci 2012; 19:98. [PMID: 23170801 PMCID: PMC3536616 DOI: 10.1186/1423-0127-19-98] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 10/18/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Lethal toxin (LT) is a major virulence factor of Bacillus anthracis. Sprague Dawley rats manifest pronounced lung edema and shock after LT treatments, resulting in high mortality. The heart failure that is induced by LT has been suggested to be a principal mechanism of lung edema and mortality in rodents. Since LT-induced death occurs more rapidly in rats than in mice, suggesting that other mechanisms in addition to the heart dysfunction may be contributed to the fast progression of LT-induced pathogenesis in rats. Coagulopathy may contribute to circulatory failure and lung injury. However, the effect of LT on coagulation-induced lung dysfunction is unclear. METHODS To investigate the involvement of coagulopathy in LT-mediated pathogenesis, the mortality, lung histology and coagulant levels of LT-treated rats were examined. The effects of activated protein C (aPC) on LT-mediated pathogenesis were also evaluated. RESULTS Fibrin depositions were detected in the lungs of LT-treated rats, indicating that coagulation was activated. Increased levels of plasma D-dimer and thrombomodulin, and the ameliorative effect of aPC further suggested that the activation of coagulation-fibrinolysis pathways plays a role in LT-mediated pathogenesis in rats. Reduced mortality was associated with decreased plasma levels of D-dimer and thrombomodulin following aPC treatments in rats with LT-mediated pathogenesis. CONCLUSIONS These findings suggest that the activation of coagulation in lung tissue contributes to mortality in LT-mediated pathogenesis in rats. In addition, anticoagulant aPC may help to develop a feasible therapeutic strategy.
Collapse
Affiliation(s)
- Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Frenzel E, Doll V, Pauthner M, Lücking G, Scherer S, Ehling-Schulz M. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Mol Microbiol 2012; 85:67-88. [PMID: 22571587 DOI: 10.1111/j.1365-2958.2012.08090.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacillus cereus causes gastrointestinal diseases and local and systemic infections elicited by the depsipeptide cereulide, enterotoxins, phospholipases, cytolysins and proteases. The PlcR-PapR quorum sensing system activates the expression of several virulence factors, whereas the Spo0A-AbrB regulatory circuit partially controls the plasmid-borne cereulide synthetase (ces) operon. Here, we show that CodY, a nutrient-responsive regulator of Gram-positive bacteria, has a profound effect on both regulatory systems, which have been assumed to operate independently of each other. Deletion of codY resulted in downregulation of virulence genes belonging to the PlcR regulon and a concomitant upregulation of the ces genes. CodY was found to be a repressor of the ces operon, but did not interact with the promoter regions of PlcR-dependent virulence genes in vitro, suggesting an indirect regulation of the latter. Furthermore, CodY binds to the promoter of the immune inhibitor metalloprotease InhA1, demonstrating that CodY directly links B. cereus metabolism to virulence. In vivo studies using a Galleria mellonella infection model, showed that the codY mutant was substantially attenuated, highlighting the importance of CodY as a key regulator of pathogenicity. Our results demonstrate that CodY profoundly modulates the virulence of B. cereus, possibly controlling the development of pathogenic traits in suitable host environments.
Collapse
Affiliation(s)
- Elrike Frenzel
- Institute of Functional Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
13
|
Okugawa S, Moayeri M, Pomerantsev AP, Sastalla I, Crown D, Gupta PK, Leppla SH. Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis. Mol Microbiol 2012; 83:96-109. [PMID: 22103323 PMCID: PMC3245379 DOI: 10.1111/j.1365-2958.2011.07915.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial lipoproteins play a crucial role in virulence in some gram-positive bacteria. However, the role of lipoprotein biosynthesis in Bacillus anthracis is unknown. We created a B. anthracis mutant strain altered in lipoproteins by deleting the lgt gene encoding the enzyme prolipoprotein diacylglyceryl transferase, which attaches the lipid anchor to prolipoproteins. (14)C-palmitate labelling confirmed that the mutant strain lacked lipoproteins, and hydrocarbon partitioning showed it to have decreased surface hydrophobicity. The anthrax toxin proteins were secreted from the mutant strain at nearly the same levels as from the wild-type strain. The TLR2-dependent TNF-α response of macrophages to heat-killed lgt mutant bacteria was reduced. Spores of the lgt mutant germinated inefficiently in vitro and in mouse skin. As a result, in a murine subcutaneous infection model, lgt mutant spores had markedly attenuated virulence. In contrast, vegetative cells of the lgt mutant were as virulent as those of the wild-type strain. Thus, lipoprotein biosynthesis in B. anthracis is required for full virulence in a murine infection model.
Collapse
Affiliation(s)
- Shu Okugawa
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
AbstractVitronectin (Vn) is a multifunctional glycoprotein profusely present in serum and bound to epithelial cell surfaces. It plays an important role in cell migration, tissue repair and regulation of membrane attack complex (MAC) formation. In the last decade the role of Vn has been extensively investigated in eukaryotic signalling and cell migration leading to the possibility of developing novel anticancer drugs. In parallel, several studies have suggested that pathogens utilize Vn in invasion of the host. Here we review the properties of Vn and its role in host-pathogen interactions that might be a future target for therapeutic intervention.
Collapse
|
15
|
Popova TG, Millis B, Bailey C, Popov SG. Platelets, inflammatory cells, von Willebrand factor, syndecan-1, fibrin, fibronectin, and bacteria co-localize in the liver thrombi of Bacillus anthracis-infected mice. Microb Pathog 2011; 52:1-9. [PMID: 22001909 DOI: 10.1016/j.micpath.2011.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/16/2011] [Accepted: 08/23/2011] [Indexed: 11/27/2022]
Abstract
UNLABELLED Vascular dysfunction and thrombosis have been described in association with anthrax infection in humans and animals but the mechanisms of these dysfunctions, as well as the components involved in thrombi formation are poorly understood. Immunofluorescent microscopy was used to define the composition of thrombi in the liver of mice challenged with the Bacillus anthracis Sterne spores. Lethal infection with the toxigenic Sterne strain, in contrast to the non-lethal, non-toxigenic delta-Sterne strain, demonstrated time-dependent increase in the number of vegetative bacteria inside the liver sinusoids and central vein. Massive appearance of thrombi typically occluding the lumen of the vessels coincided with the sudden death of infected animals. Bacterial chains in the thrombi were stained positive for syndecan-1 (SDC-1), fibronectin, and were surrounded by fibrin polymers, GPIIb-positive platelets, von Willebrand Factor (vWF), CD45-positive leukocytes, and massive amount of shed SDC-1. Experiments with human umbilical vein endothelial cells (HUVECs) demonstrated the active role of the host response to the secreted pathogenic factors of bacteria during the onset of the pro-thrombotic condition. The bacterial culture supernatants, as well as the isolated proteins (the pore-forming toxin anthrolysin O and phospholipase C) induced release of vWF, while anthrolysin O, sphingomyelinase and edema toxin induced release of thrombin from HUVECs and polymerization of fibrin in the presence of human plasma. CONCLUSION Our findings suggest that activation of endothelium in response to infection can contribute to the formation of occlusive thrombi consisting of aggregated bacteria, vWF, shed SDC-1, fibrin, activated platelets, fibronectin and leukocytes.
Collapse
Affiliation(s)
- Taissia G Popova
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Bacillus anthracis infection is rare in developed countries. However, recent outbreaks in the United States and Europe and the potential use of the bacteria for bioterrorism have focused interest on it. Furthermore, although anthrax was known to typically occur as one of three syndromes related to entry site of (i.e., cutaneous, gastrointestinal, or inhalational), a fourth syndrome including severe soft tissue infection in injectional drug users is emerging. Although shock has been described with cutaneous anthrax, it appears much more common with gastrointestinal, inhalational (5 of 11 patients in the 2001 outbreak in the United States), and injectional anthrax. Based in part on case series, the estimated mortalities of cutaneous, gastrointestinal, inhalational, and injectional anthrax are 1%, 25 to 60%, 46%, and 33%, respectively. Nonspecific early symptomatology makes initial identification of anthrax cases difficult. Clues to anthrax infection include history of exposure to herbivore animal products, heroin use, or clustering of patients with similar respiratory symptoms concerning for a bioterrorist event. Once anthrax is suspected, the diagnosis can usually be made with Gram stain and culture from blood or surgical specimens followed by confirmatory testing (e.g., PCR or immunohistochemistry). Although antibiotic therapy (largely quinolone-based) is the mainstay of anthrax treatment, the use of adjunctive therapies such as anthrax toxin antagonists is a consideration.
Collapse
Affiliation(s)
- Daniel A Sweeney
- Medical Intensivist Program, Washington Hospital, Fremont, California, USA
| | | | | | | | | |
Collapse
|
17
|
Chung MC, Jorgensen SC, Tonry JH, Kashanchi F, Bailey C, Popov S. SecretedBacillus anthracisproteases target the host fibrinolytic system. ACTA ACUST UNITED AC 2011; 62:173-81. [DOI: 10.1111/j.1574-695x.2011.00798.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Mukherjee DV, Tonry JH, Kim KS, Ramarao N, Popova TG, Bailey C, Popov S, Chung MC. Bacillus anthracis protease InhA increases blood-brain barrier permeability and contributes to cerebral hemorrhages. PLoS One 2011; 6:e17921. [PMID: 21437287 PMCID: PMC3060093 DOI: 10.1371/journal.pone.0017921] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 02/17/2011] [Indexed: 01/11/2023] Open
Abstract
Hemorrhagic meningitis is a fatal complication of anthrax, but its pathogenesis remains poorly understood. The present study examined the role of B. anthracis-secreted metalloprotease InhA on monolayer integrity and permeability of human brain microvasculature endothelial cells (HBMECs) which constitute the blood-brain barrier (BBB). Treatment of HBMECs with purified InhA resulted in a time-dependent decrease in trans-endothelial electrical resistance (TEER) accompanied by zonula occluden-1 (ZO-1) degradation. An InhA-expressing B. subtilis exhibited increased permeability of HBMECs, which did not occur with the isogenic inhA deletion mutant (ΔinhA) of B. anthracis, compared with the corresponding wild-type strain. Mice intravenously administered with purified InhA or nanoparticles-conjugated to InhA demonstrated a time-dependent Evans Blue dye extravasation, leptomeningeal thickening, leukocyte infiltration, and brain parenchymal distribution of InhA indicating BBB leakage and cerebral hemorrhage. Mice challenged with vegetative bacteria of the ΔinhA strain of B. anthracis exhibited a significant decrease in leptomeningeal thickening compared to the wildtype strain. Cumulatively, these findings indicate that InhA contributes to BBB disruption associated with anthrax meningitis through proteolytic attack on the endothelial tight junctional protein zonula occluden (ZO)-1.
Collapse
Affiliation(s)
- Dhritiman V. Mukherjee
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
| | - Jessica H. Tonry
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | - Taissia G. Popova
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
| | - Serguei Popov
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
- * E-mail: (SP); (MCC)
| | - Myung-Chul Chung
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
- * E-mail: (SP); (MCC)
| |
Collapse
|
19
|
Abstract
Bacillus anthracis shares many regulatory loci with the nonpathogenic Bacillus species Bacillus subtilis. One such locus is sinIR, which in B. subtilis controls sporulation, biofilm formation, motility, and competency. As B. anthracis is not known to be motile, to be naturally competent, or to readily form biofilms, we hypothesized that the B. anthracis sinIR regulon is distinct from that of B. subtilis. A genome-wide expression microarray analysis of B. anthracis parental and sinR mutant strains indicated limited convergence of the B. anthracis and B. subtilis SinR regulons. The B. anthracis regulon includes homologues of some B. subtilis SinR-regulated genes, including the signal peptidase gene sipW near the sinIR locus and the sporulation gene spoIIE. The B. anthracis SinR protein also negatively regulates transcription of genes adjacent to the sinIR locus that are unique to the Bacillus cereus group species. These include calY and inhA1, structural genes for the metalloproteases camelysin and immune inhibitor A1 (InhA1), which have been suggested to be associated with virulence in B. cereus and B. anthracis, respectively. Electrophoretic mobility shift assays revealed direct binding of B. anthracis SinR to promoter DNA from strongly regulated genes, such as calY and sipW, but not to the weakly regulated inhA1 gene. Assessment of camelysin and InhA1 levels in culture supernates from sinR-, inhA1-, and calY-null mutants showed that the concentration of InhA1 in the culture supernatant is inversely proportional to the concentration of camelysin. Our data are consistent with a model in which InhA1 protease levels are controlled at the transcriptional level by SinR and at the posttranslational level by camelysin.
Collapse
|