1
|
Irzan FI, Retinasamy T, Wen WR, Sheng ETM, Shaikh MF, Arulsamy A. The Role of HMGB1 in Infection-Related Cognitive Deficits. FRONT BIOSCI-LANDMRK 2025; 30:25544. [PMID: 40018921 DOI: 10.31083/fbl25544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 03/01/2025]
Abstract
Infectious diseases caused by fungi, viruses, or bacteria can have a profound impact on human cognition. This can be due to either direct spread to the central nervous system (CNS) or indirect neuroinflammation. Ultimately causing neuronal damage and even neurodegeneration. Deteriorations in cognition, such as poor encoding and attention deficits, have been reported secondary to infectious diseases. Preclinical studies have identified the underlying mechanisms of these infection-related cognitive effects, such as through blood-brain barrier (BBB) disruption and M1 microglial polarization. These mechanisms are spearheaded by inflammatory markers that are released/initiated by the pathogens over the course of the infection. Among them, the high mobility group box 1 (HMGB1) protein is a common biomarker implicated across several infection-related cognitive deficits. Understanding these effects and mechanisms is crucial for the development of strategies to prevent and treat infection-related cognitive impairment. This review will thus consolidate and elucidate the current knowledge on the potential role of HMGB1 as a therapeutic target for infection-related cognitive impairments. This review will not only advance scientific understanding but also have significant clinical and public health implications, especially considering recent global health challenges. Based on the selected articles, extracellular HMGB1, as opposed to intracellular HMGB1, acts as damage-associated molecular patterns (DAMPs) or alarmins when released in the peripheries secondary to inflammasome activation. Due to their low molecular weight, they then enter the CNS through routes such as retrograde transport along the afferent nerves, or simple diffusion across the impaired BBB. This results in further disruption of the brain microenvironment due to the dysregulation of other regulatory pathways. The outcome is structural neuronal changes and cognitive impairment. Given its key role in neuroinflammation, HMGB1 holds promise as both a biomarker for diagnostic detection and a potential therapeutic target candidate for preventing infection-related cognitive impairment.
Collapse
Affiliation(s)
- Fathima Ijaza Irzan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Wong Ruo Wen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Edward Ting Ming Sheng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Elsabrouty MH, Elwakil BH, Salam SA, Olama ZA. Nano-phytosome loaded Retama raetam extract/colistin: antibacterial, antioxidant activities and in vivo lipopolysaccharide-induced-neurotoxicity inhibition. Braz J Microbiol 2024; 55:3781-3795. [PMID: 39302630 PMCID: PMC11711430 DOI: 10.1007/s42770-024-01510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Antibiotics are misused nowadays, leading to the prevalence of antibiotic resistant bacterial strains; causing the world to move towards natural medicine. Retama raetam had wide medicinal use. In the present study, R. raetam ethanolic extract proved to be active against Pseudomonas aeruginosa with MIC values ranged from 15.62 to 250 µg/ml. Antioxidant analysis showed that the extract had high scavenging activity reached 92.40%. GC/MS analysis revealed that Sparteine and Tributyl acetylcitrate represent the extract major components. Furthermore, the combination between Retama raetam extract and colistin showed a synergistic effect. Moreover, nano-phytosome was designated and optimized to encapsulate Retama raetam extract/Colistin. Nano-phytosome characterized by particle size, Zeta potential, polydispersity index and Entrapment efficiency percentage of 16.92-32.85 nm, -30.40 mV, 0.26 and 89% respectively. The antibacterial activity of the prepared nano-phytosome formula against P. aeruginosa showed promising MIC, MBC, MIC index, and IZ diameter reaching 7.81, 15.62 µg/ml, 2, and 39 mm, respectively. While TEM examination of P. aeruginosa cells treated with nano-phytosome formula revealed cell wall breakage which led to cell death. Finally, P. aeruginosa LPS was used to induce neurodegenerative disease in rat model. Rats treated with nano-phytosome formula showed normal histoarchitecture organization and the cerebral cortex was partially restored compared to control groups.
Collapse
Affiliation(s)
- Mohab H Elsabrouty
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt.
| | - Bassma H Elwakil
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Zakia A Olama
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| |
Collapse
|
3
|
Park G, Kadyan S, Hochuli N, Salazar G, Laitano O, Chakrabarty P, Efron PA, Zafar MA, Wilber A, Nagpal R. An Enteric Bacterial Infection Triggers Neuroinflammation and Neurobehavioral Impairment in 3xTg-AD Transgenic Mice. J Infect Dis 2024; 230:S95-S108. [PMID: 39255397 PMCID: PMC11385593 DOI: 10.1093/infdis/jiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is infamous for hospital-acquired infections and sepsis, which have also been linked to Alzheimer disease (AD)-related neuroinflammatory and neurodegenerative impairment. However, its causative and mechanistic role in AD pathology remains unstudied. METHODS A preclinical model of K. pneumoniae enteric infection and colonization is developed in an AD model (3xTg-AD mice) to investigate whether and how K. pneumoniae pathogenesis exacerbates neuropathogenesis via the gut-blood-brain axis. RESULTS K. pneumoniae, particularly under antibiotic-induced dysbiosis, was able to translocate from the gut to the bloodstream by penetrating the gut epithelial barrier. Subsequently, K. pneumoniae infiltrated the brain by breaching the blood-brain barrier. Significant neuroinflammatory phenotype was observed in mice with K. pneumoniae brain infection. K. pneumoniae-infected mice also exhibited impaired neurobehavioral function and elevated total tau levels in the brain. Metagenomic analyses revealed an inverse correlation of K. pneumoniae with gut biome diversity and commensal bacteria, highlighting how antibiotic-induced dysbiosis triggers an enteroseptic "pathobiome" signature implicated in gut-brain perturbations. CONCLUSIONS The findings demonstrate how infectious agents following hospital-acquired infections and consequent antibiotic regimen may induce gut dysbiosis and pathobiome and increase the risk of sepsis, thereby increasing the predisposition to neuroinflammatory and neurobehavioral impairments via breaching the gut-blood-brain barrier.
Collapse
Affiliation(s)
- Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Gloria Salazar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Aaron Wilber
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
4
|
Li Z, Liang H, Hu Y, Lu L, Zheng C, Fan Y, Wu B, Zou T, Luo X, Zhang X, Zeng Y, Liu Z, Zhou Z, Yue Z, Ren Y, Li Z, Su Q, Xu P. Gut bacterial profiles in Parkinson's disease: A systematic review. CNS Neurosci Ther 2022; 29:140-157. [PMID: 36284437 PMCID: PMC9804059 DOI: 10.1111/cns.13990] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Recent advances have highlighted the relationships between gut dysbiosis and Parkinson's disease (PD). Microbiota transplantation from PD patients to mice can induce increased alpha-synuclein-mediated motor deficits. Human studies have identified differences in the gut microbiota of PD patients compared to healthy controls. We undertook a systematic review to evaluate the available evidence for the involvement of gut bacteria in the etiology of PD. METHODS The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched from inception until June 2021 to identify human case-control studies that investigated relationships between PD and microbiota quantified from feces. We evaluated the resulting studies focusing on bacterial taxa that were different between PD patients and healthy controls. RESULTS Twenty-six studies were found in which 53 microbial families and 98 genera exhibited differences between patients with PD and healthy controls. The genera identified by more than two studies as increased in PD were Bifidobacterium, Alistipes, Christensenella, Enterococcus, Oscillospira, Bilophila, Desulfovibrio, Escherichia/Shigella, and Akkermansia, while Prevotella, Blautia, Faecalibacterium, Fusicatenibacter, and Haemophilus had three or more reports of being lower in PD patients. More than one report demonstrated that Bacteroides, Odoribacter, Parabacteroides, Butyricicoccus, Butyrivibrio, Clostridium, Coprococcus, Lachnospira, Lactobacillus, Megasphaera, Phascolarctobacterium, Roseburia, Ruminococcus, Streptococcus, and Klebsiella were altered in both directions. CONCLUSION Our review shows that the involvement of the gut microbiome in the etiology of PD may involve alterations of short-chain fatty acids (SCFAs)-producing bacteria and an increase in putative gut pathobionts. SCFAs-producing bacteria may vary above or below an "optimal range," causing imbalances. Considering that Bifidobacterium, Lactobacillus, and Akkermansia are beneficial for human health, increased Bifidobacterium and Lactobacillus in the PD gut microbiome may be associated with PD medications, especially COMT inhibitors, while a high level of Akkermansia may be associated with aging.
Collapse
Affiliation(s)
- Zhe Li
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Hongfeng Liang
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yingyu Hu
- Hospital Administration OfficeSouthern Medical UniversityGuangzhouChina
| | - Lin Lu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chunye Zheng
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yuzhen Fan
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Bin Wu
- Genetic Testing LabThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Tao Zou
- Chronic Disease Management OutpatientThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Xiaodong Luo
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Xinchun Zhang
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yan Zeng
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Ziyan Liu
- The Second Clinical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhicheng Zhou
- The Second Clinical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yi Ren
- Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFloridaUSA
| | - Zhuo Li
- Genetic Testing LabThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Qiaozhen Su
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Pingyi Xu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Elwakil BH, Bakr BA, Aljeldah MM, Shehata NS, Shahin YH, Olama ZA, Augustyniak M, Aboul-Soud MAM, El Wakil A. Memory Impairment, Pro-Inflammatory Host Response and Brain Histopathologic Severity in Rats Infected with K. pneumoniae or P. aeruginosa Meningitis. Pathogens 2022; 11:933. [PMID: 36015052 PMCID: PMC9416464 DOI: 10.3390/pathogens11080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Meningitis caused by Klebsiella pneumoniae and Pseudomonas aeruginosa has lately become a prevalent cause of the central nervous system (CNS) infection. Bacterial invasion into the subarachnoid space prompts the releasing mechanism of chemokines and pro-inflammatory cytokines. The present study aimed to compare K. pneumoniae and P. aeruginosa meningitis concerning the memory, pro-inflammatory mediators and brain histopathological changes at different time intervals in adult Albino rats. The animals were sacrificed at three time intervals comprising 5, 10 and 15 days after meningitis induction. Cerebrospinal fluid (CSF) culture, relative brain weights, complete blood analysis, biochemical markers, levels of cytokine, chemokine and brain-derived neurotrophic factor (BDNF), neurotransmitter acetylcholine esterase (AChE) activity, and the brain histopathology of the infected rats in comparison to those in the control group were assessed. There was a significant increase in the levels of pro-inflammatory cytokines and chemokines including TNF-α, IL-1β, IL-6 and AChE after 5 days of bacterial meningitis infection with both K. pneumoniae and P. aeruginosa. The histopathological analysis of the cerebral cortex in the P. aeruginosa meningitis model at different time intervals revealed abundant numbers of dilated and congested blood vessels with severe hemorrhage, cerebral infarct, intracellular and extracellular vacuoles, and gliosis. Fifteen days post infection, a significant reduction in the brain tissue weight was observed. The meningitis model employing P. aeruginosa exhibited more evident time-dependent severity compared to K. pneumoniae, which may advocate its validity as a simple and effective research model to study meningitis of the CNS. This model may be utilized for further investigation to ascertain the molecular and biological association between bacterial meningitis and the development of the pathophysiological hallmarks underlying Alzheimer's disease in preclinical and clinical setups. Clinical extrapolation based on studies employing animal disease models should be carefully interpreted.
Collapse
Affiliation(s)
- Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria P.O. Box 21311, Egypt
| | - Basant A. Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria P.O. Box 21568, Egypt
| | - Mohammed M. Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Nourhan S. Shehata
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria P.O. Box 21311, Egypt
| | - Yahya H. Shahin
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria P.O. Box 21311, Egypt
| | - Zakia A. Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria P.O. Box 21568, Egypt
| | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mourad A. M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria P.O. Box 21526, Egypt
| |
Collapse
|
6
|
Reis PA, Castro-Faria-Neto HC. Systemic Response to Infection Induces Long-Term Cognitive Decline: Neuroinflammation and Oxidative Stress as Therapeutical Targets. Front Neurosci 2022; 15:742158. [PMID: 35250433 PMCID: PMC8895724 DOI: 10.3389/fnins.2021.742158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
In response to pathogens or damage signs, the immune system is activated in order to eliminate the noxious stimuli. The inflammatory response to infectious diseases induces systemic events, including cytokine storm phenomenon, vascular dysfunction, and coagulopathy, that can lead to multiple-organ dysfunction. The central nervous system (CNS) is one of the major organs affected, and symptoms such as sickness behavior (depression and fever, among others), or even delirium, can be observed due to activation of endothelial and glial cells, leading to neuroinflammation. Several reports have been shown that, due to CNS alterations caused by neuroinflammation, some sequels can be developed in special cognitive decline. There is still no any treatment to avoid cognitive impairment, especially those developed due to systemic infectious diseases, but preclinical and clinical trials have pointed out controlling neuroinflammatory events to avoid the development of this sequel. In this minireview, we point to the possible mechanisms that triggers long-term cognitive decline, proposing the acute neuroinflammatory events as a potential therapeutical target to treat this sequel that has been associated to several infectious diseases, such as malaria, sepsis, and, more recently, the new SARS-Cov2 infection.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Patricia Alves Reis,
| | | |
Collapse
|
7
|
Barbosa-Silva MC, Lima MN, Battaglini D, Robba C, Pelosi P, Rocco PRM, Maron-Gutierrez T. Infectious disease-associated encephalopathies. Crit Care 2021; 25:236. [PMID: 34229735 PMCID: PMC8259088 DOI: 10.1186/s13054-021-03659-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflammatory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced neurotrophic factors, blood-brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiology of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic strategies, and the role of neuroinflammation.
Collapse
Affiliation(s)
- Maria C Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Giridharan VV, Collodel A, Generoso JS, Scaini G, Wassather R, Selvaraj S, Hasbun R, Dal-Pizzol F, Petronilho F, Barichello T. Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation 2020; 17:5. [PMID: 31901235 PMCID: PMC6942362 DOI: 10.1186/s12974-019-1692-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022] Open
Abstract
Background Bacterial meningitis is a devastating central nervous system (CNS) infection with acute and long-term neurological consequences, including cognitive impairment. The aim of this study was to understand the association between activated microglia-induced neuroinflammation and post-meningitis cognitive impairment. Method Meningitis was induced in male Wistar rats by injecting Streptococcus pneumoniae into the brain through the cisterna magna, and rats were then treated with ceftriaxone. Twenty-four hours and 10 days after meningitis induction, rats were imaged with positron emission tomography (PET) using [11C]PBR28, a specific translocator protein (TSPO) radiotracer, to determine in vivo microglial activation. Following imaging, the expression of TSPO, cardiolipin, and cytochrome c, inflammatory mediators, oxidative stress markers, and glial activation markers were evaluated in the prefrontal cortex and hippocampus. Ten days after meningitis induction, animals were subjected to behavioral tests, such as the open-field, step-down inhibitory avoidance, and novel object recognition tests. Results Both 24-h (acute) and 10-day (long-term) groups of rats demonstrated increased [11C]PBR28 uptake and microglial activation in the whole brain compared to levels in the control group. Although free from infection, 10-day group rats exhibited increased expression levels of cytokines and markers of oxidative stress, microglial activation (IBA-1), and astrocyte activation (GFAP) similar to those seen in the 24-h group. Acute meningitis induction also elevated TSPO, cytochrome c, and caspase-3 levels with no change in caspase-9 levels. Furthermore, upregulated levels of TSPO, cytochrome c, and caspase-3 and caspase-9 were observed in the rat hippocampus 10 days after meningitis induction with a simultaneous reduction in cardiolipin levels. Animals showed a cognitive decline in all tasks compared with the control group, and this impairment may be at least partially mediated by activating a glia-mediated immune response and upregulating TSPO. Conclusions TSPO-PET could potentially be used as an imaging biomarker for microglial activation and long-term cognitive impairment post-meningitis. Additionally, this study opens a new avenue for the potential use of TSPO ligands after infection-induced neurological sequelae.
Collapse
Affiliation(s)
- Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Allan Collodel
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Giselli Scaini
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rico Wassather
- Micro Analysis Group, Keyence Corporation of America, Austin, TX, USA
| | - Sudhakar Selvaraj
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rodrigo Hasbun
- Division of Infectious Disease, Department of Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarao, SC, Brazil
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
9
|
Lu MC, Chen YT, Chiang MK, Wang YC, Hsiao PY, Huang YJ, Lin CT, Cheng CC, Liang CL, Lai YC. Colibactin Contributes to the Hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in Mouse Meningitis Infections. Front Cell Infect Microbiol 2017; 7:103. [PMID: 28409125 PMCID: PMC5374149 DOI: 10.3389/fcimb.2017.00103] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is the most common pathogen of community-acquired meningitis in Taiwan. However, the lack of a physiologically relevant meningitis model for K. pneumoniae has impeded research into its pathogenesis mechanism. Based on the core genome MLST analyses, the hypervirulent K1 K. pneumoniae strains, which are etiologically implicated in adult meningitis, mostly belong to a single clonal complex, CC23. Some K1 CC23 K. pneumoniae strains carry a gene cluster responsible for colibactin production. Colibactin is a small genotoxic molecule biosynthesized by an NRPS-PKS complex, which is encoded by genes located on the pks island. Compared to other hypervirulent K. pneumoniae which primarily infect the liver, the colibactin-producing (pks+) K1 CC23 strains had significant tropism toward the brain of BALB/c mice. We aimed in this study to develop a physiologically relevant meningitis model with the use of pks+ K1 CC23 K. pneumoniae. Acute meningitis was successfully induced in adult BALB/c male mice through orogastric, intranasal, and intravenous inoculation of pks+ K1 CC23 K. pneumoniae. Besides the typical symptoms of bacterial meningitis, severe DNA damages, and caspase 3-independent cell death were elicited by the colibactin-producing K1 CC23 K. pneumoniae strain. The deletion of clbA, which abolished the production of colibactin, substantially hindered K. pneumoniae hypervirulence in the key pathogenic steps toward the development of meningitis. Our findings collectively demonstrated that colibactin was necessary but not sufficient for the meningeal tropism of pks+ K1 CC23 K. pneumoniae, and the mouse model established in this study can be applied to identify other virulence factors participating in the development of this life-threatening disease.
Collapse
Affiliation(s)
- Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University HospitalTaichung, Taiwan.,Department of Microbiology and Immunology, School of Medicine, China Medical UniversityTaichung, Taiwan
| | - Ying-Tsong Chen
- Institute of Molecular and Genomic Medicine, National Health Research InstitutesMiaoli County, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing UniversityTaichung, Taiwan
| | - Ming-Ko Chiang
- Department of Life Science, National Chung Cheng UniversityChia-Yi County, Taiwan
| | - Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University HospitalTaichung, Taiwan
| | - Pei-Yi Hsiao
- Department of Microbiology and Immunology, Chung Shan Medical UniversityTaichung, Taiwan
| | - Yi-Jhen Huang
- Institute of Genomics and Bioinformatics, National Chung Hsing UniversityTaichung, Taiwan
| | - Ching-Ting Lin
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
| | - Ching-Chang Cheng
- Laboratory Animal Service Center, China Medical UniversityTaichung, Taiwan
| | - Chih-Lung Liang
- Department of Microbiology and Immunology, Chung Shan Medical UniversityTaichung, Taiwan
| | - Yi-Chyi Lai
- Department of Internal Medicine, Chung Shan Medical University HospitalTaichung, Taiwan.,Department of Microbiology and Immunology, Chung Shan Medical UniversityTaichung, Taiwan
| |
Collapse
|
10
|
de Miranda AS, Brant F, Campos AC, Vieira LB, Rocha NP, Cisalpino D, Binda NS, Rodrigues DH, Ransohoff RM, Machado FS, Rachid MA, Teixeira AL. Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome. Neuroscience 2014; 284:920-933. [PMID: 25451296 DOI: 10.1016/j.neuroscience.2014.10.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/09/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
Cognitive dysfunction is a major sign of cerebral malaria (CM). However, the underlying mechanisms of CM cognitive outcome remain poorly understood. A body of evidence suggests that adult neurogenesis may play a role in learning and memory processes. It has also been reported that these phenomena can be regulated by the immune system. We hypothesized that memory dysfunction in CM results from hippocampal neurogenesis impairment mediated by the deregulated immune response during the acute phase of CM. C57Bl/6 mice were infected with Plasmodium berghei ANKA (PbA) strain, using a standardized inoculation of 10(6) parasitized erythrocytes. Long-term working memory was evaluated using the novel object recognition test. The mRNA expression of brain-derived neurotrophic factor (BDNF), tropomyosin-receptor-kinase (TRK-B) and nerve growth factor (NGF) in the frontal cortex and hippocampus was estimated by real-time polymerase chain reaction (PCR). The protein levels of cytokine interleukin-2 (IL-2), IL-4, IL-6, IL-10, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and CCL11 and neurotrophins BDNF and NGF were determined using a cytometric bead array (CBA) kit or enzyme-linked immunosorbent assay. Cell viability in the hippocampus was analyzed by Confocal Microscopy. Neurogenesis in the dentate gyrus was determined through quantification of doublecortin (DCX) positive cells. PbA-infected mice presented working memory impairment on day 5 post-infection. At this same time point, CM mice exhibited a decrease in DCX-positive cells in the dentate gyrus in parallel with increased cell death and elevated inflammatory cytokines (IL-6, TNF-α, IFN-γ and CCL11) in the hippocampus and frontal cortex. A significant reduction of BDNF mRNA expression was also found. IL-6 and TNF-α correlated negatively with BDNF and NGF levels in the hippocampus of CM mice. In summary, we provide further evidence that neuroinflammation following PbA-infection influences neurotrophin expression, impairs adult hippocampal neurogenesis and increases hippocampal cell death in association with memory impairment following CM course. The current study identified potential mediators of memory impairment in CM.
Collapse
Affiliation(s)
- A S de Miranda
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - F Brant
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A C Campos
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - L B Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - N P Rocha
- Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - D Cisalpino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - N S Binda
- National Institute of Science and Technology in Molecular Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - D H Rodrigues
- Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - R M Ransohoff
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - F S Machado
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M A Rachid
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A L Teixeira
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Immunopharmacology Group, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|