1
|
Ferrara G, Colitti B, Flores-Ramirez G, Pagnini U, Iovane G, Rosati S, Montagnaro S. Detection of Coxiella antibodies in ruminants using a SucB recombinant antigen. J Vet Diagn Invest 2023; 35:721-726. [PMID: 37705242 PMCID: PMC10621550 DOI: 10.1177/10406387231199964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The detection of Coxiella burnetii in ruminants remains challenging despite the use of new technology and the accumulation of novel knowledge. Serology tools, the primary methods of infection surveillance in veterinary medicine, have limitations. We used recombinant antigen production to develop an ELISA based on the SucB protein, one of the major immunodominant antigens described in humans and laboratory animals. We produced the antigen successfully in an Escherichia coli heterologous system, confirmed by sequencing and mass spectrometry, and seen as a band of ~50 kDa in SDS-PAGE and on western blot analysis. We compared the performance of the recombinant ELISA with a commercial ELISA. We observed agreement of 83.5% and a substantial Cohen κ value of 0.67 in our pilot study.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Grugliasco, TO, Italy
| | | | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Grugliasco, TO, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples, Italy
| |
Collapse
|
2
|
Limitations of Serological Diagnosis of Typical Cat Scratch Disease and Recommendations for the Diagnostic Procedure. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:4222511. [PMID: 36915870 PMCID: PMC10008113 DOI: 10.1155/2023/4222511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/22/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023]
Abstract
Introduction Cat scratch disease (CSD) is the most common cause of bacterial infectious lymphadenopathy, especially in children, but its diagnosis still remains challenging. Serological assays are widely applied due to their simplicity and the non-invasive sampling. However, these techniques present several limitations, including not well-defined antigen preparation, assay conditions and cutoff titers, severe cross-reactions with other species and organisms, and the notably ranging seroprevalence in the normal population. The objective of this study is to review the literature in order to determine the best diagnostic procedure for the diagnosis of CSD. Methods Databases including PubMed, Medline, Google Scholar, and Google were searched to determine the best diagnostic procedure for the diagnosis of CSD. A total of 437 papers were identified and screened, and after exclusion of papers that did not fulfill the including criteria, 63 papers were used. Results It was revealed that sensitivities of serological assays varied from 10% to 100%. Indeed, more than half of the studies reported a sensitivity lower than 70%, while 71% of them had a sensitivity lower than 80%. Moreover, specificities of serological assays ranged from 15% to 100%, with 25 assays reporting a specificity lower than 90%. Conclusion It is considered that molecular assays should be the gold standard technique for CSD confirmation, and physicians are reinforced to proceed to lymph node biopsy in suspicious CSD cases.
Collapse
|
3
|
Petersson E, Athlin S. Cat-bite-induced Francisella tularensis infection with a false-positive serological reaction for Bartonella quintana. JMM Case Rep 2017; 4:e005071. [PMID: 28348802 PMCID: PMC5361632 DOI: 10.1099/jmmcr.0.005071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 11/28/2022] Open
Abstract
Introduction. Tularaemia is caused by infection with Francisella tularensistransmitted via direct contact with an infected hare carcass or indirectly through the bites of vectors, but may be cat-bite-associated as well. Medical history and reliable diagnostic analysis are important in order to differentiate it from other cat-associated infections, e.g. Bartonella spp. Casepresentation. A healthy 56-year-old man was examined because of a cat-bite-associated ulceroglandular wound on his right thumb. Nineteen days after the cat bite occurred, a serology test was positive for anti-Bartonella quintana, but negative for anti-F. tularensis. Since Bartonella infections are rare in Sweden, another serology test was analysed 2 weeks later with a positive result for anti-F. tularensis. The patient was treated with doxycycline for 14 days and recovered. The patient was re-sampled after 18 months to obtain a convalescent sample. The acute and the convalescent samples were both analysed at a reference centre, with negative results for anti-Bartonella spp. this time. Conclusion. This case is enlightening about the importance of extending the medical history and re-sampling the patient for antibody detection when the clinical suspicion of cat-bite-associated tularaemia is high. The false-positive result for anti-B. quintana antibodies may have been due to technical issues with the assay, cross-reactivity or both.
Collapse
Affiliation(s)
| | - Simon Athlin
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University , Örebro SE 701 82 , Sweden
| |
Collapse
|
4
|
Verma SK, Jain S, Kumar S. Immunogenicity and protective potential of a bacterially expressed recombinant dihydrolipoamide succinyltransferase (rE2o) of Brucella abortus in BALB/c mice. World J Microbiol Biotechnol 2012; 28:2487-95. [PMID: 22806154 DOI: 10.1007/s11274-012-1056-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/08/2012] [Indexed: 11/28/2022]
Abstract
Brucellosis is one of the world's major zoonoses. No vaccine is available for the prevention of brucellosis in human. Efforts are needed to develop an effective, safe, stable, vaccine with long lasting immunity against human brucellosis. Here, we cloned and expressed recombinant dihydrolipoamide succinyltransferase (rE2o) of Brucella abortus in Escherichia coli and purified up to homogeneity by metal affinity chromatography. The purified rE2o is immunoreactive with brucellosis positive cattle sera. The immunogenicity and the protective potential of recombinant dihydrolipoamide succinyltransferase (rE2o) were evaluated in BALB/c mice with two different adjuvants i.e., Freund's and aluminium hydroxide gel. Mice were tested for humoral immune response by ELISA. Cell mediated immune response was tested by lymphocyte proliferation assay and cytokine profiling. The recombinant E2o (rE2o) generated high IgG antibody and its isotypes IgG1, and induced significant production of INF-γ, IL-10 and IL-4 cytokines. The rE2o protein induced significant lymphoproliferation of splenocytes. Altogether, these results suggest that rE2o induces a mixed but a predominant Th2 type of immune response in BALB/c mice and provides partial protection against challenge with pathogenic Brucella abortus.
Collapse
Affiliation(s)
- Shailendra Kumar Verma
- Division of Microbiology, Defense Research and Development Establishment, Jhansi Road, Gwalior, 474002, India
| | | | | |
Collapse
|
5
|
Prince HE, Lopez J, Yeh C, Tablante J, Morgan J, Kaneko B, Duffey P. Performance characteristics of the Euroimmun enzyme-linked immunosorbent assay kits for Brucella IgG and IgM. Diagn Microbiol Infect Dis 2009; 65:99-102. [DOI: 10.1016/j.diagmicrobio.2009.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 12/26/2022]
|
6
|
Eberhardt C, Engelmann S, Kusch H, Albrecht D, Hecker M, Autenrieth IB, Kempf VAJ. Proteomic analysis of the bacterial pathogen Bartonella henselae and identification of immunogenic proteins for serodiagnosis. Proteomics 2009; 9:1967-81. [PMID: 19333998 DOI: 10.1002/pmic.200700670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bartonella henselae is a slow growing, fastidious and facultative intracellular pathogen causing cat scratch disease and vasculoproliferative disorders. To date, knowledge about the pathogenicity of this human pathogenic bacterium is limited and, additionally, serodiagnosis still needs further improvement. Here, we investigated the proteome of B. henselae using 2-D SDS-PAGE and MALDI-TOF-MS. We provide a comprehensive 2-D proteome reference map of the whole cell lysate of B. henselae with 431 identified protein spots representing 191 different proteins of which 16 were formerly assigned as hypothetical proteins. To unravel immunoreactive antigens, we applied 2-D SDS-PAGE and subsequent immunoblotting using 33 sera of patients suffering from B. henselae infections. The analysis revealed 79 immunoreactive proteins of which 71 were identified. Setting a threshold of 20% seroreactivity, 11 proteins turned out to be immunodominant antigens potentially useful for an improved Bartonella-specific serodiagnosis. Therefore, we provide for the first time (i) a comprehensive 2-D proteome map of B. henselae for further proteome-based studies focussed on the pathogenicity of B. henselae and (ii) an integrated view into the humoral immune responses targeted against this newly emerged human pathogenic bacterium.
Collapse
Affiliation(s)
- Christian Eberhardt
- Institut für Medizinische Mikrobiologie und Hygiene, Klinikum der Eberhard-Karls-Universität, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Francisella tularensis infection-derived monoclonal antibodies provide detection, protection, and therapy. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:414-22. [PMID: 19176692 DOI: 10.1128/cvi.00362-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Francisella tularensis is the causative agent of tularemia and a potential agent of biowarfare. As an easily transmissible infectious agent, rapid detection and treatment are necessary to provide a positive clinical outcome. As an agent of biowarfare, there is an additional need to prevent infection. We made monoclonal antibodies to the F. tularensis subsp. holarctica live vaccine strain (F. tularensis LVS) by infecting mice with a sublethal dose of bacteria and, following recovery, by boosting the mice with sonicated organisms. The response to the initial and primary infection was restricted to immunoglobulin M antibody directed solely against lipopolysaccharide (LPS). After boosting with sonicated organisms, the specificity repertoire broadened against protein antigens, including DnaK, LpnA, FopA, bacterioferritin, the 50S ribosomal protein L7/L12, and metabolic enzymes. These monoclonal antibodies detect F. tularensis LVS by routine immunoassays, including enzyme-linked immunosorbent assay, Western blot analysis, and immunofluorescence. The ability of the antibodies to protect mice from intradermal infection, both prophylactically and therapeutically, was examined. An antibody to LPS which provides complete protection from infection with F. tularensis LVS and partial protection from infection with F. tularensis subsp. tularensis strain SchuS4 was identified. There was no bacteremia and reduced organ burden within the first 24 h when mice were protected from F. tularensis LVS infection with the anti-LPS antibody. No antibody that provided complete protection when administered therapeutically was identified; however, passive transfer of antibodies against LPS, FopA, and LpnA resulted in 40 to 50% survival of mice infected with F. tularensis LVS.
Collapse
|
8
|
Litwin CM, Rawlins ML, Swenson EM. Characterization of an immunogenic outer membrane autotransporter protein, Arp, of Bartonella henselae. Infect Immun 2007; 75:5255-63. [PMID: 17785470 PMCID: PMC2168282 DOI: 10.1128/iai.00533-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bartonella henselae is a recently recognized pathogenic bacterium associated with cat scratch disease, bacillary angiomatosis, and bacillary peliosis. This study describes the cloning, sequencing, and characterization of an antigenic autotransporter gene from B. henselae. A cloned 6.0-kb BclI-EcoRI DNA fragment expresses a 120-kDa B. henselae protein immunoreactive with 21.2% of sera from patients positive for B. henselae immunoglobulin G antibodies by indirect immunofluorescence, with 97.3% specificity and no cross-reactivity with antibodies against various other organisms. DNA sequencing of the clone revealed one open reading frame of 4,320 bp with a deduced amino acid sequence that shows homology to the family of autotransporters. The autotransporters are a group of proteins that mediate their own export through the outer membrane and consist of a passenger region, the alpha-domain, and an outer membrane transporter region, the beta-domain. The passenger domain shows homology to a family of pertactin-like adhesion proteins and contains seven, nearly identical 48-amino-acid repeats not found in any other bacterial or Bartonella DNA sequences. The passenger alpha-domain has a calculated molecular mass of 117 kDa, and the transporter beta-domain has a calculated molecular mass of 36 kDa. The clone expresses a 120-kDa protein and a protein that migrates at approximately 38 kDa exclusively in the outer membrane protein fraction, suggesting that the 120-kDa passenger protein remains associated with the outer membrane after cleavage from the 36-kDa transporter.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiomatosis, Bacillary/immunology
- Antibodies, Bacterial/blood
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bartonella henselae/genetics
- Bartonella henselae/immunology
- Base Sequence
- Blotting, Western
- Cat-Scratch Disease/immunology
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunoglobulin G/blood
- Membrane Transport Proteins/chemistry
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/immunology
- Molecular Sequence Data
- Molecular Weight
- Protein Structure, Tertiary/genetics
- Repetitive Sequences, Amino Acid
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Christine M Litwin
- Section of Clinical Immunology, Microbiology and Virology, Department of Pathology, 50 N. Medical Drive, University of Utah, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
9
|
Boonjakuakul JK, Gerns HL, Chen YT, Hicks LD, Minnick MF, Dixon SE, Hall SC, Koehler JE. Proteomic and immunoblot analyses of Bartonella quintana total membrane proteins identify antigens recognized by sera from infected patients. Infect Immun 2007; 75:2548-61. [PMID: 17307937 PMCID: PMC1865797 DOI: 10.1128/iai.01974-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/21/2007] [Accepted: 02/10/2007] [Indexed: 01/24/2023] Open
Abstract
Bartonella quintana is a fastidious, gram-negative, rod-shaped bacterium that causes prolonged bacteremia in immunocompetent humans and severe infections in immunocompromised individuals. We sought to define the outer membrane subproteome of B. quintana in order to obtain insight into the biology and pathogenesis of this emerging pathogen and to identify the predominant B. quintana antigens targeted by the human immune system during infection. We isolated the total membrane proteins of B. quintana and identified 60 proteins by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and peptide mass fingerprinting. Using the newly constructed proteome map, we then utilized two-dimensional immunoblotting with sera from 21 B. quintana-infected patients to identify 24 consistently recognized, immunoreactive B. quintana antigens that have potential relevance for pathogenesis and diagnosis. Among the outer membrane proteins, the variably expressed outer membrane protein adhesins (VompA and VompB), peptidyl-prolyl cis-trans-isomerase (PpI), and hemin-binding protein E (HbpE) were recognized most frequently by sera from patients, which is consistent with surface expression of these virulence factors during human infection.
Collapse
Affiliation(s)
- Jenni K Boonjakuakul
- Division of Infectious Diseases, 521 Parnassus Ave., Room C-443, University of California at San Francisco, San Francisco, CA 94143-0654, USA
| | | | | | | | | | | | | | | |
Collapse
|