1
|
Hsu CY, Moradkasani S, Suliman M, Uthirapathy S, Zwamel AH, Hjazi A, Vashishth R, Beig M. Global patterns of antibiotic resistance in group B Streptococcus: a systematic review and meta-analysis. Front Microbiol 2025; 16:1541524. [PMID: 40342597 PMCID: PMC12060732 DOI: 10.3389/fmicb.2025.1541524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/14/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Streptococcus agalactiae, or group B Streptococcus (GBS), is a significant pathogen associated with severe infections in neonates, particularly sepsis and meningitis. The increasing prevalence of antibiotic resistance among GBS strains is a growing public health concern, necessitating a comprehensive meta-analysis to evaluate the prevalence of this resistance globally. Methods We conducted a comprehensive systematic search across four major scientific databases: Scopus, PubMed, Web of Science, and EMBASE, targeting articles published until December 13, 2023. This meta-analysis focused on studies that examined antibiotic resistance in GBS strains. The Joanna Briggs Institute tool was employed to assess the quality of the included studies. This meta-analysis applied a random-effects model to synthesize data on antibiotic resistance in GBS, incorporating subgroup analyses and regression techniques to explore heterogeneity and trends in resistance rates over time. Outliers and influential studies were identified using statistical methods such as Cook's distance, and funnel plot asymmetry was assessed to evaluate potential publication bias. All analyses were conducted using R software (version 4.2.1) and the metafor package (version 3.8.1). Results This study included 266 studies from 57 countries, revealing significant variability in GBS antibiotic resistance rates. The highest resistance rates were observed for tetracycline (80.1, 95% CI: 77.1-82.8%), while tedizolid (0.1, 95% CI: 0.0-0.8%) showed the lowest resistance rates. Significant heterogeneity in resistance rates was observed, particularly for antibiotics such as azithromycin and gentamicin (I 2 = 97.29%), variability across studies. On the other hand, tigecycline and ceftaroline exhibited no heterogeneity (I 2 = 0%), suggesting consistent resistance patterns. Subgroup analyses revealed disparities in resistance rates based on country, continent, and methodological categories. Significant increase in resistance rates for several antibiotics over time, including clindamycin, erythromycin, ceftriaxone, cefuroxime, ciprofloxacin, levofloxacin, moxifloxacin, chloramphenicol, and ofloxacin. Ofloxacin and cefuroxime showed particularly steep trends. Conversely, a declining resistance trend was observed for oxacillin. Conclusion This study emphasizes the growing issue of antibiotic resistance in GBS strains. Notable resistance to older and newer antibiotics, increasing resistance over time, regional disparities, and methodological variations are noted. Rising resistance trends for multiple antibiotics underscore the urgent need for global surveillance and improved antibiotic stewardship. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024566269, CRD42024566269.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | | | - Muath Suliman
- Department of Laboratory Medicine, School of Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department Tishk International University Erbil, Kurdistan Region, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
3
|
A New Integrative and Mobilizable Element Is a Major Contributor to Tetracycline Resistance in Streptococcus dysgalactiae subsp. equisimilis. Antibiotics (Basel) 2023; 12:antibiotics12030579. [PMID: 36978446 PMCID: PMC10044688 DOI: 10.3390/antibiotics12030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Tetracycline resistance in streptococci is mainly due to ribosomal protection mediated by the tet(M) gene that is usually located in the integrative and conjugative elements (ICEs) of the Tn916-family. In this study, we analyzed the genes involved in tetracycline resistance and the associated mobile genetic elements (MGEs) in Streptococcus dysgalactiae subsp. equisimilis (SDSE) causing invasive disease. SDSE resistant to tetracycline collected from 2012 to 2019 in a single hospital and from 2018 in three other hospitals were analyzed by whole genome sequencing. Out of a total of 84 SDSE isolates, 24 (28.5%) were resistant to tetracycline due to the presence of tet(M) (n = 22), tet(W) (n = 1), or tet(L) plus tet(W) (n = 1). The tet(M) genes were found in the ICEs of the Tn916-family (n = 10) and in a new integrative and mobilizable element (IME; n = 12). Phylogenetic analysis showed a higher genetic diversity among the strains carrying Tn916 than those having the new IME, which were closely related, and all belonged to CC15. In conclusion, tetracycline resistance in SDSE is mostly due to the tet(M) gene associated with ICEs belonging to the Tn916-family and a new IME. This new IME is a major cause of tetracycline resistance in invasive Streptococcus dysgalactiae subsp. equisimilis in our settings.
Collapse
|
4
|
Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy. Animals (Basel) 2022; 12:ani12182443. [PMID: 36139303 PMCID: PMC9495100 DOI: 10.3390/ani12182443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Streptococcosis is an economical important bacterial disease that can seriously cause huge losses in the global aquaculture sector. In recent years studies have focused on to use extracts or essences of medicinal herbs and plants to control or treat the disease outbreaks and, in most cases the results were promising. The essential oils of the herbs or plants are more effective than the extracts and, the extracts examined have moderate efficacy in term of increasing fish survival against fish streptococcosis that could be due to the enhancement of fish immunity by the herb bio-compounds. The lack of dosage optimization, toxicity and bioavailability assays of a specific herb/plant or its bioactive compound in fish organs make it difficult to judge the validation of clinical efficacy of a particular herb/plant against fish streptococcosis, and thus, required further investigations. Abstract Streptococcosis, particularly that caused by S. iniae and S. agalactiae, is a major re-emerging bacterial disease seriously affecting the global sustainability of aquaculture development. Despite a wide spread of the disease in aquaculture, few studies have been directed at assessing the in vitro antagonistic activity and in vivo efficacy of medicinal herbs and other plants against streptococcal agents. Most in vitro studies of plant extractives against S. iniae and S. agalactiae have found antibacterial activity, but essential oils, especially those containing eugenol, carvacrol or thymol, are more effective. Although essential oils have shown better anti-streptococcal activity in in vitro assays, in vivo bioassays require more attention. The extracts examined under in vivo conditions show moderate efficacy, increasing the survival rate of infected fish, probably through the enhancement of immunity before challenge bioassays. The available data, however, lack dosage optimization, toxicity and bioavailability assays of a specific plant or its bioactive compound in fish organs; hence, it is difficult to judge the validation of clinical efficacy for the prevention or treatment of fish streptococcosis. Despite the known bioactive compounds of many tested plants, few data are available on their mode of action towards streptococcal agents. This review addresses the efficacy of medicinal plants to fish streptococcosis and discusses the current gaps.
Collapse
|
5
|
Pawlowski A, Lannergård J, Gonzalez-Miro M, Cao D, Larsson S, Persson JJ, Kitson G, Darsley M, Rom AL, Hedegaard M, Fischer PB, Johansson-Lindbom B. A group B Streptococcus alpha-like protein subunit vaccine induces functionally active antibodies in humans targeting homotypic and heterotypic strains. Cell Rep Med 2022; 3:100511. [PMID: 35243418 PMCID: PMC8861819 DOI: 10.1016/j.xcrm.2022.100511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Maternal vaccination is a promising strategy for preventing neonatal disease caused by group B Streptococcus. The safety and immunogenicity of the prototype vaccine GBS-NN, a fusion protein consisting of the N-terminal domains of the alpha-like proteins (Alp) αC and Rib, were recently evaluated favorably in healthy adult women in a phase 1 trial. Here we demonstrate robust immunoglobulin G (IgG) and immunoglobulin A (IgA) responses against αC and Rib, as well as against the heterotypic Alp family members Alp1–Alp3. IgA and heterotypic IgG responses are more variable between subjects and correlate with pre-existing immunity. Vaccine-induced IgG mediates opsonophagocytic killing and prevents bacterial invasion of epithelial cells. Like the vaccine-induced response, naturally acquired IgG against the vaccine domains is dominated by IgG1. Consistent with the high IgG1 cross-placental transfer rate, naturally acquired IgG against both domains reaches higher concentrations in neonatal than maternal blood, as assessed in a separate group of non-vaccinated pregnant women and their babies. GBS-NN subunit vaccine broadly elicits IgG1 to homotypic αC and Rib N-terminal domains IgA and heterotypic IgG responses occur in vaccinees with pre-existing immunity Abs mediate opsonophagocytic killing and prevent bacterial epithelial cell invasion IgG against αC-N and Rib-N is transferred efficiently across the placenta
Collapse
Affiliation(s)
| | - Jonas Lannergård
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden
| | | | - Duojia Cao
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden
| | - Sara Larsson
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden
| | - Jenny J Persson
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden
| | - Geoff Kitson
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | | | - Ane Lilleøre Rom
- Department of Obstetrics, the Juliane Marie Centre, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,The Research Unit for Women's and Children's Health, the Juliane Marie Centre, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Morten Hedegaard
- Department of Obstetrics, the Juliane Marie Centre, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Per B Fischer
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden.,Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
6
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
7
|
Santos VL, Silva LG, Martini CL, Anjos IHV, Maia MM, Genteluci GL, Sant'Anna V, Ferreira AMA, Couceiro JNSS, Figueiredo AMS, Ferreira-Carvalho BT. Low lineage diversity and increased virulence of group C Streptococcus dysgalactiae subsp. equisimilis. J Med Microbiol 2020; 69:576-586. [PMID: 32125264 DOI: 10.1099/jmm.0.001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. In some species, the population structure of pathogenic bacteria is clonal. However, the mechanisms that determine the predominance and persistence of specific bacterial lineages of group C Streptococcus remain poorly understood. In Brazil, a previous study revealed the predominance of two main lineages of Streptococcus dysgalactiae subsp. equisimilis (SDSE).Aim. The aim of this study was to assess the virulence and fitness advantages that might explain the predominance of these SDSE lineages for a long period of time.Methodology. emm typing was determined by DNA sequencing. Adhesion and invasion tests were performed using human bronchial epithelial cells (16HBE14o-). Biofilm formation was tested on glass surfaces and the presence of virulence genes was assessed by PCR. Additionally, virulence was studied using Caenorhabditis elegans models and competitive fitness was analysed in murine models.Results. The predominant lineages A and B were mostly typed as emm stC839 and stC6979, respectively. Notably, these lineages exhibited a superior ability to adhere and invade airway cells. Furthermore, the dominant lineages were more prone to induce aversive olfactory learning and more likely to kill C. elegans. In the competitive fitness assays, they also showed increased adaptability. Consistent with the increased virulence observed in the ex vivo and in vivo models, the predominant lineages A and B showed a higher number of virulence-associated genes and a superior ability to accumulate biofilm.Conclusion. These results suggest strongly that this predominance did not occur randomly but rather was due to adaptive mechanisms that culminated in increased colonization and other bacterial properties that might confer increased bacteria-host adaptability to cause disease.
Collapse
Affiliation(s)
- Victor Lima Santos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Ligia Guedes Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Caroline Lopes Martini
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Isis Hazelman V Anjos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Mariana Masello Maia
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Gabrielle L Genteluci
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Viviane Sant'Anna
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Ana Maria A Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - José Nelson S S Couceiro
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Ishihara H, Ogura K, Miyoshi‐Akiyama T, Nakamura M, Kaya H, Okamoto S. Prevalence and genomic characterization of Group A
Streptococcus dysgalactiae
subsp.
equisimilis
isolated from patients with invasive infections in Toyama prefecture, Japan. Microbiol Immunol 2019; 64:113-122. [DOI: 10.1111/1348-0421.12760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Haruka Ishihara
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawa Ishikawa Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science InitiativeKanazawa UniversityKanazawa Ishikawa Japan
| | - Tohru Miyoshi‐Akiyama
- Pathogenic Microbe Laboratory, Research InstituteNational Center for Global Health and MedicineShinjuku‐ku Tokyo Japan
| | - Masahiko Nakamura
- Department of Medical LaboratoryToyama Prefectural Central HospitalToyama Toyama Japan
| | - Hiroyasu Kaya
- Department of Internal MedicineToyama Prefectural Central HospitalToyama Toyama Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawa Ishikawa Japan
| |
Collapse
|
9
|
Rößler S, Berner R, Jacobs E, Toepfner N. Prevalence and molecular diversity of invasive Streptococcus dysgalactiae and Streptococcus pyogenes in a German tertiary care medical centre. Eur J Clin Microbiol Infect Dis 2018; 37:1325-1332. [PMID: 29725958 DOI: 10.1007/s10096-018-3254-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
Abstract
Prevalence of invasive ß-haemolytic streptococci (BHS) at a tertiary care hospital and molecular diversity of S. pyogenes and S. dysgalactiae was studied. Between 2012 and 2016, all blood culture sets (n = 55,839), CSF (n = 8413) and soft tissue (n = 20,926) samples were analysed for BHS positivity using HYBASE software. Molecular profiles of 99 S. pyogenes and S. dysgalactiae were identified by sequencing of M protein genes (emm types) and multiplex PCR typing of 20 other virulence determinants. Streptococci contributed to 6.2% of blood, 10.7% of CSF and 14.5% of soft tissue isolates, being among the most common invasive isolates. The overall rates of invasive S. pyogenes, S. agalactiae, S. dysgalactiae and S. pneumoniae were 2.4, 4.4, 2.1, and 5.3%. Whereas S. pneumoniae was 1.5% more common in CSF samples, BHS isolates were 2-fold and 11-fold higher in bacteraemia and invasive soft tissue infections. Genetic BHS typing revealed wide molecular diversity of invasive and noninvasive group A and group G BHS, whereas one emm-type (stG62647.0) and no other virulence determinants except scpA were detected in invasive group C BHS. BHS were important invasive pathogens, outpacing S. pneumoniae in bacteraemia and invasive soft tissue infections. The incidence of S. dysgalactiae infections was comparable to that of S. pyogenes even with less diversity of molecular virulence. The results of this study emphasise the need for awareness of BHS invasiveness in humans and the need to develop BHS prevention strategies.
Collapse
Affiliation(s)
- S Rößler
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| | - R Berner
- Department of Paediatrics, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - E Jacobs
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| | - N Toepfner
- Department of Paediatrics, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
10
|
Foodborne Outbreak of Group G Streptococcal Pharyngitis in a School Dormitory in Osaka, Japan. J Clin Microbiol 2018; 56:JCM.01884-17. [PMID: 29491014 DOI: 10.1128/jcm.01884-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/22/2018] [Indexed: 11/20/2022] Open
Abstract
In September 2016, 140 patients with primary symptoms of sore throat and fever were identified in a school dormitory in Osaka, Japan. Epidemiological and laboratory investigations determined that these symptomatic conditions were from a foodborne outbreak of group G streptococcus (GGS), with GGS being isolated from samples from patients, cooks, and foods. The strain of GGS was identified as Streptococcus dysgalactiae subsp. equisimilis of two emm types (stG652.0 and stC36.0). The causative food, a broccoli salad, was contaminated with the two types of S. dysgalactiae subsp. equisimilis, totaling 1.3 × 104 CFU/g. Pulsed-field gel electrophoresis (PFGE) of samples from patients, cooks, and foods produced similar band patterns among samples with the same emm type. This result suggested the possibility of exposure from the contaminated food. The average onset time was 44.9 h and the prevalence rate was 62%. This is the first report to identify the causative food of a foodborne outbreak by Streptococcus dysgalactiae subsp. equisimilis.
Collapse
|
11
|
Babbar A, Itzek A, Pieper DH, Nitsche-Schmitz DP. Detection of Streptococcus pyogenes virulence genes in Streptococcus dysgalactiae subsp. equisimilis from Vellore, India. Folia Microbiol (Praha) 2018. [DOI: 10.1007/s12223-018-0595-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Oppegaard O, Mylvaganam H, Skrede S, Jordal S, Glambek M, Kittang BR. Clinical and molecular characteristics of infective β-hemolytic streptococcal endocarditis. Diagn Microbiol Infect Dis 2017; 89:135-142. [PMID: 28780243 DOI: 10.1016/j.diagmicrobio.2017.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus pyogenes (S. pyogenes) and Streptococcus dysgalactiae subspecies equisimilis (SDSE) cause considerable morbidity and mortality, and show similarities in disease manifestations and pathogenic mechanisms. Their involvement in infective endocarditis, however, has not been well described. Invasive S. pyogenes and SDSE infections in Health Region Bergen, Norway, in the period 1999-2013 were reviewed, and sixteen cases of endocarditis were identified. The median duration of symptoms was 2.5days, the frequency of embolic events 50%, 38% received valve replacement and the 30-day mortality was 25%. In S. pyogenes, a significant correlation was observed between the repertoire of fibronectin-binding genes, phenotypic binding ability to fibronectin and disease manifestations. Conversely, no associations between phenotypic and genotypic characteristics were detected in SDSE. S. pyogenes and SDSE endocarditis is characterized by rapid and severe clinical manifestations. The pathogenesis is multifactorial, but our results infer a potential role of fibronectin binding in the development of S. pyogenes endocarditis.
Collapse
Affiliation(s)
- Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway.
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Stina Jordal
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Marte Glambek
- Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.
| | | |
Collapse
|
13
|
Ciszewski M, Szewczyk EM. Potential Factors Enabling Human Body Colonization by Animal Streptococcus dysgalactiae subsp. equisimilis Strains. Curr Microbiol 2017; 74:650-654. [PMID: 28314902 PMCID: PMC5376390 DOI: 10.1007/s00284-017-1232-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022]
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a pyogenic, Lancefield C or G streptococcal pathogen. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock and human infections often clinically similar to the ones caused by group A streptococcus (Streptococcus pyogenes). The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on skin of healthy dogs, cats, and horses, which pose a risk also to people having contact with companion animals. The main aim of this study was to evaluate if there are features differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis (adhesion and colonization). Equal groups of human and animal SDSE clinical strains were obtained from superficial infections (skin, wounds, abscesses). The presence of five virulence genes (prtF1, prtF2, lmb, cbp, emm type) was evaluated, as well as ability to form bacterial biofilm and produce BLIS (bacteriocin-like inhibitory substances) which are active against human skin microbiota. The study showed that the presence of genes coding for fibronectin-binding protein and M protein, as well as BLIS activity inhibiting the growth of Corynebacterium spp. strains might constitute the virulence factors which are necessary to colonize human organism, whereas they are not crucial in animal infections. Those virulence factors might be horizontally transferred from human streptococci to animal SDSE strains, enabling their ability to colonize human organism.
Collapse
Affiliation(s)
- Marcin Ciszewski
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, 137 Pomorska St., 90-235, Lodz, Poland.
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, 137 Pomorska St., 90-235, Lodz, Poland
| |
Collapse
|
14
|
Streptococcus dysgalactiae subsp. equisimilis Isolated From Infections in Dogs and Humans: Are Current Subspecies Identification Criteria accurate? Curr Microbiol 2016; 73:684-688. [PMID: 27502064 PMCID: PMC5039219 DOI: 10.1007/s00284-016-1113-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/01/2016] [Indexed: 11/14/2022]
Abstract
Streptococcus dysgalactiae is a pyogenic species pathogenic both for humans and animals. Until recently, it has been considered an exclusive animal pathogen causing infections in wild as well as domestic animals. Currently, human infections are being reported with increasing frequency, and their clinical picture is often similar to the ones caused by Streptococcus pyogenes. Due to the fact that S. dysgalactiae is a heterogeneous species, it was divided into two subspecies: S. dysgalactiae subsp. equisimilis (SDSE) and S. dysgalactiae subsp. dysgalactiae (SDSD). The first differentiation criterion, described in 1996, was based on strain isolation source. Currently applied criteria, published in 1998, are based on hemolysis type and Lancefield group classification. In this study, we compared subspecies identification results for 36 strains isolated from clinical cases both in humans and animals. Species differentiation was based on two previously described criteria as well as MALDI-TOF and genetic analyses: RISA and 16S rRNA genes sequencing. Antimicrobial susceptibility profiles were also determined according to CLSI guidelines. The results presented in our study suggest that the subspecies differentiation criteria previously described in the above two literature positions seem to be inaccurate in analyzed group of strains, the hemolysis type on blood agar, and Lancefield classification should not be here longer considered as criteria in subspecies identification. The antimicrobial susceptibility tests indicate emerging of multiresistant human SDSE strains resistant also to vancomycin, linezolid and tigecycline, which might pose a substantial problem in treatment.
Collapse
|
15
|
Midha M, Rosenthal ME. Group G streptococcal myositis in a patient with myeloproliferative neoplasm. IDCases 2016; 5:54-6. [PMID: 27500083 PMCID: PMC4971150 DOI: 10.1016/j.idcr.2016.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/05/2022] Open
Abstract
While many cases of streptococcal infection are due to Lancefield groups A and B, there has been a rise in reported cases of infections due to group G streptococcus. We present a case of an individual with a hematologic malignancy who developed myositis secondary to group G streptococcus, with no clearly identifiable source of infection. The patient was managed with antibiotic therapy rather than surgical intervention due to high surgical risk related to severe thrombocytopenia. Targeted antibiotics initiated early in the course of disease may prevent the need for surgical intervention. Early diagnosis and treatment are critical to avoid the high morbidity and mortality of life-threatening infections caused by group G streptococcus.
Collapse
Affiliation(s)
- Monica Midha
- Department of Medicine, Jersey Shore University Medical Center, 1945 State Route 33, Neptune, NJ, 07753, United States
| | - Marnie E Rosenthal
- Division of Infectious Diseases, Jersey Shore University Medical Center, 1945 State Route 33, Neptune, NJ, 07753, United States
| |
Collapse
|
16
|
de Souza JP, Santos AR, de Paula GR, Barros RR. Antimicrobial susceptibility and genetic relationships among Streptococcus dysgalactiae subsp. equisimilis isolates in Rio de Janeiro. Infect Dis (Lond) 2016; 48:676-81. [PMID: 27301015 DOI: 10.1080/23744235.2016.1192680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Streptococcus dysgalactiae subsp. equisimilis (SDSE) has been increasingly associated with several infectious diseases, ranging from pharyngitis to life-threatening conditions, such as necrotizing fasciitis and streptococcal toxic shock syndrome. However, its molecular epidemiology in some geographical areas remains unclear. METHODS In this study, 44 isolates of SDSE, recovered from noninvasive infections (37) and from carriage (7), during 2008-2013, were submitted to antimicrobial susceptibility testing, emm typing and pulsed-field gel electrophoresis (PFGE) analysis. RESULTS All isolates were susceptible to ceftriaxone, levofloxacin, penicillin G and vancomycin. Resistance rates to erythromycin was 18.2% and to clindamycin was 6.8%, while 38.7% of the isolates were tetracycline non-susceptible. Macrolide resistance phenotypes were M (5 isolates), iMLSB (2) and cMLSB (1), associated with mefA/E, ermA and ermB genotypes, respectively. Seventeen emm types with 21 subtypes were found, but 6 types (stG653.0, stC1400.0 with three subtypes, stC839.0, stC36.0 with two subtypes, stG480.0 and stG840.0) were detected in 70.4% of the isolates. Six new emm subtypes were identified (stC1400.12, stC1400.13, emm152.1, emm152.2, stG652.6 and stG6792.5). Twenty-five PFGE profiles were obtained from 39 isolates. CONCLUSIONS Congruence between both typing systems was observed, since the majority of isolates belonging to a given emm type clustered together by PFGE. Clones (at least 80% similarity) were also observed among isolates with different emm types, probably due to horizontal recombination of the emm gene. Erythromycin-resistant isolates harbored diverse emm genes and generated different PFGE profiles, showing a polyclonal dissemination of such characteristic among SDSE isolates.
Collapse
Affiliation(s)
- José Paulo de Souza
- a Departmento de Microbiologia e Parasitologia , Instituto Biomédico, Universidade Federal Fluminense , Niterói , Brazil
| | - Amanda Ribeiro Santos
- a Departmento de Microbiologia e Parasitologia , Instituto Biomédico, Universidade Federal Fluminense , Niterói , Brazil
| | | | - Rosana Rocha Barros
- a Departmento de Microbiologia e Parasitologia , Instituto Biomédico, Universidade Federal Fluminense , Niterói , Brazil
| |
Collapse
|
17
|
Shadnezhad A, Naegeli A, Sjögren J, Adamczyk B, Leo F, Allhorn M, Karlsson NG, Jensen A, Collin M. EndoSd: an IgG glycan hydrolyzing enzyme in Streptococcus dysgalactiae subspecies dysgalactiae. Future Microbiol 2016; 11:721-36. [DOI: 10.2217/fmb.16.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: The aim of this study was to identify and characterize EndoS-like enzymes in Streptococcus dysgalactiae subspecies dysgalactiae (SDSD). Materials & methods: PCR, DNA sequencing, recombinant protein expression, lectin blot, ultra high performance liquid chromatography analysis and a chitinase assay were used to identify ndoS-like genes and characterize EndoSd. Results: EndoSd were found in four SDSD strains. EndoSd hydrolyzes the chitobiose core of the glycan on IgG. The amino acid sequence of EndoSd is 70% identical to EndoS in S. pyogenes, but it has a unique C-terminal sequence. EndoSd secretion is influenced by the carbohydrate composition of the growth medium. Conclusion: Our findings indicate that IgG glycan hydrolyzing activity is present in SDSD, and that the activity can be attributed to the here identified enzyme EndoSd.
Collapse
Affiliation(s)
- Azadeh Shadnezhad
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184 Lund, Sweden
| | - Andreas Naegeli
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184 Lund, Sweden
| | - Jonathan Sjögren
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184 Lund, Sweden
- Genovis AB, Scheelevägen 2, SE-220 07 Lund, Sweden
| | - Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Leo
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184 Lund, Sweden
| | - Maria Allhorn
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184 Lund, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Jensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Mattias Collin
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-22184 Lund, Sweden
| |
Collapse
|
18
|
Septic Osteoarthritis Due to Streptococcus dysgalactiae Subspecies equisimilis in a Three-Year-Old Girl. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.33831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Lu B, Fang Y, Huang L, Diao B, Du X, Kan B, Cui Y, Zhu F, Li D, Wang D. Molecular characterization and antibiotic resistance of clinical Streptococcus dysgalactiae subsp. equisimilis in Beijing, China. INFECTION GENETICS AND EVOLUTION 2016; 40:119-125. [PMID: 26925701 DOI: 10.1016/j.meegid.2016.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/14/2016] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is presently considered as a human pathogen associated with clinical infection. We characterized 56 SDSE isolates collected from two tertiary hospitals in Beijing, China. Sixteen distinct emm types/subtypes were detected, dominated by stG245.0 (32.1%), stG652.0 (10.7%), stG6.1 (10.7%) and stG485.0 (10.7%), and a novel stG840.0 variant type was identified. All isolates possessed virulence genes of sagA and scpA, and most carried slo (98.2%), ska (98.2%) and speG(dys) (35.7%). By multilocus sequence typing (MLST) analysis, 17 individual sequence types (STs) were distinguished, including 7 newly-identified STs (26.8% of isolates), of which ST127 (30.4%), ST7 (12.5%) and ST44 (10.7%) dominated. Meanwhile, pulsed-field gel electrophoresis (PFGE) analysis revealed 33 pattern types (PTs), which were further combined into 16 pattern clusters (PCs), and 59.3% of isolates were distributed into 2 dominant PCs. Notably, emm types had both close relationship and consistency with STs and PFGE PCs. Furthermore, of 56 SDSE isolates, the predominant antibiotic resistances were erythromycin (71.4%), clindamycin (71.4%) and tetracycline (60.7%). Correspondingly, the prevalent resistance genes of macrolide and tetracycline were erm(B) (78.6%) and tet(M) (73.2%). In addition, multiple point mutations of parC, one of fluoroquinolone resistance genes, were observed (accounting for 75%), and were divided into 12 types, with parC 07 as the predominant type. Our data suggested the wide molecular diversity and distinctive regional features of SDSE from clinical infection in Beijing, China.
Collapse
Affiliation(s)
- Binghuai Lu
- Department of Laboratory Medicine, Civil Aviation General Hospital, Beijing 100123, China.
| | - Yujie Fang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Lei Huang
- Department of Laboratory Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Xiaoli Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yanchao Cui
- Department of Laboratory Medicine, Civil Aviation General Hospital, Beijing 100123, China
| | - Fengxia Zhu
- Department of Laboratory Medicine, Civil Aviation General Hospital, Beijing 100123, China
| | - Dong Li
- Department of Laboratory Medicine, Civil Aviation General Hospital, Beijing 100123, China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.
| |
Collapse
|
20
|
Tn5253 family integrative and conjugative elements carrying mef(I) and catQ determinants in Streptococcus pneumoniae and Streptococcus pyogenes. Antimicrob Agents Chemother 2014; 58:5886-93. [PMID: 25070090 DOI: 10.1128/aac.03638-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The linkage between the macrolide efflux gene mef(I) and the chloramphenicol inactivation gene catQ was first described in Streptococcus pneumoniae (strain Spn529), where the two genes are located in a module designated IQ element. Subsequently, two different defective IQ elements were detected in Streptococcus pyogenes (strains Spy029 and Spy005). The genetic elements carrying the three IQ elements were characterized, and all were found to be Tn5253 family integrative and conjugative elements (ICEs). The ICE from S. pneumoniae (ICESpn529IQ) was sequenced, whereas the ICEs from S. pyogenes (ICESpy029IQ and ICESpy005IQ, the first Tn5253-like ICEs reported in this species) were characterized by PCR mapping, partial sequencing, and restriction analysis. ICESpn529IQ and ICESpy029IQ were found to share the intSp 23FST81 integrase gene and an identical Tn916 fragment, whereas ICESpy005IQ has int5252 and lacks Tn916. All three ICEs were found to lack the linearized pC194 plasmid that is usually associated with Tn5253-like ICEs, and all displayed a single copy of a toxin-antitoxin operon that is typically contained in the direct repeats flanking the excisable pC194 region when this region is present. Two different insertion sites of the IQ elements were detected, one in ICESpn529IQ and ICESpy029IQ, and another in ICESpy005IQ. The chromosomal integration of the three ICEs was site specific, depending on the integrase (intSp 23FST81 or int5252). Only ICESpy005IQ was excised in circular form and transferred by conjugation. By transformation, mef(I) and catQ were cotransferred at a high frequency from S. pyogenes Spy005 and at very low frequencies from S. pneumoniae Spn529 and S. pyogenes Spy029.
Collapse
|