1
|
The association of air pollutants (CO 2, MTBE) on Candida albicans and Candida glabrata drug resistance. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Therapeutic methods are very important in the prevalence of opportunistic fungal infections, which are an important cause of human diseases. In this study, air pollution agents that are in direct contact with microorganisms, and the effects of carbon sources using CO2 and MTBE on growth of fungi, and particularly the evaluation of changes in the expression of interfering genes in susceptibility and drug resistance in these fungi, were investigated.
Materials and Methods
Collecting samples and isolating Candida glabrata and Candida albicans with phenotypic methods were accomplished. We then evaluated the minimum inhibitory concentration (MIC) with the M27A4 protocol of CLSI. We adjusted 20 strains of C. albicans and 10 strains of C. glabrata whose sensitivity was evaluated in the MIC test with 5% CO2 and 5mg/ml methyl tert-butyl ether (MTBE) considered as air pollutants, and followed by re-evaluating MIC testing to separate azole-resistant strains. Interfering agents were also considered.
Results
Upregulation of some genes on the two mentioned yeasts had led to drug resistance in them; they were previously sensitive to both drugs. Correspondingly, 41% of C. glabrata samples in sputum showed sensitivity to these drugs. Upregulation of ERG11 (71%) and EPA1 (90%) were observed in resistant strains. Upregulation of genes associated with aspartate proteins and downregulation of SAP3 genes were recognized in C. glabrata in sputum and a 15% downregulation of bronchoalveolar lavage (BAL) isolate and 50% upregulation of SAP1 gene in C. albicans sensitive samples were observed and compared to fluconazole and itraconazole with the oral and joint sources. Remarkably, decreased SAP2 expression in oral sources and a 60% increase in resistant strains in C. albicans were observed. The downregulation of SAP3 expression showed in the joint samples. An increase in HWP1 expression (30%) was noted in isolated and drug-sensitive samples at the sputum and BAL source. CDR1 expression was increased in MTBE-affected species; however, it decreased in the vicinity of CT.
Conclusions
Air pollutants such as CO2 and MTBE eventually caused drug resistance in Candida, which can be one of the causes of drug resistance in candidiasis infections.
Collapse
|
2
|
Liu Q, Bai X, Pham H, Hu J, Dinu CZ. Active Nanointerfaces Based on Enzyme Carbonic Anhydrase and Metal-Organic Framework for Carbon Dioxide Reduction. NANOMATERIALS 2021; 11:nano11041008. [PMID: 33920833 PMCID: PMC8071118 DOI: 10.3390/nano11041008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
Carbonic anhydrases are enzymes capable of transforming carbon dioxide into bicarbonate to maintain functionality of biological systems. Synthetic isolation and implementation of carbonic anhydrases into membrane have recently raised hopes for emerging and efficient strategies that could reduce greenhouse emission and the footprint of anthropogenic activities. However, implementation of such enzymes is currently challenged by the resulting membrane’s wetting capability, overall membrane performance for gas sensing, adsorption and transformation, and by the low solubility of carbon dioxide in water, the required medium for enzyme functionality. We developed the next generation of enzyme-based interfaces capable to efficiently adsorb and reduce carbon dioxide at room temperature. For this, we integrated carbonic anhydrase with a hydrophilic, user-synthesized metal–organic framework; we showed how the framework’s porosity and controlled morphology contribute to viable enzyme binding to create functional surfaces for the adsorption and reduction of carbon dioxide. Our analysis based on electron and atomic microscopy, infrared spectroscopy, and colorimetric assays demonstrated the functionality of such interfaces, while Brunauer–Emmett–Teller analysis and gas chromatography analysis allowed additional evaluation of the efficiency of carbon dioxide adsorption and reduction. Our study is expected to impact the design and development of active interfaces based on enzymes to be used as green approaches for carbon dioxide transformation and mitigation of global anthropogenic activities.
Collapse
|
3
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
4
|
Darabian S, Hashemi SJ, Khodavaisy S, Sharifynia S, Kord M, Akbari Dana M, Aala F, Rezaie S. Morphological changes and induction of antifungal resistance in Aspergillus fumigatus due to different CO2 levels. Curr Med Mycol 2018; 3:21-26. [PMID: 29707670 PMCID: PMC5914923 DOI: 10.29252/cmm.3.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Background and Purpose Aspergillosis is one of the most common opportunistic fungal infections in immunocompromised and neutropenic patients. Aspergillus fumigatus (A. fumigatus) is the most common causative agent of this infection. Due to variable CO2 concentrations that pathogens are exposed to during the infection process and to understand the role of CO2, we examined the effects of various CO2 concentrations as one of the environmental factors on morphological changes and induction of antifungal resistance in A. fumigatus. Materials and Methods A. fumigatus strains were cultured and incubated under 1%, 3%, 5%, and 12% CO2 atmospheres, each time for one, two, and four weeks. The control culture was maintained for one week without CO2 atmosphere. Morphological changes were investigated and antifungal susceptibility test was performed according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. The results of different CO2 atmospheres were compared with that of the control sample. Results We found that 1%, 3%, 5%, and 12% CO2 atmospheres were associated with morphological colony changes. Macroscopically, the colonies were shallow dark green, smooth, crisp to powdery with reduced growth; microscopic examination revealed the absence of conidiation. The induction of antifungal resistance in the susceptible strains to itraconazole, voriconazole, and amphotericin B increased after exposure to 12% CO2 atmosphere and four weeks of incubation. The MIC values for itraconazole, voriconazole, and amphotericin B were 16 g/ml, 1 g/ml, and 16 g/ml, respectively. These values for the control group were 0.125 g/ml, 0.125 g/ml, and 2 g/ml, respectively. Conclusion Exposure to different CO2 atmospheres induced morphological changes in A. fumigatus, it seems to increase the MIC values, as well. In parallel, resistance to both itraconazole and voriconazole was also observed.
Collapse
Affiliation(s)
- Sima Darabian
- Department of Medical Mycology and Parasitology, School of Public Health, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Jamal Hashemi
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Sharifynia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kord
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari Dana
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Aala
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sassan Rezaie
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|
6
|
Tomazett MV, Zanoelo FF, Bailão EFC, Bailão AM, Borges CL, Soares CMDA. Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides. Genet Mol Biol 2016; 39:416-25. [PMID: 27560991 PMCID: PMC5004831 DOI: 10.1590/1678-4685-gmb-2015-0213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/11/2016] [Indexed: 12/02/2022] Open
Abstract
Carbonic anhydrases (CA) belong to the family of zinc metalloenzymes that catalyze
the reversible hydration of carbon dioxide to bicarbonate. In the present work, we
characterized the cDNAs of four Paracoccidioides CAs (CA1, CA2, CA3,
and CA4). In the presence of CO2, there was not a significant increase in
fungal ca1, ca2 and ca4 gene
expression. The ca1 transcript was induced during the
mycelium-to-yeast transition, while ca2 and ca4
gene expression was much higher in yeast cells, when compared to mycelium and
mycelium-to-yeast transition. The ca1 transcript was induced in
yeast cells recovered directly from liver and spleen of infected mice, while
transcripts for ca2 and ca4 were down-regulated.
Recombinant CA1 (rCA1) and CA4 (rCA4), with 33 kDa and 32 kDa respectively, were
obtained from bacteria. The enzymes rCA1 (β-class) and rCA4 (α-class) were
characterized regarding pH, temperature, ions and amino acids addition influence.
Both enzymes were stable at pHs 7.5-8.5 and temperatures of 30-35 °C. The enzymes
were dramatically inhibited by Hg+2 and activated by Zn+2,
while only rCA4 was stimulated by Fe2+. Among the amino acids tested (all
in L configuration), arginine, lysine, tryptophan and histidine enhanced residual
activity of rCA1 and rCA4.
Collapse
Affiliation(s)
- Mariana Vieira Tomazett
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Fabiana Fonseca Zanoelo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.,Laboratório de Bioquímica, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Elisa Flávia Cardoso Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
7
|
Xiao L, Lian B, Dong C, Liu F. The selective expression of carbonic anhydrase genes of Aspergillus nidulans in response to changes in mineral nutrition and CO2 concentration. Microbiologyopen 2016; 5:60-9. [PMID: 26553629 PMCID: PMC4767425 DOI: 10.1002/mbo3.311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/25/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
Carbonic anhydrase (CA) plays an important role in the formation and evolution of life. However, to our knowledge, there has been no report on CA isoenzyme function differentiation in fungi. Two different CA gene sequences in Aspergillus nidulans with clear genetic background provide us a favorable basis for studying function differentiation of CA isoenzymes. Heterologously expressed CA1 was used to test its weathering ability on silicate minerals and real-time quantitative PCR was used to detect expression of the CA1 and CA2 genes at different CO2 concentrations and in the presence of different potassium sources. The northern blot method was applied to confirm the result of CA1 gene expression. Heterologously expressed CA1 significantly promoted dissolution of biotite and wollastonite, and CA1 gene expression increased significantly in response to soluble K-deficiency. The northern blot test further showed that CA1 participated in K-feldspar weathering. In addition, the results showed that CA2 was primary involved in adapting to CO2 concentration change. Taken together, A. nidulans can choose different CA to meet their survival needs, which imply that some environmental microbes have evolved different CAs to adapt to changes in CO2 concentration and acquire mineral nutrition so that they can better adapt to environmental changes. Inversely, their adaption may impact mineral weathering and/or CO2 concentration, and even global change.
Collapse
Affiliation(s)
- Leilei Xiao
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
- Key Laboratory of Coastal Environmental Processes and Ecological RemediationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
| | - Bin Lian
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Cuiling Dong
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Fanghua Liu
- Key Laboratory of Coastal Environmental Processes and Ecological RemediationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
| |
Collapse
|
8
|
Del Prete S, Vullo D, De Luca V, Carginale V, Ferraroni M, Osman SM, AlOthman Z, Supuran CT, Capasso C. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorg Med Chem 2016; 24:1115-20. [PMID: 26850377 DOI: 10.1016/j.bmc.2016.01.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2-87.0nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275-463nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51-8.57μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy; Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Marta Ferraroni
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sameh M Osman
- King Saud University, Department of Chemistry, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- King Saud University, Department of Chemistry, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- King Saud University, Department of Chemistry, Riyadh, Saudi Arabia; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy.
| |
Collapse
|
9
|
Ramakrishnan J, Rathore SS, Raman T. Review on fungal enzyme inhibitors – potential drug targets to manage human fungal infections. RSC Adv 2016. [DOI: 10.1039/c6ra01577h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The potential applications of enzyme inhibitors for the management of invasive fungal infections are explored.
Collapse
Affiliation(s)
- Jayapradha Ramakrishnan
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India-613401
| | - Sudarshan Singh Rathore
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India-613401
| | - Thiagarajan Raman
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India-613401
| |
Collapse
|
10
|
Teixeira J, Amorim A, Araujo R. Recombination detection in Aspergillus fumigatus through single nucleotide polymorphisms typing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:881-886. [PMID: 26189756 DOI: 10.1111/1758-2229.12321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/27/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
The first evidence of sexual reproduction in Aspergillus fumigatus was reported in 2009. Nevertheless, it remains difficult to understand how A. fumigatus is able to reproduce through this mode in its natural environment and how frequently this occurs. The aim of this study was to analyse single nucleotide polymorphisms (SNPs) in a set of environmental and clinical isolates of A. fumigatus to detect signatures of recombination. A group of closely related Portuguese A. fumigatus isolates was characterized by mating type and the genetic diversity of the intergenic regions, microsatellites and multilocus sequence typing (MLST) genes. A group of 19 SNPs, organized in nine association groups and inherited in blocks, was identified and compared. Several variations on the association panel were detected on reference isolates of A. fumigatus AF293 and A1163, the sequence types available at MLST database and six clinical and environmental Portuguese isolates. About one to four haplotype disruptions were observed per isolate. Considering clinical and environmental isolates, sexual reproduction seems to occur more frequently than previously admitted in A. fumigatus. In this study, a practical SNP approach is proposed for detection of recombination events in larger collections of A. fumigatus.
Collapse
Affiliation(s)
- Joana Teixeira
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - António Amorim
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ricardo Araujo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
|
12
|
Zolfaghari Emameh R, Barker H, Hytönen VP, Tolvanen MEE, Parkkila S. Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry. Parasit Vectors 2014; 7:403. [PMID: 25174433 PMCID: PMC4162934 DOI: 10.1186/1756-3305-7-403] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The genomes of many insect and parasite species contain beta carbonic anhydrase (β-CA) protein coding sequences. The lack of β-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society. METHODS In this study, we analyzed a multiple sequence alignment of 31 β-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for β-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis β-CAs as templates. RESULTS Six β-CAs of insects and parasites and six β-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved β-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies. CONCLUSIONS The predicted mitochondrial localization of several β-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that β-CAs are potential targets for development of small molecule pesticides or anti-parasitic agents with minimal side effects on vertebrates.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- />School of Medicine, University of Tampere, 33520 Tampere, Finland
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
- />Fimlab Laboratories Ltd and Tampere University Hospital, Biokatu 4, 33520 Tampere, Finland
| | - Harlan Barker
- />School of Medicine, University of Tampere, 33520 Tampere, Finland
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
| | - Vesa P Hytönen
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
- />Fimlab Laboratories Ltd and Tampere University Hospital, Biokatu 4, 33520 Tampere, Finland
| | - Martti E E Tolvanen
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
- />Department of Information Technology, University of Turku, 20014 Turku, Finland
| | - Seppo Parkkila
- />School of Medicine, University of Tampere, 33520 Tampere, Finland
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
- />Fimlab Laboratories Ltd and Tampere University Hospital, Biokatu 4, 33520 Tampere, Finland
| |
Collapse
|
13
|
Teichert I, Nowrousian M, Pöggeler S, Kück U. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. ADVANCES IN GENETICS 2014; 87:199-244. [PMID: 25311923 DOI: 10.1016/b978-0-12-800149-3.00004-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system.
Collapse
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Stefanie Pöggeler
- Abteilung Genetik eukaryotischer Mikroorganismen, Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Göttingen, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|