1
|
Li F, Tong G. Sample size and power considerations for cluster randomized trials with count outcomes subject to right truncation. Biom J 2021; 63:1052-1071. [PMID: 33751620 PMCID: PMC9132617 DOI: 10.1002/bimj.202000230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/01/2021] [Accepted: 01/09/2021] [Indexed: 01/03/2023]
Abstract
Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population-level effect of group-based interventions. One important application of CRTs is the control of vector-borne disease, such as malaria. However, a particular challenge for designing these trials is that the primary outcome involves counts of episodes that are subject to right truncation. While sample size formulas have been developed for CRTs with clustered counts, they are not directly applicable when the counts are right truncated. To address this limitation, we discuss two marginal modeling approaches for the analysis of CRTs with truncated counts and develop two corresponding closed-form sample size formulas to facilitate the design of such trials. The proposed sample size formulas allow investigators to explore the power under a large number of scenarios without computationally intensive simulations. The proposed formulas are validated in extensive simulations. We further explore the implication of right truncation on power and apply the proposed formulas to illustrate the power calculation for a malaria control CRT where the primary outcome is subject to right truncation.
Collapse
Affiliation(s)
- Fan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Center for Methods in Implementation and Prevention Science, Yale University, New Haven, CT, USA
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Guangyu Tong
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Yale Center for Analytical Sciences, New Haven, CT, USA
| |
Collapse
|
2
|
Mwandigha LM, Fraser KJ, Racine-Poon A, Mouksassi MS, Ghani AC. Power calculations for cluster randomized trials (CRTs) with right-truncated Poisson-distributed outcomes: a motivating example from a malaria vector control trial. Int J Epidemiol 2021; 49:954-962. [PMID: 32011684 PMCID: PMC7394957 DOI: 10.1093/ije/dyz277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 11/14/2022] Open
Abstract
Background Cluster randomized trials (CRTs) are increasingly used to study the efficacy of interventions targeted at the population level. Formulae exist to calculate sample sizes for CRTs, but they assume that the domain of the outcomes being considered covers the full range of values of the considered distribution. This assumption is frequently incorrect in epidemiological trials in which counts of infection episodes are right-truncated due to practical constraints on the number of times a person can be tested. Methods Motivated by a malaria vector control trial with right-truncated Poisson-distributed outcomes, we investigated the effect of right-truncation on power using Monte Carlo simulations. Results The results demonstrate that the adverse impact of right-truncation is directly proportional to the magnitude of the event rate, λ, with calculations of power being overestimated in instances where right-truncation was not accounted for. The severity of the adverse impact of right-truncation on power was more pronounced when the number of clusters was ≤30 but decreased the further the right-truncation point was from zero. Conclusions Potential right-truncation should always be accounted for in the calculation of sample size requirements at the study design stage.
Collapse
Affiliation(s)
- Lazaro M Mwandigha
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Keith J Fraser
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Amy Racine-Poon
- Department of Statistical Methodology and Consulting, Novartis Pharma AG, Basel, Switzerland.,Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Mohamad-Samer Mouksassi
- Bill & Melinda Gates Foundation, Seattle, WA, USA.,Department of Strategic Consulting Integrated Drug Development, Certara, Montreal, QC, Canada.,School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon.,Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Montreal, Montreal, QC, Canada
| | - Azra C Ghani
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
3
|
Roestenberg M, Walk J, van der Boor SC, Langenberg MCC, Hoogerwerf MA, Janse JJ, Manurung M, Yap XZ, García AF, Koopman JPR, Meij P, Wessels E, Teelen K, van Waardenburg YM, van de Vegte-Bolmer M, van Gemert GJ, Visser LG, van der Ven AJAM, de Mast Q, Natasha KC, Abebe Y, Murshedkar T, Billingsley PF, Richie TL, Sim BKL, Janse CJ, Hoffman SL, Khan SM, Sauerwein RW. A double-blind, placebo-controlled phase 1/2a trial of the genetically attenuated malaria vaccine PfSPZ-GA1. Sci Transl Med 2020; 12:eaaz5629. [PMID: 32434847 DOI: 10.1126/scitranslmed.aaz5629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/22/2020] [Indexed: 11/02/2022]
Abstract
Immunization with attenuated Plasmodium sporozoites can induce protection against malaria infection, as shown by Plasmodium falciparum (Pf) sporozoites attenuated by radiation in multiple clinical trials. As alternative attenuation strategy with a more homogeneous population of Pf sporozoites (PfSPZ), genetically engineered Plasmodium berghei sporozoites (SPZ) lacking the genes b9 and slarp induced sterile protection against malaria in mice. Consequently, PfSPZ-GA1 Vaccine, a Pf identical double knockout (Pf∆b9∆slarp), was generated as a genetically attenuated malaria parasite vaccine and tested for safety, immunogenicity, and preliminary efficacy in malaria-naïve Dutch volunteers. Dose-escalation immunizations up to 9.0 × 105 PfSPZ of PfSPZ-GA1 Vaccine were well tolerated without breakthrough blood-stage infection. Subsequently, groups of volunteers were immunized three times by direct venous inoculation with cryopreserved PfSPZ-GA1 Vaccine (9.0 × 105 or 4.5 × 105 PfSPZ, N = 13 each), PfSPZ Vaccine (radiation-attenuated PfSPZ, 4.5 × 105 PfSPZ, N = 13), or normal saline placebo at 8-week intervals, followed by exposure to mosquito bite controlled human malaria infection (CHMI). After CHMI, 3 of 25 volunteers from both PfSPZ-GA1 groups were sterilely protected, and the remaining 17 of 22 showed a patency ≥9 days (median patency in controls, 7 days; range, 7 to 9). All volunteers in the PfSPZ Vaccine control group developed parasitemia (median patency, 9 days; range, 7 to 12). Immunized groups exhibited a significant, dose-related increase in anti-Pf circumsporozoite protein (CSP) antibodies and Pf-specific interferon-γ (IFN-γ)-producing T cells. Although no definite conclusion can be drawn on the potential strength of protective efficacy of PfSPZ-GA1 Vaccine, the favorable safety profile and induced immune responses by PfSPZ-GA1 Vaccine warrant further clinical evaluation.
Collapse
Affiliation(s)
- Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Jona Walk
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Saskia C van der Boor
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Marijke C C Langenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | - Jacqueline J Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Mikhael Manurung
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - X Zen Yap
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Amanda Fabra García
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Jan Pieter R Koopman
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Pauline Meij
- Interdivisional GMP Facility, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Els Wessels
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Karina Teelen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Youri M van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Marga van de Vegte-Bolmer
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Geert Jan van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - André J A M van der Ven
- Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Quirijn de Mast
- Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | | | | | | | | | | | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
4
|
Makenga G, Baraka V, Francis F, Nakato S, Gesase S, Mtove G, Madebe R, Kyaruzi E, Minja DT, Lusingu JP, Van geertruyden JP. Effectiveness and safety of intermittent preventive treatment for malaria using either dihydroartemisinin-piperaquine or artesunate-amodiaquine in reducing malaria related morbidities and improving cognitive ability in school-aged children in Tanzania: A study protocol for a controlled randomised trial. Contemp Clin Trials Commun 2020; 17:100546. [PMID: 32382685 PMCID: PMC7201189 DOI: 10.1016/j.conctc.2020.100546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND In high transmission settings, up to 70% of school-aged children harbour malaria parasites without showing any clinical symptoms. Thus, epidemiologically, school aged children act as a substantial reservoir for malaria transmission. Asymptomatic Plasmodium infections induce inflammation leading to iron deficiency anaemia. Consequently, anaemia retards child growth, predisposes children to other diseases and reduces cognitive potential that could lead to poor academic performance. School aged children become increasingly more vulnerable as compared to those aged less than five years due to delayed acquisition of protective immunity. None of the existing Intermittent Preventive Treatment (IPT) strategies is targeting school-aged children. Here, we describe the study protocol of a clinical trial conducted in north-eastern Tanzania to expand the IPT by assessing the effectiveness and safety of two antimalarial drugs, Dihydroartemisinin-Piperaquine (DP) and Artesunate-Amodiaquine (ASAQ) in preventing malaria related morbidities in school-aged children (IPTsc) living in a high endemic area. METHODS/DESIGN The trial is a phase IIIb, individual randomized, open label, controlled trial enrolling school children aged 5-15 years, who receive either DP or ASAQ or control (no drug), using a "balanced block design" with the "standard of care" arm as reference. The interventional treatments are given three times a year for the first year. A second non-interventional year will assess possible rebound effects. Sample size was estimated to 1602 school children (534 per group) from selected primary schools in an area with high malaria endemicity. Thick and thin blood smears (to measure malaria parasitaemia using microscope) were obtained prior to treatment at baseline, and will be obtained again at month 12 and 20 from all participants. Haemoglobin concentration using a haemoglobinometer (HemoCue AB, Sweden) will be measured four monthly. Finger-prick blood (dried bloodspot-DBS) prepared on Whatman 3 M filter paper, will be used for sub-microscopic malaria parasite detection usingPCR, detect markers of drug resistance (using next generation sequencing (NGS) technology), and malaria serological assays (using enzyme-linked immunosorbent assay, ELISA). To determine the benefit of IPTsc on cognitive and psychomotor ability test of everyday attention for children (TEA-Ch) and a '20 m Shuttle run' respectively, will be conducted at baseline, month 12 and 20. The primary endpoints are change in mean haemoglobin from baseline concentration and reduction in clinical malaria incidence at month 12 and 20 of follow up. Mixed design methods are used to assess the acceptability, cost-effectiveness and feasibility of IPTsc as part of a more comprehensive school children health package. Statistical analysis will be in the form of multilevel modelling, owing to repeated measurements and clustering effect of participants. DISCUSSION Malaria intervention using IPTsc strategy may be integrated in the existing national school health programme. However, there is limited systematic evidence to assess the effectiveness and operational feasibility of this approach. School-aged children are easily accessible in most endemic malaria settings. The evidence from this study will guide the implementation of the strategy to provide complementary approach to reduce malaria related morbidity, anaemia and contribute to the overall burden reduction. TRIAL REGISTRATION Clinicaltrials.gov: NCT03640403, registered on Aug 21, 2018, prospectively registered.Url https://www.clinicaltrials.gov/ct2/show/NCT03640403?term=NCT03640403&rank=1.
Collapse
Affiliation(s)
- Geofrey Makenga
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Vito Baraka
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Swabra Nakato
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Samwel Gesase
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - George Mtove
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Rashid Madebe
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Edna Kyaruzi
- College of Education (DUCE), University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Daniel T.R. Minja
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - John P.A. Lusingu
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | | |
Collapse
|
5
|
Hobbs CV, Anderson C, Neal J, Sahu T, Conteh S, Voza T, Langhorne J, Borkowsky W, Duffy PE. Trimethoprim-Sulfamethoxazole Prophylaxis During Live Malaria Sporozoite Immunization Induces Long-Lived, Homologous, and Heterologous Protective Immunity Against Sporozoite Challenge. J Infect Dis 2016; 215:122-130. [PMID: 28077589 DOI: 10.1093/infdis/jiw482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/30/2016] [Indexed: 11/12/2022] Open
Abstract
Trimethoprim-sulfamethoxazole (TMP-SMX) is widely used in malaria-endemic areas in human immunodeficiency virus (HIV)-infected children and HIV-uninfected, HIV-exposed children as opportunistic infection prophylaxis. Despite the known effects that TMP-SMX has in reducing clinical malaria, its impact on development of malaria-specific immunity in these children remains poorly understood. Using rodent malaria models, we previously showed that TMP-SMX, at prophylactic doses, can arrest liver stage development of malaria parasites and speculated that TMP-SMX prophylaxis during repeated malaria exposures would induce protective long-lived sterile immunity targeting pre-erythrocytic stage parasites in mice. Using the same models, we now demonstrate that repeated exposures to malaria parasites during TMP-SMX administration induces stage-specific and long-lived pre-erythrocytic protective anti-malarial immunity, mediated primarily by CD8+ T-cells. Given the HIV infection and malaria coepidemic in sub-Saharan Africa, clinical studies aimed at determining the optimum duration of TMP-SMX prophylaxis in HIV-infected or HIV-exposed children must account for the potential anti-infection immunity effect of TMP-SMX prophylaxis.
Collapse
Affiliation(s)
- Charlotte V Hobbs
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland.,Division of Infectious Diseases, Department of Pediatrics.,Department of Microbiology, Batson Children's Hospital, University of Mississippi Medical Center, Jackson.,Division of Infectious Disease and Immunology, Department of Pediatrics, New York University School of Medicine
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Tejram Sahu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Tatiana Voza
- Biological Sciences Department, New York City College of Technology, City University of New York
| | - Jean Langhorne
- Mill Hill Laboratory, Francis Crick Institute, London, United Kingdom
| | - William Borkowsky
- Division of Infectious Disease and Immunology, Department of Pediatrics, New York University School of Medicine
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
6
|
In vivo curative and protective potential of orally administered 5-aminolevulinic acid plus ferrous ion against malaria. Antimicrob Agents Chemother 2015; 59:6960-7. [PMID: 26324278 PMCID: PMC4604406 DOI: 10.1128/aac.01910-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022] Open
Abstract
5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe2+) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug.
Collapse
|
7
|
Walker KM, Okitsu S, Porter DW, Duncan C, Amacker M, Pluschke G, Cavanagh DR, Hill AVS, Todryk SM. Antibody and T-cell responses associated with experimental human malaria infection or vaccination show limited relationships. Immunology 2015; 145:71-81. [PMID: 25471322 DOI: 10.1111/imm.12428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 02/02/2023] Open
Abstract
This study examined specific antibody and T-cell responses associated with experimental malaria infection or malaria vaccination, in malaria-naive human volunteers within phase I/IIa vaccine trials, with a view to investigating inter-relationships between these types of response. Malaria infection was via five bites of Plasmodium falciparum-infected mosquitoes, with individuals reaching patent infection by 11-12 days, having harboured four or five blood-stage cycles before drug clearance. Infection elicited a robust antibody response against merozoite surface protein-119 , correlating with parasite load. Classical class switching was seen from an early IgM to an IgG1-dominant response of increasing affinity. Malaria-specific T-cell responses were detected in the form of interferon-γ and interleukin-4 (IL-4) ELIspot, but their magnitude did not correlate with the magnitude of antibody or its avidity, or with parasite load. Different individuals who were immunized with a virosome vaccine comprising influenza antigens combined with P. falciparum antigens, demonstrated pre-existing interferon-γ, IL-2 and IL-5 ELIspot responses against the influenza antigens, and showed boosting of anti-influenza T-cell responses only for IL-5. The large IgG1-dominated anti-parasite responses showed limited correlation with T-cell responses for magnitude or avidity, both parameters being only negatively correlated for IL-5 secretion versus anti-apical membrane antigen-1 antibody titres. Overall, these findings suggest that cognate T-cell responses across a range of magnitudes contribute towards driving potentially effective antibody responses in infection-induced and vaccine-induced immunity against malaria, and their existence during immunization is beneficial, but magnitudes are mostly not inter-related.
Collapse
Affiliation(s)
- Karen M Walker
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Robinson K, Oyston P. Vaccines and adjuvants--special issue. J Med Microbiol 2012; 61:887-888. [PMID: 22538995 DOI: 10.1099/jmm.0.046177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Karen Robinson
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Petra Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|