1
|
Zhang Y, Liang S, Deng Z, Zhao Z, Han X. High-glucose conditions attenuate the response of macrophages to Legionella pneumophila infection by inhibiting NOD1 and MAPK signaling. Int Immunopharmacol 2024; 134:112254. [PMID: 38749333 DOI: 10.1016/j.intimp.2024.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Patients with diabetes are particularly susceptible to Legionella pneumophila (LP) infection, but the exact pathogenesis of LP infection in diabetic patients is still not fully understood. Herein, we investigated the effect of diabetes on immune function during LP infection in vitro and in vivo. METHODS The time course of LP infection in macrophages under normal and high-glucose (HG) conditions was examined in vitro. Western blot was used to determine nucleotide-binding oligomerization domain 1 (NOD1), kinase 1/2 (ERK1/2), mitogen-activated protein kinase p38 (MAPK p38), and c-Jun N-terminal kinases (JNK). Enzyme-linked immunosorbent assay (ELISA) was used to assess the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Cell Counting Kit-8 (CCK8) assay assessed U937 cell viability after treating cells with different concentrations of high sugar medium and ML130 (NOD1 inhibitor). For the in vivo study, normal and streptozocin-induced diabetic guinea pigs were infected with LP for 6, 24, and 72 h, after which NOD1, MAPK-related signals, TNF-α, and IL-6 expression in lung tissues were assessed using immunohistochemistry, western blot, and RT-PCR. RESULTS HG attenuated the upregulation of NOD1 expression and reduced TNF-α and IL-6 secretion caused by LP compared with LP-infected cells exposed to normal glucose levels (all p < 0.05). In diabetic guinea pigs, HG inhibited the upregulation of NOD1 expression in lung tissues and the activation of p38, ERK1/2, and cJNK caused by LP infection compared to control pigs (all p < 0.05). CONCLUSION HG attenuates the response of macrophages to LP infection by inhibiting NOD1 upregulation and the activation of MAPK signaling.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Sicong Liang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Ze Deng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Zirui Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Xu Han
- Department of Emergency, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China.
| |
Collapse
|
2
|
Sariol A, Vickers MA, Christensen SM, Weiskopf D, Sette A, Norris AW, Tansey MJ, Pinnaro CT, Perlman S. Monovalent SARS-CoV-2 mRNA Vaccine Does not Boost Omicron-Specific Immune Response in Diabetic and Control Pediatric Patients. J Infect Dis 2024; 229:1059-1067. [PMID: 37624979 PMCID: PMC11011175 DOI: 10.1093/infdis/jiad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
While the immunogenicity of SARS-CoV-2 vaccines has been well described in adults, pediatric populations have been less studied. In particular, children with type 1 diabetes are generally at elevated risk for more severe disease after infections, but are understudied in terms of COVID-19 and SARS-CoV-2 vaccine responses. We investigated the immunogenicity of COVID-19 mRNA vaccinations in 35 children with type 1 diabetes (T1D) and 23 controls and found that these children develop levels of SARS-CoV-2 neutralizing antibody titers and spike protein-specific T cells comparable to nondiabetic children. However, in comparing the neutralizing antibody responses in children who received 2 doses of mRNA vaccines (24 T1D; 14 controls) with those who received a third, booster dose (11 T1D; 9 controls), we found that the booster dose increased neutralizing antibody titers against ancestral SARS-CoV-2 strains but, unexpectedly, not Omicron lineage variants. In contrast, boosting enhanced Omicron variant neutralizing antibody titers in adults.
Collapse
Affiliation(s)
- Alan Sariol
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Molly A Vickers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Shannon M Christensen
- Department of Pediatrics-Endocrinology and Diabetes, University of Iowa, Iowa City, Iowa, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Andrew W Norris
- Department of Pediatrics-Endocrinology and Diabetes, University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Michael J Tansey
- Department of Pediatrics-Endocrinology and Diabetes, University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Catherina T Pinnaro
- Department of Pediatrics-Endocrinology and Diabetes, University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Chen XH, Liu HQ, Nie Q, Wang H, Xiang T. Causal relationship between type 1 diabetes mellitus and six high-frequency infectious diseases: A two-sample mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1135726. [PMID: 37065754 PMCID: PMC10102543 DOI: 10.3389/fendo.2023.1135726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose Type 1 diabetes mellitus (T1DM) is associated with different types of infections; however, studies on the causal relationship between T1DM and infectious diseases are lacking. Therefore, our study aimed to explore the causalities between T1DM and six high-frequency infections using a Mendelian randomization (MR) approach. Methods Two-sample MR studies were conducted to explore the causalities between T1DM and six high-frequency infections: sepsis, acute lower respiratory infections (ALRIs), intestinal infections (IIs), infections of the genitourinary tract (GUTIs) in pregnancy, infections of the skin and subcutaneous tissues (SSTIs), and urinary tract infections (UTIs). Data on summary statistics for T1DM and infections were obtained from the European Bioinformatics Institute database, the United Kingdom Biobank, FinnGen biobank, and Medical Research Council Integrative Epidemiology Unit. All data obtained for summary statistics were from European countries. The inverse-variance weighted (IVW) method was employed as the main analysis. Considering the multiple comparisons, statistical significance was set at p< 0.008. If univariate MR analyses found a significant causal association, multivariable MR (MVMR) analyses were performed to adjust body mass index (BMI) and glycated hemoglobin (HbA1c). MVMR-IVW was performed as the primary analysis, and the least absolute shrinkage and selection operator (LASSO) regression and MVMR-Robust were performed as complementary analyses. Results MR analysis showed that susceptibility to IIs increased in patients with T1DM by 6.09% using the IVW-fixed method [odds ratio (OR)=1.0609; 95% confidence interval (CI): 1.0281-1.0947, p=0.0002]. Results were still significant after multiple testing. Sensitivity analyses did not show any significant horizontal pleiotropy or heterogeneity. After adjusting for BMI and HbA1c, MVMR-IVW (OR=1.0942; 95% CI: 1.0666-1.1224, p<0.0001) showed significant outcomes that were consistent with those of LASSO regression and MVMR-Robust. However, no significant causal relationship was found between T1DM and sepsis susceptibility, ALRI susceptibility, GUTI susceptibility in pregnancy, SSTI susceptibility, and UTI susceptibility. Conclusions Our MR analysis genetically predicted increased susceptibility to IIs in T1DM. However, no causality between T1DM and sepsis, ALRIs, GUTIs in pregnancy, SSTIs, or UTIs was found. Larger epidemiological and metagenomic studies are required to further investigate the observed associations between the susceptibility of certain infectious diseases with T1DM.
Collapse
Affiliation(s)
- Xiao-Hong Chen
- Emergency Department, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hong-Qiong Liu
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiong Nie
- Department of Geriatrics, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Han Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Tao Xiang
- Emergency Department, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Liu Z, Bai X, Han X, Jiang W, Qiu L, Chen S, Yu X. The association of diabetes and the prognosis of COVID-19 patients: A retrospective study. Diabetes Res Clin Pract 2020; 169:108386. [PMID: 32853685 PMCID: PMC7445120 DOI: 10.1016/j.diabres.2020.108386] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023]
Abstract
AIMS This study evaluated the impact of previous glycemic control and in-hospital use of antidiabetic/antihypertensive drugs on the prognosis of COVID-19 patients with diabetes. METHODS In this retrospective cohort study, consecutive inpatients with laboratory confirmed COVID-19 were enrolled from Tongji Hospital (Wuhan, China). Patients without diabetes were matched to those with diabetes based on age, sex, and comorbidities. All patients were followed up to a clinical endpoint (discharge, worsening including transferring to ICU or immediate death). Data and outcomes were extracted from medical records and analyzed. RESULTS 64 patients with pre-existing diabetes were included in this study, with 128 matched patients without diabetes included as a control group. Patients with diabetes had a higher rate of worsening (18.8% versus 7.8%, p = 0.025). Multivariable regression showed increased odds of worsening associated with previous glycemic control reflected by HbA1c (odds ratio 3.29, 95% CI 1.19-9.13, p = 0.022) and receiver-operating characteristics (ROC) curve identified HbA1c of 8.6% (70 mmol/mol) as the optimal cut-off value. Univariate analysis demonstrated the in-hospital use of antidiabetic/antihypertensive drugs were not associated with a higher risk of worsening. CONCLUSIONS COVID-19 patients with diabetes had a higher risk of worsening, especially those with poorly-controlled HbA1c, with an optimal cut-off value of 8.6%. The in-hospital use of antidiabetic/antihypertensive drugs were not associated with increased odds of worsening in patients with diabetes.
Collapse
Affiliation(s)
- Zhelong Liu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan 430030, China.
| | - Xi Bai
- Department of Endocrinology, Key Lab of Endocrinology, Ministry of Health, Peking Union Medical College Hospital (PUMCH), Chinese Academe of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Xia Han
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Wangyan Jiang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Lin Qiu
- Department of Pharmacy, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Shi Chen
- Department of Endocrinology, Key Lab of Endocrinology, Ministry of Health, Peking Union Medical College Hospital (PUMCH), Chinese Academe of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan 430030, China.
| |
Collapse
|
5
|
Trempe CL, Lewis TJ. It's Never Too Early or Too Late-End the Epidemic of Alzheimer's by Preventing or Reversing Causation From Pre-birth to Death. Front Aging Neurosci 2018; 10:205. [PMID: 30050429 PMCID: PMC6052050 DOI: 10.3389/fnagi.2018.00205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/17/2018] [Indexed: 01/21/2023] Open
Abstract
The path to sporadic Alzheimer's is a tragic journey beginning prior to birth and ending in the most dreaded disease of society. Along the disease path are a myriad of clues that portend AD, many of which are complaints of seemingly unrelated conditions from chronic migraines, mood disorders, eye diseases, metabolic syndromes, periodontal diseases, hormonal and autoimmune diseases. Properly treating, not just managing, these diseases, prior to onset of dementia, may significantly reduce dementia incidences. Current high levels of health complaints reflect a state of generalized poor health and compromised immunity. During the mid-Victorian era, people were long-lived yet healthy, suffering from chronic diseases at one tenth the rate of peoples today. It's our poor health, at any age that increases susceptibility to chronic diseases and Alzheimer's. Infection is involved in many cases of Alzheimer's and other neurodegenerative diseases but is also implicated in many chronic conditions. Scientists looking for causation recognize that Alzheimer' is multifactorial and systemic-not "brain only." To slow, stop and reverse the AD epidemic, identification and reversal of causal factors must occur across the entire life spectrum of humans. This approach simply gives consideration to enhancing immune status of our bodies and brain, and controlling inflammation and infection, throughout the entire age spectrum. Infection is a causal factor, but the root cause is multi-factorial and immune health related. Pasteur stated it best when acknowledging the work of Bernard in 19th Century France, "The seed is nothing, the soil is everything."
Collapse
|
6
|
Evolution to a chronic disease niche correlates with increased sensitivity to tryptophan availability for the obligate intracellular bacterium Chlamydia pneumoniae. J Bacteriol 2014; 196:1915-24. [PMID: 24682324 DOI: 10.1128/jb.01476-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The chlamydiae are obligate intracellular parasites that have evolved specific interactions with their various hosts and host cell types to ensure their successful survival and consequential pathogenesis. The species Chlamydia pneumoniae is ubiquitous, with serological studies showing that most humans are infected at some stage in their lifetime. While most human infections are asymptomatic, C. pneumoniae can cause more-severe respiratory disease and pneumonia and has been linked to chronic diseases such as asthma, atherosclerosis, and even Alzheimer's disease. The widely dispersed animal-adapted C. pneumoniae strains cause an equally wide range of diseases in their hosts. It is emerging that the ability of C. pneumoniae to survive inside its target cells, including evasion of the host's immune attack mechanisms, is linked to the acquisition of key metabolites. Tryptophan and arginine are key checkpoint compounds in this host-parasite battle. Interestingly, the animal strains of C. pneumoniae have a slightly larger genome, enabling them to cope better with metabolite restrictions. It therefore appears that as the evolutionarily more ancient animal strains have evolved to infect humans, they have selectively become more "susceptible" to the levels of key metabolites, such as tryptophan. While this might initially appear to be a weakness, it allows these human C. pneumoniae strains to exquisitely sense host immune attack and respond by rapidly reverting to a persistent phase. During persistence, they reduce their metabolic levels, halting progression of their developmental cycle, waiting until the hostile external conditions have passed before they reemerge.
Collapse
|