1
|
Demir M, Soki J, Tanrıverdi ES, Özkul C, Mahmood B, Otlu B, Hazırolan G. Molecular characterization and antibiotic resistance of clinical Bacteroides and related genera from a tertiary care center in Türkiye (Turkey). Anaerobe 2024; 90:102912. [PMID: 39326493 DOI: 10.1016/j.anaerobe.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES This study was conducted to measure the prevalence of antibiotic resistance, and corresponding resistance genes among Bacteroides and related genera in a tertiary hospital. METHODS We examined 138 clinical strains of Bacteroides, Phocaeicola and Parabacteroides species isolated between July 2018 and June 2022. Antibiotic susceptibility tests were conducted using agar dilution. The bft gene and antibiotic resistance genes were targeted by real-time PCR. RESULTS Resistance rates of all strains against ampicillin, cefoxitin, piperacillin-tazobactam, meropenem, imipenem, clindamycin, metronidazole, and tigecycline were 97.8 %, 28.3 %, 11.6 %, 7.9 %, 5.1 %, 47.8 %, 0 % and 4.3 %, respectively. Non-fragilis Bacteroidales spp. (NFB) exhibited lower susceptibility rates compared to B. fragilis for cefoxitin, clindamycin, and piperacillin-tazobactam. The prevalence of meropenem resistance was higher in B. fragilis (15.5 %) than in NFB (0 %). Among all strains, the rates of cepA, cfxA, cfiA, ermF, ermG, ermB, nim, linA, mefA, msrSA, tetQ, tetX, tetX1 and bft genes were 42.8 %, 44.9 %, 8.7 %, 44.2 %, 10.9 %, 2.2 %, 0.7 %, 29.0 %, 17.4 %, 7.2 %, 76.1 %, 8.0 %, 37.7 % and 16.7 %, respectively. In five B. fragilis strains, insertion sequences [IS1187(n = 3), ISBf6(n = 1), IS612B(n = 1)] were detected in the upstream region of cfiA. NimE with ISBf6 on plasmid pBFM29b was detected in one B. fragilis strain, intermediate to metronidazole (MIC = 16 μg/mL). ErmF was the most abundant gene responsible for clindamycin resistance. TetQ and tetX1 genes exhibited a higher frequency in strains that were not susceptible to tigecycline (MIC ≥8 μg/ml). CONCLUSIONS Monitoring the resistance trends of Bacteroides and related genera is crucial given the observed resistance to all classes of antibiotics and the presence of various resistance mechanisms.
Collapse
Affiliation(s)
- Mervenur Demir
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye; ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland.
| | - Jozsef Soki
- ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland; Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary.
| | - Elif Seren Tanrıverdi
- ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland; Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkiye.
| | - Ceren Özkul
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye.
| | - Bakhtiyar Mahmood
- ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland; Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary; Department of Biology, University of Garmian, Kalar, Kurdistan Region, Iraq.
| | - Barış Otlu
- Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkiye.
| | - Gülşen Hazırolan
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye; ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland.
| |
Collapse
|
2
|
Zholdybayeva E, Kozhakhmetova S, Bayanbek D, Bekbayeva A, Auganova D, Kulmambetova G, Tarlykov P. Multi-omics approach for understanding the response of Bacteroides fragilis to carbapenems. Heliyon 2024; 10:e37049. [PMID: 39286136 PMCID: PMC11402942 DOI: 10.1016/j.heliyon.2024.e37049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Background The prevalence of Bacteroides fragilis isolates resistant to first-line beta-lactam drugs is increasing, resulting in reduced treatment efficacy. Investigating the bacterial transcriptome and proteome can uncover links between bacterial genes and resistance mechanisms. In this study, we experimentally assessed in vitro the transcriptional and proteomic profiles of B. fragilis exposed to SICs of meropenem, an effective antimicrobial agent, collected from patients with intra-abdominal diseases at Astana City Hospital, Kazakhstan. Methods B. fragilis was cultured in brain heart infusion broth and sub-cultured every 48 h for 8 days in media with and without meropenem. Total RNA was extracted from the liquid cultures using a commercial RNeasy mini kit, and strand-specific RNA sequencing (RNA-seq) was performed on the DNBSEQ platform. Raw RNA-seq data were retrieved from BioProject No. PRJNA531645 and uploaded to the NCBI Sequence Read Archive (accession no. SRX22081155). Proteins of B. fragilis were extracted and separated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis, followed by analysis of the eluted peptides using liquid chromatography-tandem mass spectrometry. Cluster analysis utilised the Database for Annotation, Visualisation, and Integrated Discovery. Results The subinhibitory concentration (SIC) of meropenem was determined to be 0.5 μg/L (minimum inhibitory concentration: 1). Mapping of reads to the reference genome identified 2477 expressed genes in all B. fragilis BFR KZ01 samples. Ten differentially expressed genes (DEGs) were common across comparison groups during and post-antibiotic exposure (wMEM vs. MEM2 and MEM2 vs. rMEM8); however, no substantially enriched Gene Ontology terms were identified. The cluster analysis highlighted a significant enrichment cluster (W-0560 oxidoreductase) of DEGs following antibiotic withdrawal. In total, 859 B. fragilis proteins were identified, with the expressions of three proteins, 3-oxoacyl-[acyl carrier protein] reductase, acetyl-CoA carboxylase biotin carboxylase subunit, and beta-ketoacyl-ACP synthase III, being upregulated in the enriched protein folding category. Notably, chaperone proteins such as FKBP-type peptidyl-prolyl cis-trans isomerases (involved in the cis-trans isomerisation of prolyl peptide bonds) and GroES (a co-chaperone functioning with GroEL) were also identified. Conclusions Under the influence of low doses of antibiotics defense mechanisms are activated which contribute to the emergence of resistance. These results provide insight into the response of B. fragilis to meropenem exposure, mainly at the SIC, contributing to the understanding bacterial survival strategies under stress conditions.
Collapse
Affiliation(s)
| | | | - Dina Bayanbek
- L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan
| | - Ayzhan Bekbayeva
- LPP National Center for Biotechnology, Astana, 010000, Kazakhstan
| | - Dana Auganova
- LPP National Center for Biotechnology, Astana, 010000, Kazakhstan
| | | | - Pavel Tarlykov
- LPP National Center for Biotechnology, Astana, 010000, Kazakhstan
| |
Collapse
|
3
|
Mahmood B, Sárvári KP, Orosz L, Nagy E, Sóki J. Novel and rare β-lactamase genes of Bacteroides fragilis group species: Detection of the genes and characterization of their genetic backgrounds. Anaerobe 2024; 86:102832. [PMID: 38360202 DOI: 10.1016/j.anaerobe.2024.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES This study screened the prevalence of rare β-lactamase genes in Bacteroides fragilis group strains from clinical specimens and normal microbiota and examined the genetic properties of the strains carrying these genes. METHODS blaHGD1, blaOXA347, cblA, crxA, and pbbA were detected by real-time polymerase chain reaction in collections of Bacteroides strains from clinical (n = 406) and fecal (n = 184) samples. To examine the genetic backgrounds of the samples, end-point PCR, FT-IR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used. RESULTS All B. uniformis isolates were positive for cblA in both collections. Although crxA was B. xylanisolvens-specific and associated with carbapenem resistance, it was only found in six fecal and three clinical B. xylanisolvens strains. Moreover, the crxA-positive strains were not clonal among B. xylanisolvens (contrary to cfiA in B. fragilis), implicating a rate of mobility or emergence by independent evolutionary events. The Phocaeicola (B.) vulgatus/P. dorei-specific gene blaHGD1 was detected among all P. vulgatus/P. dorei isolates from fecal (n = 36) and clinical (n = 26) samples. No blaOXA347-carrying isolate was found from European collections, but all US samples (n = 6) were positive. For three clinical isolates belonging to B. thetaiotaomicron (n = 2) and B. ovatus (n = 1), pbbA was detected on mobile genetic elements, and pbbA-positive strains displayed non-susceptibility to piperacillin or piperacillin/tazobactam phenotypically. CONCLUSIONS Based on these observations, β-lactamases produced by rare β-lactamase genes in B. fragilis group strains should not be overlooked because they could encode important resistance phenotypes.
Collapse
Affiliation(s)
- Bakhtiyar Mahmood
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary; Department of Biology, University of Garmian, Kalar, Kurdistan Region, Iraq.
| | - Károly Péter Sárvári
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Laszló Orosz
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Mahmood B, Paunkov A, Kupc M, Burián K, Nagy E, Leitsch D, Sóki J. Proteomics-Based RT-qPCR and Functional Analysis of 18 Genes in Metronidazole Resistance of Bacteroides fragilis. Antibiotics (Basel) 2024; 13:207. [PMID: 38534642 DOI: 10.3390/antibiotics13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Previously, we reported that metronidazole MICs are not dependent on the expression levels of nim genes in B. fragilis strains and we compared the proteomes of metronidazole-resistant laboratory B. fragilis strains to those of their susceptible parent strains. Here, we used RT-qPCR to correlate the expression levels of 18 candidate genes in a panel of selected, clinical nim gene-positive and -negative B. fragilis strains to their metronidazole MICs. Metronidazole MICs were correlated with the expression of certain tested genes. Specifically, lactate dehydrogenase expression correlated positively, whereas cytochrome fumarate reductase/succinate dehydrogenase, malate dehydrogenase, phosphoglycerate kinase redox and gat (GCN5-like acetyltransferase), and relA (stringent response) regulatory gene expressions correlated negatively with metronidazole MICs. This result provides evidence for the involvement of carbohydrate catabolic enzymes in metronidazole resistance in B. fragilis. This result was supported by direct substrate utilization tests. However, the exact roles of these genes/proteins should be determined in deletion-complementation tests. Moreover, the exact redox cofactor(s) participating in metronidazole activation need to be identified.
Collapse
Affiliation(s)
- Bakhtiyar Mahmood
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- Department of Biology, University of Garmian, Kalar 2562, Kurdistan Region, Iraq
| | - Ana Paunkov
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Malgorzata Kupc
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
5
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Sci Rep 2023; 13:11999. [PMID: 37491438 PMCID: PMC10368742 DOI: 10.1038/s41598-023-39204-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023] Open
Abstract
Due to the risk of pathogenic antibiotic-resistant bacteria and their antibiotic-resistance genes transfer from livestock feces to the soil and cultivated crops, it is imperative to find effective on-farm manure treatments to minimize that hazardous potential. An introduced worldwide policy of sustainable development, focus on ecological agricultural production, and the circular economy aimed at reducing the use of artificial fertilizers; therefore, such treatment methods should also maximize the fertilization value of animal manure. The two strategies for processing pig manure are proposed in this study-storage and composting. The present study examines the changes in the physicochemical properties of treated manure, in the microbiome, and in the resistome, compared to raw manure. This is the first such comprehensive analysis performed on the same batch of manure. Our results suggest that while none of the processes eliminates the environmental risk, composting results in a faster and more pronounced reduction of mobile genetic elements harboring antibiotic resistance genes, including those responsible for multi-drug resistance. Overall, the composting process can be an efficient strategy for mitigating the spread of antibiotic resistance in the environment and reducing the risk of its transfer to crops and the food chain while providing essential fertilizer ingredients.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Sood A, Ray P, Angrup A. Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12050942. [PMID: 37237845 DOI: 10.3390/antibiotics12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Anaerobic Gram-negative bacteria (AGNB) play a significant role as both pathogens and essential members of the human microbiota. Despite their clinical importance, there remains limited understanding regarding their antimicrobial resistance (AMR) patterns. This knowledge gap poses challenges in effectively managing AGNB-associated infections, as empirical treatment approaches may not adequately address the evolving resistance landscape. To bridge this research gap, we conducted a comprehensive study aimed at exploring the role of human AGNB as a reservoir of AMR. This can provide valuable insights for the prevention and management of anaerobic infections. METHODS We studied the prevalence of AMR and AMR determinants conferring resistance to metronidazole (nimE), imipenem (cfiA), piperacillin-tazobactam (cepA), cefoxitin (cfxA), clindamycin (ermF), chloramphenicol (cat) and mobile genetic elements (MGEs) such as cfiAIS and IS1186 associated with the cfiA and nim gene expression. These parameters were studied in Bacteroides spp., Fusobacterium spp., Prevotella spp., Veillonella spp., Sutterella spp., and other clinical AGNB. RESULTS Resistance to metronidazole, clindamycin, imipenem, piperacillin-tazobactam, cefoxitin and chloramphenicol was 29%, 33.5%, 0.5%, 27.5%, 26.5% and 0%, respectively. The presence of resistance genes, viz., nim, ermF, cfiA, cepA, cfxA, was detected in 24%, 33.5%, 10%, 9.5%, 21.5% isolates, respectively. None of the tested isolates showed the presence of a cat gene and MGEs, viz., cfiAIS and IS1186. The highest resistance to all antimicrobial agents was exhibited by Bacteroides spp. The association between resistant phenotypes and genotypes was complete in clindamycin, as all clindamycin-resistant isolates showed the presence of ermF gene, and none of the susceptible strains harbored this gene; similarly, all isolates were chloramphenicol-susceptible and also lacked the cat gene, whereas the association was low among imipenem and piperacillin-tazobactam. Metronidazole and imipenem resistance was seen to be dependent on insertion sequences for the expression of AMR genes. A constrained co-existence of cepA and cfiA gene in B. fragilis species was seen. Based on the absence and presence of the cfiA gene, we divided B. fragilis into two categories, Division I (72.6%) and Division II (27.3%), respectively. CONCLUSION AGNB acts as a reservoir of specific AMR genes, which may pose a threat to other anaerobes due to functional compatibility and acquisition of these genes. Thus, AST-complying standard guidelines must be performed periodically to monitor the local and institutional susceptibility trends, and rational therapeutic strategies must be adopted to direct empirical management.
Collapse
Affiliation(s)
- Anshul Sood
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Archana Angrup
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
7
|
Hashimoto T, Hashinaga K, Komiya K, Hiramatsu K. Prevalence of antimicrobial resistant genes in Bacteroides spp. isolated in Oita Prefecture, Japan. J Infect Chemother 2023; 29:284-288. [PMID: 36473684 DOI: 10.1016/j.jiac.2022.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bacteroides spp. are the most common anaerobic bacteria isolated from the human gastrointestinal tract. Several resistant genes are present in Bacteroides spp. However, most studies have focused on the prevalence of the cfiA gene in Bacteroides fragilis alone. We assessed the susceptibility to antimicrobial agents and the prevalence of cepA, cfiA, cfxA, ermF, nim, and tetQ genes in Bacteroides strains isolated from clinical specimens in our hospital. METHODS We isolated 86 B. fragilis and 58 non-fragilis Bacteroides strains from human clinical specimens collected from January 2011 to November 2021. Resistance against piperacillin (PIPC), cefotaxime (CTX), cefepime (CFPM), meropenem (MEPM), clindamycin, and minocycline was determined. RESULTS The resistant rates of penicillins and cephalosporins in non-fragilis isolates were significantly higher than those in B. fragilis isolates. In B. fragilis isolates, the resistant rates of PIPC, CTX, and CFPM in cfxA-positive isolates were significantly higher than those in cfxA-negative isolates (71% vs. 16%, 77% vs. 19%, and 77% vs. 30%, respectively). Thirteen B. fragilis isolates harbored the cfiA gene, two of which were resistant to MEPM. Six of the 13 cfiA-positive B. fragilis isolates were heterogeneously resistant to MEPM. CONCLUSION It is important to evaluate the use of MEPM as empirical therapy for Bacteroides spp. infections, considering the emergence of carbapenem resistance during treatment, existence of MEPM-resistant strains, and heterogeneous resistance.
Collapse
Affiliation(s)
| | | | - Kosaku Komiya
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Japan
| | | |
Collapse
|
8
|
Lipszyc A, Szuplewska M, Bartosik D. How Do Transposable Elements Activate Expression of Transcriptionally Silent Antibiotic Resistance Genes? Int J Mol Sci 2022; 23:8063. [PMID: 35897639 PMCID: PMC9330008 DOI: 10.3390/ijms23158063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The rapidly emerging phenomenon of antibiotic resistance threatens to substantially reduce the efficacy of available antibacterial therapies. Dissemination of resistance, even between phylogenetically distant bacterial species, is mediated mainly by mobile genetic elements, considered to be natural vectors of horizontal gene transfer. Transposable elements (TEs) play a major role in this process-due to their highly recombinogenic nature they can mobilize adjacent genes and can introduce them into the pool of mobile DNA. Studies investigating this phenomenon usually focus on the genetic load of transposons and the molecular basis of their mobility. However, genes introduced into evolutionarily distant hosts are not necessarily expressed. As a result, bacterial genomes contain a reservoir of transcriptionally silent genetic information that can be activated by various transposon-related recombination events. The TEs themselves along with processes associated with their transposition can introduce promoters into random genomic locations. Thus, similarly to integrons, they have the potential to convert dormant genes into fully functional antibiotic resistance determinants. In this review, we describe the genetic basis of such events and by extension the mechanisms promoting the emergence of new drug-resistant bacterial strains.
Collapse
Affiliation(s)
| | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.L.); (M.S.)
| |
Collapse
|
9
|
Paunkov A, Sóki J, Leitsch D. Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Front Microbiol 2022; 13:898453. [PMID: 35756037 PMCID: PMC9218692 DOI: 10.3389/fmicb.2022.898453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteroides fragilis is a commensal of the human gut but can also cause severe infections when reaching other body sites, especially after surgery or intestinal trauma. Bacteroides fragilis is an anaerobe innately susceptible to metronidazole, a 5-nitroimidazole drug that is prescribed against the majority of infections caused by anaerobic bacteria. In most of the cases, metronidazole treatment is effective but a fraction of B. fragilis is resistant to even very high doses of metronidazole. Metronidazole resistance is still poorly understood, but the so-called nim genes have been described as resistance determinants. They have been suggested to encode nitroreductases which reduce the nitro group of metronidazole to a non-toxic aminoimidazole. More recent research, however, showed that expression levels of nim genes are widely independent of the degree of resistance observed. In the search for an alternative model for nim-mediated metronidazole resistance, we screened a strain carrying an episomal nimA gene and its parental strain 638R without a nim gene for physiological differences. Indeed, the 638R daughter strain with the nimA gene had a far higher pyruvate-ferredoxin oxidoreductase (PFOR) activity than the parental strain. High PFOR activity was also observed in metronidazole-resistant clinical isolates, either with or without a nim gene. Moreover, the strain carrying a nimA gene fully retained PFOR activity and other enzyme activities such as thioredoxin reductase (TrxR) after resistance had been induced. In the parental strain 638R, these were lost or very strongly downregulated during the development of resistance. Further, after induction of high-level metronidazole resistance, parental strain 638R was highly susceptible to oxygen whereas the daughter strain with a nimA gene was hardly affected. Ensuing RT-qPCR measurements showed that a pathway for iron import via hemin uptake is downregulated in 638R with induced resistance but not in the resistant nimA daughter strain. We propose that nimA primes B. fragilis toward an alternative pathway of metronidazole resistance by enabling the preservation of normal iron levels in the cell.
Collapse
Affiliation(s)
- Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - József Sóki
- Faculty of Medicine, Institute of Medical Microbiology, University of Szeged, Szeged, Hungary
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Yekani M, Rezaee MA, Beheshtirouy S, Baghi HB, Bazmani A, Farzinazar A, Memar MY, Sóki J. Carbapenem resistance in Bacteroides fragilis: A review of molecular mechanisms. Anaerobe 2022; 76:102606. [PMID: 35738484 DOI: 10.1016/j.anaerobe.2022.102606] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Carbapenems are an applicable subclass of β-lactam drugs in the antibiotic therapy of anaerobic infections, especially for poly-microbial cases, due to their broad antimicrobial spectrum on aerobic and anaerobic bacteria. Bacteroides fragilis is the most commonly recovered anaerobic bacteria in the clinical laboratories from mono- and poly-microbial infections. B. fragilis is relatively non-susceptible to different antibiotics, including β-lactams, tetracyclines, fluoroquinolones, and macrolides. Carbapenems are among the most effective drugs against B. fragilis strains with high-level resistance to different antibiotics. Increased antibiotic resistance of B. fragilis strains has been reported following the overuse of an antimicrobial agent. Earlier contact with carbapenems is linked with increased resistance to them that limits the options for treatment of B. fragilis caused infections, especially in cases caused by multidrug-resistant strains. Several molecular mechanisms of resistance to carbapenems have been described for different carbapenem-resistant bacteria. Understanding the mechanisms of resistance to antimicrobial agents is necessary for selecting alternative antimicrobial agents and the application of control strategies. In the present study, we reviewed the mechanisms contributing to resistance to carbapenems in B. fragilis strains.
Collapse
Affiliation(s)
- Mina Yekani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samad Beheshtirouy
- Cardiothoracic Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Farzinazar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
11
|
Baaity Z, von Loewenich FD, Nagy E, Orosz L, Burián K, Somogyvári F, Sóki J. Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains. Antibiotics (Basel) 2022; 11:antibiotics11050590. [PMID: 35625234 PMCID: PMC9138018 DOI: 10.3390/antibiotics11050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Carbapenem-resistant Bacteroides fragilis strains usually emerge by an insertion sequence (IS) jump into the upstream region of the cfiA carbapenemase gene. However, intermediate or fully resistant cfiA-positive strains also exist. These do not have such IS element activations, but usually have heterogeneous resistance (HR) phenotypes, as detected by a disc diffusion or gradient tests. Heteroresistance is a serious antibiotic resistance problem, whose molecular mechanisms are not fully understood. We aim to characterize HR and investigate diagnostic issues in the set of cfiA-positive B. fragilis strains using phenotypic and molecular methods. Of the phenotypic methods used, the population analysis profile (PAP) and area under curve (AUC) measurements were the best prognostic markers for HR. PAP AUC, imipenem agar dilution and imipenemase production corresponded well with each other. We also identified a saturation curve parameter (quasi-PAP curves), which correlated well with these phenotypic traits, implying that HR is a stochastic process. The genes, on a previously defined ‘cfiA element’, act in a complex manner to produce the HR phenotype, including a lysine-acetylating toxin and a lysine-rich peptide. Furthermore, imipenem HR is triggered by imipenem. The two parameters that most correlate with the others are imipenemase production and ‘GNAT’ expression, which prompted us to suspect that carbapenem heteroresistance of the B. fragilis strains is stochastically regulated and is mediated by the altered imipenemase production.
Collapse
Affiliation(s)
- Zain Baaity
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | | | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - László Orosz
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - Ferenc Somogyvári
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
- Correspondence: author:
| |
Collapse
|
12
|
Paunkov A, Gutenbrunner K, Sóki J, Leitsch D. Haemin deprivation renders Bacteroides fragilis hypersusceptible to metronidazole and cancels high-level metronidazole resistance. J Antimicrob Chemother 2022; 77:1027-1031. [PMID: 35040989 PMCID: PMC8969417 DOI: 10.1093/jac/dkab485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/07/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Infections with Bacteroides fragilis are routinely treated with metronidazole, a 5-nitroimidazole antibiotic that is active against most anaerobic microorganisms. Metronidazole has remained a reliable treatment option, but resistance does occur, including in B. fragilis. OBJECTIVES In this study we tested whether haemin, a growth supplement for B. fragilis in vivo and in vitro, had an influence on the susceptibility of resistant B. fragilis strains to metronidazole. We further tested whether haemin-deprived B. fragilis would be more susceptible to oxygen and oxidative stress. Metronidazole has been described to cause oxidative stress, which we argued would be exacerbated in haemin-deprived B. fragilis because the bacteria harness haemin, and the iron released from it, in antioxidant enzymes such as catalase and superoxide dismutase. METHODS Haemin was omitted from growth media and the effect on metronidazole susceptibility was monitored in susceptible and resistant B. fragilis strains. Further, haemin-deprived B. fragilis were tested for resistance to aeration and hydrogen peroxide and the capacity for the removal of oxygen. RESULTS Omission of haemin from the growth medium rendered metronidazole-resistant B. fragilis strains, including an MDR isolate from the UK, highly susceptible to metronidazole. Haemin deprivation further rendered B. fragilis highly susceptible to oxygen, which was further exacerbated in resistant strains. B. fragilis was incapable of scavenging oxygen when haemin was omitted. CONCLUSIONS We propose that haemin deprivation overrules resistance mechanisms by rendering B. fragilis hypersusceptible to metronidazole due to a compromised antioxidant defence. Monitoring of haemin concentrations is imperative when conducting metronidazole susceptibility testing in B. fragilis.
Collapse
Affiliation(s)
- Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Katrin Gutenbrunner
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - József Sóki
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis 6, H-6725 Szeged, Hungary
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| |
Collapse
|
13
|
Development and Validation of a Novel Anaerobic Carbapenem Inactivation Method (Ana-CIM) for the Detection of Carbapenemase Production in Bacteroides fragilis. J Clin Microbiol 2022; 60:e0218821. [PMID: 35313739 DOI: 10.1128/jcm.02188-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Antibiotic resistance, particularly to carbapenems, is of increasing concern in Bacteroides fragilis. Carbapenem resistance in B. fragilis is most often mediated by the activation of chromosomally encoded metallo-β-lactamase cfiA by the presence of an upstream insertion sequence (IS). While traditional phenotypic susceptibility methods and molecular tests to detect carbapenem resistance in B. fragilis exist, they are not available in most clinical microbiology laboratory settings. Here, we describe the development of the anaerobic carbapenem inactivation method (Ana-CIM) for predicting carbapenemase production in B. fragilis based off the principles of the well-established modified carbapenem inactivation method (mCIM) for Enterobacterales and Pseudomonas aeruginosa. We also present the clinical validation and reproducibility of the Ana-CIM at three clinical laboratory sites (with 60 clinical isolates, 45% ertapenem resistant). Compared to ertapenem susceptibility by Etest interpreted by CLSI M100 Ed30, the Ana-CIM accurately detected carbapenem resistance in B. fragilis with categorical agreement (CA) of 87% (52/60) and 0% (0/21) very major error (VME), 11% (4/36) major error (ME), and 7% (4/60) minor error (mE) rates across all sites. Additionally, the Ana-CIM demonstrated high reproducibility with 5 clinical and 3 quality control (QC) isolates tested in triplicate with 3 commercial Mueller-Hinton media across all sites, with 93% (604/648) of replicates within a 2-mm zone size of the mode for each isolate. We conclude that the Ana-CIM can be readily deployed in clinical laboratories at a low cost for detection of carbapenemase-mediated resistance in B. fragilis.
Collapse
|
14
|
Comparative Genomics of Bacteroides fragilis Group Isolates Reveals Species-Dependent Resistance Mechanisms and Validates Clinical Tools for Resistance Prediction. mBio 2022; 13:e0360321. [PMID: 35038926 PMCID: PMC8764542 DOI: 10.1128/mbio.03603-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacteroides fragilis group (BFG) are the most frequently recovered anaerobic bacteria from human infections, and resistance to frontline antibiotics is emerging. In the absence of routine antimicrobial susceptibility testing (AST) for BFG in most clinical settings, we assessed the utility of clinical and modern genomics tools to determine BFG species-level identification and resistance patterns. A total of 174 BFG clinical isolates supplemented with 20 archived carbapenem-resistant B. fragilis sensu stricto (BFSS) isolates underwent antimicrobial susceptibility testing, MALDI-ToF mass-spectrometry, and whole-genome sequencing (WGS). Bruker BioTyper and VITEK-MS MALDI-ToF systems demonstrated accurate species-level identifications (91% and 90% agreement, respectively) compared to average nucleotide identity (ANI) analysis of WGS data. Distinct β-lactamase gene profiles were observed between BFSS and non-fragilis Bacteroides species, with significantly higher MICs to piperacillin-tazobactam in B. vulgatus and B. thetaiotaomicron relative to BFSS (P ≤ 0.034). We also uncovered phylogenetic diversity at the genomospecies level between division I and division II BFSS (ANI <0.95) and demonstrate that division II BFSS strains harbor an increased capacity to achieve carbapenem resistance through chromosomal activation of the CfiA carbapenemase. Finally, we report that CfiA detection by the Bruker BioTyper Subtyping Module accurately detected carbapenem resistance in BFSS with positive and negative percent agreement of 94%/90% and 95%/95% compared to ertapenem and meropenem susceptibility, respectively. These comparative analyses indicate that resistance mechanisms are distinct at both the phenotypic and genomic level across species within the BFG and that modern MALDI-ToF identification systems can be used for accurate species-level identification and resistance prediction of the BFG. IMPORTANCE Anaerobic infections present unique challenges in terms of detecting and identifying the etiologic agent and selecting the optimal antimicrobial therapy. Antimicrobial resistance is increasing in anaerobic pathogens, and it is critical to understand the prevalence and mechanisms of resistance to commonly prescribed antimicrobial therapies. This study uses comparative genomics to validate clinical tools for species-level identification and phenotypic resistance prediction in 194 isolates of Bacteroides fragilis group (BFG) bacteria, which represent the most commonly isolated organisms among anaerobic infections. We demonstrate species-specific patterns in antimicrobial resistance and validate new strategies for species-level organism identification and phenotypic resistance prediction in a routine clinical laboratory setting. These findings expand our understanding and management of anaerobic infections and justify further investigations into the molecular basis for species-specific resistance patterns observed within this study.
Collapse
|
15
|
Copsey-Mawer S, Hughes H, Scotford S, Anderson B, Davis C, Perry MD, Morris TE. UK Bacteroides species surveillance survey: Change in antimicrobial resistance over 16 years (2000-2016). Anaerobe 2021; 72:102447. [PMID: 34560274 DOI: 10.1016/j.anaerobe.2021.102447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To assess the differences in antimicrobial susceptibility of UK Bacteroides species across two distinct cohorts from 2000 to 2016. METHODS Strain identification was performed using matrix-assisted laser-desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) or by partial 16S rRNA sequencing. Minimum inhibitory concentrations (MICs) were determined using agar dilution, following CLSI guidelines (CLSI, 2012; 2017). RESULTS 224 isolates were included from 2000 to 168 from 2016. Bacteroides fragilis was the most common species, comprising 68% of the 2000 cohort, and 77% in 2016. For all antimicrobials tested, there was an overall increase in the rates of non-susceptible isolates between the cohorts. CONCLUSIONS The antibiogram of Bacteroides species in the UK is no longer predictable. Multi-drug resistant isolates although rare, are on the rise, and require testing to guide therapy. The monitoring and surveillance of resistance trends is imperative, as is the development of standardised, robust and accessible antimicrobial susceptibility testing methodology for clinical laboratories.
Collapse
Affiliation(s)
- Sarah Copsey-Mawer
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Harriet Hughes
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Selina Scotford
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Bethan Anderson
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Carol Davis
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Michael D Perry
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Trefor E Morris
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK.
| |
Collapse
|
16
|
Rapid detection and surveillance of cfiA-positive Bacteroides fragilis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anaerobe 2021; 72:102448. [PMID: 34537378 DOI: 10.1016/j.anaerobe.2021.102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To perform surveillance of cfiA-positive Bacteroides fragilis using new subtyping software module, MALDI Biotyper Subtyping Module (MBT Subtyping Module), on MALDI-TOF MS system, and to evaluate the detection ability of the module. METHODS cfiA-positive strains were presumed using the module against B. fragilis isolated between 2006 and 2019. The cfiA gene was confirmed using PCR. In cfiA-positive B. fragilis, the insertion sequence (IS) elements were examined and the MBT STAR-BL assay was performed to examine meropenem hydrolysis activity. RESULTS Of the 396 B. fragilis strains included, the MBT Subtyping Module detected 33 presumptive cfiA-positive strains (8.3%), of which 32 harbored the cfiA gene. The sensitivity and specificity of the MBT Subtyping Module for detecting cfiA-positive B. fragilis were 100.0% and 99.7%, respectively. Of the 32 strains harboring the cfiA gene, seven strains possessed IS elements, which were thought to induce high cfiA expression. Meropenem hydrolysis was detected in all seven strains that were positive for both cfiA and IS elements, and they exhibited resistance to meropenem and imipenem. The overall non-susceptibility rates to meropenem and imipenem were 84.8% and 36.4%, respectively, in the 33 presumptive cfiA-positive strains. CONCLUSION The MBT Subtyping Module can detect cfiA-positive B. fragilis rapidly and accurately, supporting its use for surveillance of cfiA-positive B. fragilis in clinical settings.
Collapse
|
17
|
Sóki J, Keszőcze A, Nagy I, Burián K, Nagy E. An update on ampicillin resistance and β-lactamase genes of Bacteroides spp. J Med Microbiol 2021; 70. [PMID: 34463608 DOI: 10.1099/jmm.0.001393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction. There are several β-lactamase genes described for Bacteroides strains, of which cepA and cfiA are specific for Bacteroides fragilis and define two genetic divisions. The expression and phenotypic effects of these genes are usually regulated by insertional activation.Hypotheses/Gap Statement. Information is lacking about how cepA is regulated for most of the B. fragilis strains and whether there could be a genetic element for it.Aim. We aimed to investigate the molecular background of ampicillin (and other β-lactam) resistance among Bacteroides strains as mediated mainly by cepA and also to find a genetic element for it as known for cfiA.Methodology. Various PCR methods were used for β-lactamase-resistance gene and insertion sequence (IS) element detection in 42 Bacteroides strains. β-Lactamase activity measurements and antimicrobial-susceptibility testing using agar dilution were also applied. Further molecular experiments involved sequencing, gene targeting, Southern blotting and bioinformatic analyses.Results. We found that high antibiotic resistance and β-lactamase levels are brought about by insertional activation of the cepA gene or by similar or dissimilar activation of cfxA or cfiA, or by the newly described pbbA genes. Non-activated cepA genes produced low levels of specific β-lactamase activities that did not correlate with ampicillin resistance. We found a genetic element for cepA and another region close to it that are characteristic for division I B. fragilis strains, which are replaced by other sequences in division II B. fragilis strains.Conclusion. cepA usually is not activated by IS elements and usually produces low β-lactamase activities that do not correlate with the ampicillin MICs; therefore, it probably involves some non-β-lactamase-mediated resistance mechanism(s). pbpA is a newly described, effective β-lactamase gene that is located on a plasmid, and cepA resides on a well-defined chromosomal segment that is mutually replaced in division II B. fragilis strains. This latter finding demonstrates the genetic dichotomy of cepA-cfiA in B. fragilis and requires further investigation.
Collapse
Affiliation(s)
- József Sóki
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anikó Keszőcze
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Present address: National Institute of Oncology, Budapest, Hungary
| | - István Nagy
- SEQOMICS Ltd., Mórahalom, Hungary.,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Katalin Burián
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Jasemi S, Emaneini M, Ahmadinejad Z, Fazeli MS, Sechi LA, Sadeghpour Heravi F, Feizabadi MM. Antibiotic resistance pattern of Bacteroides fragilis isolated from clinical and colorectal specimens. Ann Clin Microbiol Antimicrob 2021; 20:27. [PMID: 33892721 PMCID: PMC8066845 DOI: 10.1186/s12941-021-00435-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Bacteroides fragilis is a part of the normal gastrointestinal flora, but it is also the most common anaerobic bacteria causing the infection. It is highly resistant to antibiotics and contains abundant antibiotic resistance mechanisms. METHODS The antibiotic resistance pattern of 78 isolates of B. fragilis (22 strains from clinical samples and 56 strains from the colorectal tissue) was investigated using agar dilution method. The gene encoding Bacteroides fargilis toxin bft, and antibiotic resistance genes were targeted by PCR assay. RESULTS The highest rate of resistance was observed for penicillin G (100%) followed by tetracycline (74.4%), clindamycin (41%) and cefoxitin (38.5%). Only a single isolate showed resistance to imipenem which contained cfiA and IS1186 genes. All isolates were susceptible to metronidazole. Accordingly, tetQ (87.2%), cepA (73.1%) and ermF (64.1%) were the most abundant antibiotic-resistant genes identified in this study. MIC values for penicillin, cefoxitin and clindamycin were significantly different among isolates with the cepA, cfxA and ermF in compare with those lacking such genes. In addition, 22.7 and 17.8% of clinical and GIT isolates had the bft gene, respectively. CONCLUSIONS The finding of this study shows that metronidazole is highly in vitro active agent against all of B. fragilis isolates and remain the first-line antimicrobial for empirical therapy.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran
| | - Zahra Ahmadinejad
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Fazeli
- Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Fatemah Sadeghpour Heravi
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran.
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
19
|
Wang Y, Han Y, Shen H, Lv Y, Zheng W, Wang J. Higher Prevalence of Multi-Antimicrobial Resistant Bacteroides spp. Strains Isolated at a Tertiary Teaching Hospital in China. Infect Drug Resist 2020; 13:1537-1546. [PMID: 32547123 PMCID: PMC7266338 DOI: 10.2147/idr.s246318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The study investigates the molecular epidemiology of multi-drug resistant (MDR) Bacteroides spp. isolates and the clinical characteristics of the patients. Materials and Methods Bacteroides spp. clinical strains were identified through MALDI-TOF MS and VITEK-2 anaerobes and corynebacterium (ANC) cards. A broth microdilution method was employed to detect the antimicrobial sensitivities of Bacteroides spp. isolates. PCR was used to detect the resistance genes, including cfxA, cepA, cfiA, ermF, nim, as well as the upstream insertion sequence (IS) element of the cfiA gene. The effects of broad-spectrum efflux pump inhibitors (EPIs) on the minimal inhibitory concentration (MICs) of cefoxitin, moxifloxacin, and imipenem for MDR Bacteroides spp. were investigated. Results The total resistance rates of 115 Bacteroides spp. isolates to cefoxitin, moxifloxacin, clindamycin, metronidazole, imipenem and meropenem were 4.3%, 16.5%, 80.0%, 5.2%, 13.9% and 13.9%, respectively. The positive rates of carbapenem resistance gene cfiA were 38.9% and 8.6% for B. fragilis and non-B. fragilis isolates, respectively. The isolation rate of MDR isolates reached up to 18.26% (21/115), and the isolation rate among the gastrointestinal cancer patients was significantly higher when compared to the non-gastrointestinal cancer patients (52.38%/26.08%, P = 0.006). Furthermore, MDR isolates were more likely to be isolated from the patients exposed to cephalosporins 3 months before Bacteroides spp. isolation (76.19%/31.52%, P = 0.000). Conclusion The overall resistance rates of Bacteroides spp. isolates against multiple antimicrobials were at a high level, especially for B. fragilis. The CfiA gene carrying rate among B. fragilis isolates was as high as 38.9%, and its mediated carbapenem resistance was the major resistance mechanism for B. fragilis. The findings of this study imply that the real resistance tendency of Bacteroides spp. may be underestimated and need to be given more attention.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot 010050, People's Republic of China
| | - Yanqiu Han
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot 010050, People's Republic of China
| | - Huimin Shen
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot 010050, People's Republic of China
| | - Yingying Lv
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot 010050, People's Republic of China
| | - Wenqi Zheng
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot 010050, People's Republic of China
| | - Junrui Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot 010050, People's Republic of China
| |
Collapse
|
20
|
Maraki S, Mavromanolaki VE, Stafylaki D, Kasimati A. Surveillance of antimicrobial resistance in recent clinical isolates of Gram-negative anaerobic bacteria in a Greek University Hospital. Anaerobe 2020; 62:102173. [DOI: 10.1016/j.anaerobe.2020.102173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
|
21
|
Jamal W, Khodakhast FB, AlAzmi A, Sόki J, AlHashem G, Rotimi VO. Prevalence and antimicrobial susceptibility of enterotoxigenic extra-intestinal Bacteroides fragilis among 13-year collection of isolates in Kuwait. BMC Microbiol 2020; 20:14. [PMID: 31941446 PMCID: PMC6964027 DOI: 10.1186/s12866-020-1703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Some strains of Bacteroides fragilis species are associated with diarrhea as a result of enterotoxin production (bft or fragilysin). Fragilysin is activated by C11 protease (fpn) and together with C10 protease (bfp) play a significant role in its invasiveness. The objectives of this study were to investigate the proportion of clinical isolates from extra-intestinal sources that are toxin producers and characterize the genes mediating toxin production. Clinical isolates submitted to our reference laboratory over the last 13 years were screened for toxin production using PCR technique. All stool isolates were excluded. The isolates were tested for their susceptibility to 8 antimicrobial agents by E test. Carbapenem resistance gene cfiA was detected by PCR. Results A total of 421 B. fragilis isolates were viable. Out of these, bft was detected in 210 (49.9%) isolates. Of the 210 bft-positive isolates, 171 (81.4%), 33 (15.7%) and 6 (2.8%) harbored bft-1, bft-2, and bft-3 genes, respectively. Twenty (9.5%) of the bft-positive strains originated from bloodstream infections. Twenty-five, 20 and 9 strains harbored bfp-1, bfp-2 and bfp-3 gene, respectively. Two, 3, 4 bfp isotypes were detected simultaneously in some of strains. The resistance rates against amoxicillin-clavulanic acid was 32%, clindamycin 62%, cefoxitin 26%, imipenem 11%, meropenem 17%, metronidazole 4%, piperacillin 61% and tigecycline 14%. A chromosomally located cfiA gene that encode metallo-β-lactamase was identified in only 34 isolates (16.2%). Conclusions The prevalence of enterotoxin-producing B. fragilis was high among the extra-intestinal isolates. Metronidazole was the most active agent against all isolates. There was no statistically significance difference between resistance rates among bft-positive and bft-negative isolates except for clindamycin.
Collapse
Affiliation(s)
- Wafaa Jamal
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Fatima Bibi Khodakhast
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Ameerah AlAzmi
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Jόzsef Sόki
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Ghayda AlHashem
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Vincent O Rotimi
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| |
Collapse
|
22
|
Veloo A, Baas W, Haan F, Coco J, Rossen J. Prevalence of antimicrobial resistance genes in Bacteroides spp. and Prevotella spp. Dutch clinical isolates. Clin Microbiol Infect 2019; 25:1156.e9-1156.e13. [DOI: 10.1016/j.cmi.2019.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
23
|
Cordovana M, Kostrzewa M, Sóki J, Witt E, Ambretti S, Pranada A. Bacteroides fragilis: A whole MALDI-based workflow from identification to confirmation of carbapenemase production for routine laboratories. Anaerobe 2018; 54:246-253. [DOI: 10.1016/j.anaerobe.2018.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
24
|
Sárvári KP, Sóki J, Kristóf K, Juhász E, Miszti C, Latkóczy K, Melegh SZ, Urbán E. A multicentre survey of the antibiotic susceptibility of clinical Bacteroides species from Hungary. Infect Dis (Lond) 2018; 50:372-380. [DOI: 10.1080/23744235.2017.1418530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - József Sóki
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Emese Juhász
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Cecília Miszti
- Institute of Medical Microbiology, University of Debrecen, Debrecen, Hungary
| | | | - Szilvia Zsóka Melegh
- Institute of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Gajdács M, Spengler G, Urbán E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology? Antibiotics (Basel) 2017; 6:E25. [PMID: 29112122 PMCID: PMC5745468 DOI: 10.3390/antibiotics6040025] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022] Open
Abstract
Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Edit Urbán
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary.
| |
Collapse
|
26
|
Litterio MR, Cejas D, Gutkind G, Radice M. Identification of CfiA coding genes in Bacteroides fragilis isolates recovered in Argentina. Inconsistencies in CfiA organization and nomenclature. Anaerobe 2017; 48:257-261. [PMID: 29017951 DOI: 10.1016/j.anaerobe.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/26/2023]
Abstract
CfiA (CcrA) metallo-β-lactamase is the main carbapenem resistance mechanism in B. fragilis. From cfiA positive isolates detected in a previous surveillance study, 3 displayed resistance to imipenem while the remaining were susceptible. The aim of this study was to identify the cfiA alleles and to analyze the presence of IS elements in their upstream regions. CfiA-1, CfiA-4, CfiA-13, CfiA-19 and CfiA-22 were detected. IS elements belonging to IS21 family and IS942 group were identified upstream to cfiA in the 3 imipenem resistant isolates. We present an exhaustive analysis of cfiA/CfiA registers in databases, illustrating the inconsistencies in both organization and nomenclature. According to this analysis CfiA family comprises nowadays 15 different CfiA variants coded by 24 cfiA sequences. Curation of CfiA database is mandatory, if not new cfiA admission at GenBank will contribute to make this classification more complex.
Collapse
Affiliation(s)
- Mirta R Litterio
- Hospital de Pediatría S.A.M.I.C "Prof. Dr. Juan P. Garrahan", Combate de los Pozos 1881, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Cejas
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcela Radice
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
27
|
Alauzet C, Berger S, Jean-Pierre H, Dubreuil L, Jumas-Bilak E, Lozniewski A, Marchandin H. nimH, a novel nitroimidazole resistance gene contributing to metronidazole resistance in Bacteroides fragilis. J Antimicrob Chemother 2017; 72:2673-2675. [DOI: 10.1093/jac/dkx160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Fatal sepsis caused by multidrug-resistant Bacteroides fragilis, harboring a cfiA gene and an upstream insertion sequence element, in Japan. Anaerobe 2017; 44:36-39. [PMID: 28108390 DOI: 10.1016/j.anaerobe.2017.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/20/2022]
Abstract
Here, we report a case of fatal sepsis resulting from an intra-abdominal infection caused by a Bacteroides fragilis strain containing a CfiA4 metallo-β-lactamase and an upstream insertion sequence (IS) element. Meropenem was used as empiric therapy for septic shock as a result of the intra-abdominal infection, although two rounds of carbapenem treatment had been administered previously. B. fragilis was isolated from two anaerobic blood culture bottles 4 days after the onset of septic shock. Susceptibility testing revealed that the isolate was non-susceptible to all tested agents except metronidazole and tigecycline. The isolate gave a positive result in ethylenediaminetetraacetic acid and carbapenem inactivation tests, but a negative result in a double-disk synergy test using sodium mercaptoacetate. Next-generation whole-genome sequencing indicated the presence of the cfiA4, emrG and emrF genes. PCR indicated the presence of an IS element upstream of the cifA4 gene. Although carbapenem-resistant B. fragilis isolates have previously been reported, clinical sepsis by this organism is considered rare. In Japan, as in most countries worldwide, routine susceptibility testing and the detection of metallo-β-lactamases is not carried out in anaerobic organisms, including B. fragilis. The emergence of carbapenem resistance during therapy should be monitored, as B. fragilis strains containing the cfiA gene show decreased sensitivity during carbapenem therapy. Therefore, susceptibility testing and appropriate antibiotic stewardship are required in cases of anaerobic bacterial infections.
Collapse
|
29
|
Tierney D, Copsey SD, Morris T, Perry JD. A new chromogenic medium for isolation of Bacteroides fragilis suitable for screening for strains with antimicrobial resistance. Anaerobe 2016; 39:168-72. [DOI: 10.1016/j.anaerobe.2016.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/16/2022]
|
30
|
Sóki J, Hedberg M, Patrick S, Bálint B, Herczeg R, Nagy I, Hecht DW, Nagy E, Urbán E. Emergence and evolution of an international cluster of MDRBacteroides fragilisisolates. J Antimicrob Chemother 2016; 71:2441-8. [DOI: 10.1093/jac/dkw175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/17/2016] [Indexed: 12/29/2022] Open
|
31
|
Meggersee R, Abratt V. The occurrence of antibiotic resistance genes in drug resistant Bacteroides fragilis isolates from Groote Schuur Hospital, South Africa. Anaerobe 2015; 32:1-6. [DOI: 10.1016/j.anaerobe.2014.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
32
|
Molina J, Barrantes G, Quesada-Gómez C, Rodríguez C, Rodríguez-Cavallini E. Phenotypic and Genotypic Characterization of Multidrug-ResistantBacteroides,Parabacteroidesspp., andPseudoflavonifractorfrom a Costa Rican Hospital. Microb Drug Resist 2014; 20:478-84. [DOI: 10.1089/mdr.2013.0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- José Molina
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| | - Gloriana Barrantes
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| | - Carlos Quesada-Gómez
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| | - César Rodríguez
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| | - Evelyn Rodríguez-Cavallini
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| |
Collapse
|
33
|
Johansson Å, Nagy E, Sóki J. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Med Microbiol 2014; 63:1105-1110. [DOI: 10.1099/jmm.0.075465-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Clinical Microbiology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Johansson Å, Nagy E, Sóki J. Detection of carbapenemase activities of Bacteroides fragilis strains with matrix-assisted laser desorption ionization – Time of flight mass spectrometry (MALDI-TOF MS). Anaerobe 2014; 26:49-52. [DOI: 10.1016/j.anaerobe.2014.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/01/2022]
|
35
|
Leitsch D, Sóki J, Kolarich D, Urbán E, Nagy E. A study on Nim expression in Bacteroides fragilis. MICROBIOLOGY-SGM 2014; 160:616-622. [PMID: 24448511 DOI: 10.1099/mic.0.074807-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Members of the genus Bacteroides, mainly Bacteroides fragilis, can cause severe disease in man, especially after intestinal perforation in the course of abdominal surgery. Treatment is based on a small number of antibiotics, including metronidazole, which has proved to be highly reliable throughout the last 40 to 50 years. Nevertheless, metronidazole resistance does occur in Bacteroides and has been mainly attributed to Nim proteins, a class of proteins with a suggested nitroreductase function. Despite the potentially high importance of Nim proteins for human health, information on the expression of nim genes in B. fragilis is still lacking. It was the aim of this study to demonstrate expression of nim genes in B. fragilis at the protein level and, furthermore, to correlate Nim levels with the magnitude of metronidazole resistance. By the application of 2D gel electrophoresis, Nim proteins could be readily identified in nim-positive strains, but their levels were not elevated to a relevant extent after induction of resistance with high doses of metronidazole. Thus, the data herein do not provide evidence for Nim proteins acting as nitroreductases using metronidazole as a substrate, because no correlation between Nim levels and levels of metronidazole resistance could be observed. Furthermore, no evidence was found that Nim proteins protect B. fragilis from metronidazole by sequestering the activated antibiotic.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Edit Urbán
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
36
|
Abstract
Susceptibility testing of anaerobic bacteria recovered from selected cases can influence the choice of antimicrobial therapy. The Clinical and Laboratory Standards Institute (CLSI) has standardized many laboratory procedures, including anaerobic susceptibility testing (AST), and has published documents for AST. The standardization of testing methods by the CLSI allows comparisons of resistance trends among various laboratories. Susceptibility testing should be performed on organisms recovered from sterile body sites, those that are isolated in pure culture, or those that are clinically important and have variable or unique susceptibility patterns. Organisms that should be considered for individual isolate testing include highly virulent pathogens for which susceptibility cannot be predicted, such as Bacteroides, Prevotella, Fusobacterium, and Clostridium spp.; Bilophila wadsworthia; and Sutterella wadsworthensis. This review describes the current methods for AST in research and reference laboratories. These methods include the use of agar dilution, broth microdilution, Etest, and the spiral gradient endpoint system. The antimicrobials potentially effective against anaerobic bacteria include beta-lactams, combinations of beta-lactams and beta-lactamase inhibitors, metronidazole, chloramphenicol, clindamycin, macrolides, tetracyclines, and fluoroquinolones. The spectrum of efficacy, antimicrobial resistance mechanisms, and resistance patterns against these agents are described.
Collapse
|
37
|
Wybo I, Van den Bossche D, Soetens O, Vekens E, Vandoorslaer K, Claeys G, Glupczynski Y, Ieven M, Melin P, Nonhoff C, Rodriguez-Villalobos H, Verhaegen J, Piérard D. Fourth Belgian multicentre survey of antibiotic susceptibility of anaerobic bacteria. J Antimicrob Chemother 2013; 69:155-61. [PMID: 24008826 PMCID: PMC3861333 DOI: 10.1093/jac/dkt344] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objectives To collect recent data on the susceptibility of anaerobes to antimicrobial agents with known activity against anaerobes, and to compare them with results from previous Belgian multicentre studies. Methods Four hundred and three strict anaerobic clinical isolates were prospectively collected from February 2011 to April 2012 in eight Belgian university hospitals. MICs were determined by one central laboratory for 11 antimicrobial agents using Etest methodology. Results According to EUCAST breakpoints, >90% of isolates were susceptible to amoxicillin/clavulanate (94%), piperacillin/tazobactam (91%), meropenem (96%), metronidazole (92%) and chloramphenicol (98%), but only 70% and 40% to clindamycin and penicillin, respectively. At CLSI recommended breakpoints, only 71% were susceptible to moxifloxacin and 79% to cefoxitin. MIC50/MIC90 values for linezolid and for tigecycline were 1/4 and 0.5/4 mg/L, respectively. When compared with survey data from 2004, no major differences in susceptibility profiles were noticed. However, the susceptibility of Prevotella spp. and other Gram-negative bacilli to clindamycin decreased from 91% in 1993–94 and 82% in 2004 to 69% in this survey. Furthermore, the susceptibility of clostridia to moxifloxacin decreased from 88% in 2004 to 66% in 2011–12 and that of fusobacteria from 90% to 71%. Conclusions Compared with previous surveys, little evolution was seen in susceptibility, except a decline in activity of clindamycin against Prevotella spp. and other Gram-negative bacteria, and of moxifloxacin against clostridia. Since resistance was detected to all antibiotics, susceptibility testing of anaerobic isolates is indicated in severe infections to confirm appropriateness of antimicrobial therapy.
Collapse
Affiliation(s)
- Ingrid Wybo
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Eitel Z, Sóki J, Urbán E, Nagy E. The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe 2013; 21:43-9. [DOI: 10.1016/j.anaerobe.2013.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 03/05/2013] [Indexed: 11/29/2022]
|
39
|
Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 2013; 57:3767-74. [PMID: 23716049 DOI: 10.1128/aac.00386-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two multidrug-resistant Bacteroides fragilis clinical isolates contain and express a novel nim gene, nimJ, that is not recognized by the "universal" nim primers and can confer increased resistance to metronidazole when introduced into a susceptible strain on a multicopy plasmid. HMW615, an appendiceal isolate, contains at least two copies of nimJ on its genome, while HMW616, an isolate from a patient with sepsis, contains one genomic copy of nimJ. B. fragilis NimJ is phylogenetically closer to Prevotella baroniae NimI and Clostridium botulinum NimA than to the other known Bacteroides Nim proteins. The predicted protein structure of NimJ, based on fold recognition analysis, is consistent with the crystal structures derived for known Nim proteins, and specific amino acid residues important for substrate binding in the active site are conserved. This study demonstrates that the "universal" nim primers will not detect all nim genes with the ability to confer metronidazole resistance, but nimJ alone cannot account for the very high metronidazole MICs of these resistant clinical isolates.
Collapse
|
40
|
Sóki J. Extended role for insertion sequence elements in the antibiotic resistance of Bacteroides. World J Clin Infect Dis 2013; 3:1-12. [DOI: 10.5495/wjcid.v3.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/04/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023] Open
Abstract
The Bacteroides species are important micro-organisms, both in the normal physiology of the intestines and as frequent opportunistic anaerobic pathogens, with a deeply-rooted phylogenetic origin endowing them with some interesting biological features. Their prevalence in anaerobic clinical specimens is around 60%-80%, and they display the most numerous and highest rates of antibiotic resistance among all pathogenic anaerobes. In these antibiotic resistance mechanisms there is a noteworthy role for the insertion sequence (IS) elements, which are usually regarded as representatives of ‘selfish’ genes; the IS elements of Bacteroides are usually capable of up-regulating the antibiotic resistance genes. These include the cepA (penicillin and cephalosporin), cfxA (cephamycin), cfiA (carbapenem), nim (metronidazole) and ermF (clindamycin) resistance genes. This is achieved by outward-oriented promoter sequences on the ISs. Although some representatives are well characterized, e.g., the resistance gene-IS element pairs in certain resistant strains, open questions remain in this field concerning a better understanding of the molecular biology of the antibiotic resistance mechanisms of Bacteroides, which will have clinical implications.
Collapse
|
41
|
Sóki J, Eitel Z, Urbán E, Nagy E. Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey. Int J Antimicrob Agents 2013; 41:122-5. [DOI: 10.1016/j.ijantimicag.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
|
42
|
Hartmeyer GN, Sóki J, Nagy E, Justesen US. Multidrug-resistant Bacteroides fragilis group on the rise in Europe? J Med Microbiol 2012; 61:1784-1788. [DOI: 10.1099/jmm.0.049825-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- G. N. Hartmeyer
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - J. Sóki
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - E. Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - U. S. Justesen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
43
|
Treviño M, Areses P, Peñalver MD, Cortizo S, Pardo F, del Molino MLP, García-Riestra C, Hernández M, Llovo J, Regueiro BJ. Susceptibility trends of Bacteroides fragilis group and characterisation of carbapenemase-producing strains by automated REP-PCR and MALDI TOF. Anaerobe 2012; 18:37-43. [PMID: 22261518 DOI: 10.1016/j.anaerobe.2011.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/11/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
Abstract
Susceptibility testing of clinical isolates of anaerobic bacteria is not considered, often, mandatory in routine clinical practice and the treatments are empirically established. Thus, periodic monitoring of the susceptibility patterns of anaerobic bacteria is advisable. The aim of this study was to update on resistance of Bacteroides fragilis group in our Institution with special attention to carbapenems reporting metallo-beta-lactamase producing strains for the first time in Spain, and to compare fingerprinting analysis results obtained by using automated rep-PCR (DiversiLab System) and MALDI-TOF MS. A total of 830 non-duplicated clinical isolates of the B. fragilis group recovered from the years 2006 to 2010 were studied. B. fragilis was the most prevalent species (59.5%). The total susceptibility of B. fragilis group isolates were: penicillin, 13.3%; amoxicillin/clavulanic, 89.6%; piperacillin-tazobactam, 91.8%; cefoxitin, 65.8%; ertapenem, 95.9%; imipenem, 98.2%; clindamycin, 53.4% and metronidazole, 96.4%. The percentage of sensitive isolates did not change significantly over time for amoxicillin/clavulanic, cefoxitin, clindamycin and metronidazole. A slight increase in the rate of resistance to ertapenem and imipenem was observed. Imipenem resistance and carbapenemase production were detected for the first time in our laboratory in the year 2007. No other report of carbapenemase-producing B. fragilis in our country has been previously published. Six imipenem-resistant isolates were MBL-producing and PCR positive for cfiA gene. Four of them were PCR positive for IS-like immediately upstream cfiA gene and two of them were negative. Both, automated rep-PCR (DiversiLab) and MALDI-TOF MS, revealed a great genetic diversity among carbapenem-producing strains suggesting the acquisition of novel resistance genes more than clonal dissemination of them. Both methods seem to be useful tools for fast and accurate identification and strain typing of B. fragilis group in the daily laboratory routine. Because of the relevant increase observed in Bacteroides species isolated from blood cultures and the appearance of carbapenemase-producing strains in our Institution, we recommend to test the antimicrobial susceptibility of the isolates, at least in the most severe patients.
Collapse
Affiliation(s)
- Mercedes Treviño
- Clinical Microbiology Laboratory, University Hospital Complex of Santiago de Compostela (Spain), C/ Travesía Choupana s/n, 15706-Santiago de Compostela (La Coruña), Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wexler HM. Pump it up: occurrence and regulation of multi-drug efflux pumps in Bacteroides fragilis. Anaerobe 2012; 18:200-8. [PMID: 22266580 DOI: 10.1016/j.anaerobe.2011.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/25/2022]
Abstract
Bacteroides fragilis is a gram-negative anaerobic commensal that can be a virulent pathogen when it escapes its normal niche in the human gut. Recent increases in reports of multi-drug resistance strains of this organism have lent urgency to understanding its mechanisms of antimicrobial resistance. We have identified and characterized RND-type multi-drug efflux pumps in B. fragilis which can pump out a variety of substrates and whose transcription levels can be elevated by a wide variety of antimicrobials, antiseptic agents, bile and other stressors. Our research is directed toward understanding how the efflux pump genes are controlled and how we may exploit that understanding to develop more effective, targeted therapy that will cure the infection without disrupting the entire gut microbiome that is so important in many aspects of human health.
Collapse
Affiliation(s)
- Hannah M Wexler
- GLAVAHCS, UCLA Department of Medicine, Los Angeles, CA 90073, USA.
| |
Collapse
|
45
|
Prevalence of antimicrobial resistance among clinical isolates of Bacteroides fragilis group in Canada in 2010-2011: CANWARD surveillance study. Antimicrob Agents Chemother 2011; 56:1247-52. [PMID: 22203594 DOI: 10.1128/aac.05823-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical isolates of the Bacteroides fragilis group (n = 387) were collected from patients attending nine Canadian hospitals in 2010-2011 and tested for susceptibility to 10 antimicrobial agents using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. B. fragilis (59.9%), Bacteroides ovatus (16.3%), and Bacteroides thetaiotaomicron (12.7%) accounted for ~90% of isolates collected. Overall rates of percent susceptibility were as follows: 99.7%, metronidazole; 99.5%, piperacillin-tazobactam; 99.2%, imipenem; 97.7%, ertapenem; 92.0%, doripenem; 87.3%, amoxicillin-clavulanate; 80.9%, tigecycline; 65.9%, cefoxitin; 55.6%, moxifloxacin; and 52.2%, clindamycin. Percent susceptibility to cefoxitin, clindamycin, and moxifloxacin was lowest for B. thetaiotaomicron (n = 49, 24.5%), Parabacteroides distasonis/P. merdae (n = 11, 9.1%), and B. ovatus (n = 63, 31.8%), respectively. One isolate (B. thetaiotaomicron) was resistant to metronidazole, and two isolates (both B. fragilis) were resistant to both piperacillin-tazobactam and imipenem. Since the last published surveillance study describing Canadian isolates of B. fragilis group almost 20 years ago (A.-M. Bourgault et al., Antimicrob. Agents Chemother. 36:343-347, 1992), rates of resistance have increased for amoxicillin-clavulanate, from 0.8% (1992) to 6.2% (2010-2011), and for clindamycin, from 9% (1992) to 34.1% (2010-2011).
Collapse
|
46
|
Sóki J, Gonzalez SM, Urbán E, Nagy E, Ayala JA. Molecular analysis of the effector mechanisms of cefoxitin resistance among Bacteroides strains. J Antimicrob Chemother 2011; 66:2492-500. [PMID: 21873290 DOI: 10.1093/jac/dkr339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES The characterization of Bacteroides strains with regard to the cfxA gene, the MTn4555 mobilizable transposon, the role of penicillin-binding proteins (PBPs) and heterogeneous cefoxitin resistance. METHODS Eighty-four randomly selected and 11 heterogeneously or highly cefoxitin-resistant Bacteroides isolates were included. Agar dilution and Etest methods were used for the determination of cefoxitin MICs. PCR experiments and nucleotide sequencing were used to detect the cfxA gene and the molecular features of MTn4555. Cefoxitin-binding experiments to determine its affinity (IC(50)) for PBPs and cefoxitinase assays were also applied. Southern blotting was used to determine the copy number of the cfxA genes. RESULTS Sixteen strains from the random collection proved to be positive for cfxA, and the MIC distribution for the cfxA-negative and -positive strains did not display a clear separation. The majority of the cfxA-positive strains in this collection harboured a 1.2 kb common region at the 3' end of MTn4555. This region encoded an open reading frame that exhibited homology to abortive phage infection proteins (AbiD). The cfxA genes were transferable only at low frequencies in conjugation experiments. In PBP affinity studies, the PBP-A and PBP3 species were largely insensitive to cefoxitin, whereas the other PBP species were affected at very low concentrations. Seven of the heterogeneously resistant strains were positive for cfxA and most of them had mutations in the regulatory regions of cfxA. CONCLUSIONS Major and minor roles for Bacteroides fragilis PBPs and the CfxA cefoxitinase, respectively, were inferred. The role of the newly recognized abiD may be to control the copy number of cfxA.
Collapse
Affiliation(s)
- József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
47
|
Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 2011; 60:1584-1590. [PMID: 21680764 DOI: 10.1099/jmm.0.031336-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used in clinical microbiological laboratories to identify bacteria and fungi at a species level and to subtype them. The cfiA gene encoding the unique carbapenemases found in Bacteroides is restricted to division II Bacteroides fragilis strains. The aim of this study was to evaluate whether MALDI-TOF MS is suitable for differentiating B. fragilis strains which harbour the cfiA gene from those that do not. A well-defined collection of 40 B. fragilis isolates with known imipenem MICs (0.062->32 mg l(-1)) were selected for this study. Twelve B. fragilis strains with known cfiA status, including NCTC 9343 (division I) and TAL3636 (division II), were measured by means of microflex LT MALDI-TOF MS and well-defined differences in mass spectra between the cfiA-positive and cfiA-negative strains were found in the interval 4000-5500 Da. A further 28 strains were selected for the blind measurements: 9 cfiA-positive clinical isolates with different imipenem MICs ranging between 0.06 and >32 mg l(-1) (different expressions of the metallo-β-lactamase gene) were clearly separated from the 19 cfiA-negative isolates. The presence or absence of the selected peaks in all tested strains clearly differentiated the strains belonging to B. fragilis division I (cfiA-negative) or division II (cfiA-positive). These results suggest a realistic method for differentiating division II B. fragilis strains (harbouring the cfiA gene) and to determine them at a species level at the same time. Although not all cfiA-positive B. fragilis strains are resistant to carbapenems, they all have the possibility of becoming resistant to this group of antibiotics by acquisition of an appropriate IS element for full expression of the cfiA gene, leading to possible treatment failure.
Collapse
Affiliation(s)
- Elisabeth Nagy
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | | | - József Sóki
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | - Edit Urbán
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | | |
Collapse
|
48
|
Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006-2009. Anaerobe 2011; 17:147-51. [PMID: 21664469 DOI: 10.1016/j.anaerobe.2011.05.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 04/18/2011] [Accepted: 05/17/2011] [Indexed: 11/21/2022]
Abstract
The susceptibility trends for the species of the Bacteroides fragilis group against various antibiotics were determined using data from 4 years [2006-2009] on 1957 isolates referred by 8 medical centers participating in a National Survey for the Susceptibility of B. fragilis. The antibiotic test panel included doripenem, ertapenem, imipenem, meropenem, ampicillin:sulbactam, piperacillin:tazobactam, cefoxitin, clindamycin, moxifloxacin, tigecycline, chloramphenicol and metronidazole. MICs were determined using agar dilution methods following CLSI recommendations. Genetic analysis of isolates from 2008 with elevated MICs (>2 μg/mL) to one or more of the carbapenems to detect presence of the cfiA gene was performed using PCR methodology. The results showed an increase in the resistance rates to the β-lactam antibiotics. High resistance rates were seen for clindamycin and moxifloxacin (as high as 60% for clindamycin and >80% for moxifloxacin), with relatively stable low resistance (5.4%) for tigecycline. For carbapenems, resistance in B. fragilis was 1.1%-2.5% in 2008-9. One isolate resistant to metronidazole (MIC 32 μg/mL) was observed as well as isolates with elevated MICs to chloramphenicol (16 μg/mL). Genetic analysis indicated that the cfiA gene was present in some but not all of the isolates with high MICs to the carbapenems. These data indicate that there continue to be changes in susceptibility over time, and that resistance can be seen among the carbapenems. High antibiotic resistance rates tend to be associated with specific species.
Collapse
|
49
|
Sherwood JE, Fraser S, Citron DM, Wexler H, Blakely G, Jobling K, Patrick S. Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe 2011; 17:152-5. [PMID: 21376821 DOI: 10.1016/j.anaerobe.2011.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/30/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
This report summarizes the case of a 23 year-old otherwise healthy male that was injured in an improvised explosive device (IED) blast in support of Operation Enduring Freedom (OEF). He sustained bilateral open tibia and fibula fractures in the setting of being exposed to water contaminated with raw sewage. Despite long-term carbapenem therapy, the patient's wounds were repeatedly noted to have purulent drainage during surgical debridement and cultures from these wounds were persistently positive for Bacteroides fragilis. Apparent clinical failure persisted despite the addition of metronidazole to his regimen and an eventual trial of tigecycline. Susceptibility testing of the B. fragilis isolate was performed and resistance to penicillin, clindamycin,metronidazole, cefoxitin, meropenem, imipenem, piperacillin/tazobactam, and tigecycline was confirmed. The presence of a nimE gene on a potentially transferrable plasmid was also confirmed by plasmid sequencing. The only antibiotics that displayed in vitro susceptibility were moxifloxacin and linezolid. These antibiotics were initiated in combination with aggressive irrigation and serial surgical debridement. Conversion to left-sided internal fixation became feasible and his left lower extremity was salvaged without residual evidence of infection. The patient completed an eight week course of combination moxifloxacin and linezolid therapy without adverse event. This B. fragilis isolate displayed simultaneous high-level resistance to multiple antibiotics routinely utilized in anaerobic infections. This was evidenced by clinical failure, in vitro susceptibility testing, and demonstration of genes associated with resistance mechanisms. This case warrants review not only due to the rarity of this event but also the potential implications regarding anaerobic infections in traumatic wounds and the success of a novel treatment regimen utilizing combination therapy with moxifloxacin and linezolid.
Collapse
Affiliation(s)
- Jeffrey E Sherwood
- Walter Reed Army Medical Center, Department of Infectious Disease, Washington, DC 20307-5001, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Differentiation of cfiA-negative and cfiA-positive Bacteroides fragilis isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2011; 49:1961-4. [PMID: 21346046 DOI: 10.1128/jcm.02321-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbapenem resistance in Bacteroides fragilis is associated with cfiA-encoded class B metallo-beta-lactamase. cfiA-negative and cfiA-positive isolates belong to genotypically distinct groups. Of a total of 248 B. fragilis isolates included in this study, 214 were susceptible, 10 were intermediate, and 24 were resistant to meropenem. We show that matrix-assisted laser desorption ionization-time of flight mass spectrometry is able to differentiate between cfiA-negative and cfiA-positive isolates and predict carbapenem resistance in a routine laboratory setting.
Collapse
|