1
|
Jurado-Martín I, Tomás-Cortázar J, Hou Y, Sainz-Mejías M, Mysior MM, Sadonès O, Huebner J, Romero-Saavedra F, Simpson JC, Baugh JA, McClean S. Proteomic approach to identify host cell attachment proteins provides protective Pseudomonas aeruginosa vaccine antigen FtsZ. NPJ Vaccines 2024; 9:204. [PMID: 39468053 PMCID: PMC11519640 DOI: 10.1038/s41541-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes severe nosocomial infections in susceptible individuals due to the emergence of multidrug-resistant strains. There are no approved vaccines against P. aeruginosa infections nor candidates in active clinical development, highlighting the need for novel candidates and strategies. Using a cell-blot proteomic approach, we reproducibly identified 49 proteins involved in interactions with human lung epithelial cells across four P. aeruginosa strains. Among these were cell division protein FtsZ and outer membrane protein OpmH. Escherichia coli BL21 cells overexpressing recombinant FtsZ or rOpmH showed a 66- and 15-fold increased ability to attach to 16HBE14o- cells, further supporting their involvement in host cell attachment. Both antigens led to proliferation of NK and CD8+ cytotoxic T cells, significant increases in the production of IFN-γ, IL-17A, TNF and IL-4 in immunised mice and elicited strong antigen-specific serological IgG1 and IgG2c responses. Immunisation with FtsZ significantly reduced bacterial burden in the lungs by 1.9-log CFU and dissemination to spleen by 1.8-log CFU. The protective antigen candidate, FtsZ, would not have been identified by traditional approaches relying on either virulence mechanisms or sequence-based predictions, opening new avenues in the development of an anti-P. aeruginosa vaccine.
Collapse
Affiliation(s)
- Irene Jurado-Martín
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Yueran Hou
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maite Sainz-Mejías
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Margaritha M Mysior
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Océane Sadonès
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Johannes Huebner
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
3
|
Zhang L, Zhang Y, Hua Q, Xu T, Liu J, Zhu Y, Yang Y. Promoter-Controlled Synthesis and Antigenic Evaluation of Mannuronic Acid Alginate Glycans of Pseudomonas aeruginosa. Org Lett 2022; 24:8381-8386. [DOI: 10.1021/acs.orglett.2c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liangliang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiyue Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qingting Hua
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tong Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Junru Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yirong Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Protective effect of two new nanovaccines against Pseudomonas aeruginosa based on LPS and OPS: A comparison study. Immunobiology 2022; 227:152278. [PMID: 36115097 DOI: 10.1016/j.imbio.2022.152278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is one of the most important infectious pathogens in medicine. This bacterium causes various infections, especially in patients with severe burns and people with defective immune systems. The purpose of this study was to develop a nanovaccine based on PLGA nanoparticles and lipopolysaccharide and oligopolysaccharide antigens for appropriate stimulation of the humoral and cellular immune systems against P. aeruginosa. LPS-PLGA and OPS-PLGA conjugates were synthesized using the carbodiimide reaction. The prepared conjugates of as well as the pure antigens of LPS and OPS were injected to BALB/c mice in three periods at 2 week intervals. The ELISA test showed that the IgM, IgA, IgG, IgG1, IgG2b, IgG2a and IgG3 antibodies produced against LPS-PLGA or OPS-PLGA conjugates were tens of times higher than the pure antigens. Also, the opsonophagocytosis test showed that the performance and the effect of produced anti-LPS-PLGA antibodies were higher than other groups. In addition, the mice treated with LPS-PLGA conjugate were more resistant to P. aeruginosa infection than other groups. These findings indicated that LPS and OPS antigens in conjugation with PLGA nanoparticles have the ability to create and effective immunity against P. aeruginosa and LPS-PLGA is more effective than OPS-PLGA.
Collapse
|
5
|
Bahy R, Fatyan E, Saafan AE, El-Gebaly EAEA. Preparation and evaluation of a new combined conjugated vaccine against Klebsiella pneumonia and Pseudomonas aeruginosa. J Appl Microbiol 2022; 133:1543-1554. [PMID: 35652238 DOI: 10.1111/jam.15646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
AIMS Lower respiratory tract infections (LRTIs) have been identified by the WHO as the most deadly infectious diseases and a pervasive public health problem, causing increased hospital admissions, mortality, and antibiotic use. This study aims to determine the most common and resistant bacteria that cause LRTIs and prepare an appropriate vaccine to reduce and prevent potential future infections. METHODS AND RESULTS Our survey was conducted by collecting respiratory exudate specimens. The most predominant and resistant types were Klebsiella pneumonia and Pseudomonas aeruginosa. The lipopolysaccharides (LPS) were extracted using a modified hot phenol method to prepare the vaccine. The LPS were then activated and conjugated. The immunogenicity of the prepared singles and combined vaccines was determined through an in- vivo assay using BALB/c mice. The prepared vaccine provided high protection against the lethal dose of both bacteria in mice. The combined vaccine shows a significant value in achieving high immunization. CONCLUSION These findings demonstrate the potential of the bacterial LPS molecules to be used as effective vaccines. SIGNIFICANCE AND IMPACT OF STUDY developing an effective single and combined vaccine against Pseudomonas aeruginosa and Klebsiella pneumonia can protect and reduce LRTI incidence.
Collapse
Affiliation(s)
- Rehab Bahy
- Faculty of Pharmacy, Microbiology and Immunology Department, Fayoum University, Fayoum, Egypt
| | - Eman Fatyan
- National Organization of Drug Control and Research, Microbiology and Immunology Department, Giza, Egypt
| | - Amal E Saafan
- Faculty of pharmacy, Microbiology and Immunology Department, Menoufia University, Shibin Elkoum, Egypt
| | - Eman Abd El Aziz El-Gebaly
- Faculty of pharmacy, Microbiology and Immunology Department, Beni- Suef University, Beni- Suef, Egypt.,Microbiology and Immunology Department, faculty of pharmacy, 6 Oct University, Giza, Egypt
| |
Collapse
|
6
|
Maleki M, Salouti M. Immunization effect of lipopolysaccharide antigen in conjugation with PLGA nanoparticles as a nanovaccine against Brucella melitensis infection. Biologicals 2021; 72:10-17. [PMID: 34167853 DOI: 10.1016/j.biologicals.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
Brucella is an infectious disease with difficult treatment faced with drug resistance and recurrence of infection. Despite advances in the development of effective vaccines against brucellosis infections, there is still a need for more effective vaccine against brucellosis. In this study, we developed a nanovaccine for delivery of lipopolysaccharide Brucella melitensis antigen to the immune system using PLGA nanoparticles to prevent Brucella infection, which is associated with the stimulation of both humoral and cellular immune systems. In particular, we determined the rate of produced immunoglobulines and their functional effectiveness on the immune system by carring out opsonophagocytosis and challenge tests. According to the results, it was determined that PLGA improve the delivery of LPS antigen to the immune system to enhance the production of immunoglobulins levels and their efficiency to remove Brucella bacteria.
Collapse
Affiliation(s)
- Masoud Maleki
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Mojtaba Salouti
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
7
|
Azimi S, Safari Zanjani L. Immunization against Pseudomonas aeruginosa using Alg-PLGA nano-vaccine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:476-482. [PMID: 34094029 PMCID: PMC8143718 DOI: 10.22038/ijbms.2021.52217.11813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa is the bacterium that causes of pulmonary infection among chronically hospitalized patients. Alginate is a common surface antigen of P. aeruginosa with a constant structure that which makes it an appropriate target for vaccines. In this study, P. aeruginosa alginate was conjugated with to PLGA nanoparticles, and its immunogenicity was characterized as a vaccine. MATERIALS AND METHODS Alginate was isolated from a mucoid strain of P. aeruginosa and conjugated with to PLGA with˝ N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride ˝= ˝EDAC˝ and N-Hydroxysuccinimide (NHS). Chemical characterization of prepared nano-vaccine was performed using FTIR Spectroscopy, Zetasizer, and Atomic Force Microscopy (AFM). The immunogenicity of this nano-vaccine was evaluated through intramuscular injection into BALB/c mice. Four groups of mice were subjected to the injection of alginate-PLGA, and two weeks after the last administration step, opsonophagocytosis assay, IgG detection, challenge, and cytokine determination via ELISA were carried out. RESULTS Alginate-PLGA conjugation was corroborated by FTIR, Zetasizer, and AFM. The ELISA consequence showed that alginate was prospering in the instigation of the humoral immunity.The immunogenicity enhanced against the alginate-PLGA. Remarkably diminished bacterial titer in the spleen of the immunized mice posterior to challenge with PAO1 strain in comparison with the alginate alone and control groups. CONCLUSION The bacterial burden in the spleen significantly decreased after the challenge (P<0.05). The opsonic activity was significantly increased in the alginate- PLGA group (P<0.05).
Collapse
Affiliation(s)
| | - Leila Safari Zanjani
- Department of Cellular and Molecular Biology, Zanjan Branch, Payame Noor of Zanjan, Zanjan, Iran
| |
Collapse
|
8
|
Afshari H, Maleki M, Hakimian M, Tanha RA, Salouti M. Immunogenicity evaluating of the SLNs-alginate conjugate against Pseudomonas aeruginosa. J Immunol Methods 2021; 488:112938. [PMID: 33259781 DOI: 10.1016/j.jim.2020.112938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023]
Abstract
P. aeruginosa is of particular importance due to its numerous pathogens and the spread of its multidrug-resistant strains around the world. Hence there is a need to develop an effective vaccine to prevent the diseases with P. aeruginosa. The aim of present study was to evaluate the immunogenicity of alginate (Alg) antigen in conjugation with SLN as a candidate for nanovaccine against P. aeruginosa in mouse model. Alginate is a weak immunogen, but the immune responses produced by alginate are effective in killing Pseudomonas bacteria. To increase the immunogenicity of alginate, SLN was used that is useful in drug delivery and can boost prolonged effectiveness. The results of ELISA and opsonophagocytosis tests showed that Alg-SLN conjugate has a better ability to stimulate the immune system to produce more immunoglobulins with better performance compared to alginate antigen alone. The challenge test also demonstrated that the Alg-SLN treated mice showed a higher level of immunity than the mice treated with pure alginate against infections caused by P. aeruginosa. Overally the findings showed the efficacy of new prepared vaccine to induce immunogenicity, and therefore it can be considered as a candidate for a strong vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Hossein Afshari
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Masoud Maleki
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mozhdeh Hakimian
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Roghaye Ahmadlou Tanha
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
9
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
10
|
Afshari H, Maleki M, Salouti M. Immunological effects of two new nanovaccines against Brucella based on OPS and LPS antigens conjugated with PLGA nanoparticles. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Maleki M, Salouti M, Shafiee Ardestani M, Talebzadeh A. Preparation of a nanovaccine against Brucella melitensis M16 based on PLGA nanoparticles and oligopolysaccharide antigen. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4248-4256. [DOI: 10.1080/21691401.2019.1687490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Masoud Maleki
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Biology Research Center, Islamic Azad University, Zanjan, Iran
| | - Mehdi Shafiee Ardestani
- Faculty of Pharmacy, Department of Radiopharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Talebzadeh
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
12
|
Mirzaei B, Mousavi SF, Babaei R, Bahonar S, Siadat SD, Shafiee Ardestani M, Shahrooei M, Van Eldere J. Synthesis of conjugated PIA–rSesC and immunological evaluation against biofilm-forming Staphylococcus epidermidis. J Med Microbiol 2019; 68:791-802. [DOI: 10.1099/jmm.0.000910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Bahman Mirzaei
- Department of Microbiology, Microbial Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Seyed Fazlollah Mousavi
- Department of Microbiology, Microbial Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reyhane Babaei
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Sara Bahonar
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Seyed Davar Siadat
- Mycobacteriology and Pulmonary Research Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Shahrooei
- Laboratory of Medical Microbiology, Department of Medical Diagnostic Sciences, KU Leuven, UZ Gasthuisberg, Herestraat 49 CDG 8th floor, B-3000 Leuven, Belgium
| | - John Van Eldere
- Laboratory of Medical Microbiology, Department of Medical Diagnostic Sciences, KU Leuven, UZ Gasthuisberg, Herestraat 49 CDG 8th floor, B-3000 Leuven, Belgium
| |
Collapse
|
13
|
Bianconi I, Alcalá-Franco B, Scarselli M, Dalsass M, Buccato S, Colaprico A, Marchi S, Masignani V, Bragonzi A. Genome-Based Approach Delivers Vaccine Candidates Against Pseudomonas aeruginosa. Front Immunol 2019; 9:3021. [PMID: 30687303 PMCID: PMC6334337 DOI: 10.3389/fimmu.2018.03021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023] Open
Abstract
High incidence, severity and increasing antibiotic resistance characterize Pseudomonas aeruginosa infections, highlighting the need for new therapeutic options. Vaccination strategies to prevent or limit P. aeruginosa infections represent a rational approach to positively impact the clinical outcome of risk patients; nevertheless this bacterium remains a challenging vaccine target. To identify novel vaccine candidates, we started from the genome sequence analysis of the P. aeruginosa reference strain PAO1 exploring the reverse vaccinology approach integrated with additional bioinformatic tools. The bioinformatic approaches resulted in the selection of 52 potential antigens. These vaccine candidates were conserved in P. aeruginosa genomes from different origin and among strains isolated longitudinally from cystic fibrosis patients. To assess the immune-protection of single or antigens combination against P. aeruginosa infection, a vaccination protocol was established in murine model of acute respiratory infection. Combinations of selected candidates, rather than single antigens, effectively controlled P. aeruginosa infection in the in vivo model of murine pneumonia. Five combinations were capable of significantly increase survival rate among challenged mice and all included PA5340, a hypothetical protein exclusively present in P. aeruginosa. PA5340 combined with PA3526-MotY gave the maximum protection. Both proteins were surface exposed by immunofluorescence and triggered a specific immune response. Combination of these two protein antigens could represent a potential vaccine to prevent P. aeruginosa infection.
Collapse
Affiliation(s)
- Irene Bianconi
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatriz Alcalá-Franco
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mattia Dalsass
- GSK, Siena, Italy.,Dipartimento di Scienze Cliniche e Biologiche, Universitá degli Studi di Torino, Turin, Italy
| | | | | | | | | | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
15
|
Pourali P, Yahyaei B. Wound healing property of a gel prepared by the combination of Pseudomonas aeruginosa alginate and Alhagi maurorum aqueous extract in rats. Dermatol Ther 2018; 32:e12779. [PMID: 30371977 DOI: 10.1111/dth.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 12/25/2022]
Abstract
Although alginate has been known to be a good wound dressing, it does not have antimicrobial properties, has low availability, and is expensive. To overcome these problems, the present study was conducted, where the extraction of this material from an available small factory Pseudomonas aeruginosa and the improvement of its wound healing property by its combination with herb extract, Alhagi maurorum, done. Nineteen P. aeruginosa strains were isolated and identified from burned skin, and the one isolated strain with the highest ability of alginate production was selected. A. maurorum aqueous extract was prepared, and the toxicity of each material was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide assay. A mixture of nontoxic doses of each substance was then prepared. Thirty-two Wistar rats were divided into four groups (n = 8). The control group and the rest three groups, which were treated by alginate, A. maurorum extract, and alginate- A. maurorum extract. Throughout the 21 days of treatment, the open wound sites were checked. Finally, the rats were sacrificed and the effect of each substance on their skin tissue was evaluated. The results showed that the high alginate production without any toxic effect was obtained from the P. aeruginosa strain K1. A. maurorum aqueous extract had dose-dependent toxicity. The aqueous solution of alginate- A. maurorum extract complex group showed the best wound healing activity in both macroscopic and microscopic examinations. Recent research has introduced a new type of wound dressing with high wound healing properties. This could decrease the time for re-epithelialization and increase wound contraction percentage.
Collapse
Affiliation(s)
- Parastoo Pourali
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Behrooz Yahyaei
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
16
|
Alikhani Z, Salouti M, Ardestani MS. Synthesis and immunological evaluation of a nanovaccine based on PLGA nanoparticles and alginate antigen against infections caused by
Pseudomonas aeruginosa. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabfac] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
A novel recombinant vaccine candidate comprising PBP2a and autolysin against Methicillin Resistant Staphylococcus aureus confers protection in the experimental mice. Mol Immunol 2017; 91:1-7. [DOI: 10.1016/j.molimm.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022]
|
18
|
Anti- Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model. J Cyst Fibros 2016; 15:171-8. [DOI: 10.1016/j.jcf.2015.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/01/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
|
19
|
Farajnia S, Peerayeh SN, Tanomand A, Majidi J, Goudarzi G, Naghili B, Rahbarnia L. Protective efficacy of recombinant exotoxin A--flagellin fusion protein against Pseudomonas aeruginosa infection. Can J Microbiol 2015; 61:60-4. [PMID: 25496361 DOI: 10.1139/cjm-2014-0501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that causes serious nosocomial infection in immunocompromised patients. The aim of this study was to prepare a fusion protein consisting of exotoxin A (ExoA) and flagellin (Fla) from P. aeruginosa and to evaluate its potential as a vaccine candidate against P. aeruginosa infection. The genes encoding for ExoA and Fla proteins were cloned in-frame and expressed in Escherichia coli. The recombinant ExoA-Fla fusion protein was purified by Ni-NTA affinity chromatography. Mice were immunized subcutaneously with ExoA, Fla, and ExoA-Fla fusion proteins, and the humoral immune response was evaluated by ELISA method. The immunized and control group mice were challenged with a 2× LD50 (7.5 × 10(7) CFU) of P. aeruginosa for the protection assay. The results indicated that vaccination with Fla, ExoA, and ExoA-Fla fusion proteins produced a significant amount of specific immunoglobulin G antibodies. Immunization of mice with ExoA-Fla fusion protein showed significant protection against intraperitoneal challenge with 7.5 × 10(7) CFU (2× LD50) P. aeruginosa. Results of this study suggest that recombinant ExoA-Fla fusion protein is a highly immunogenic protective protein showing promise as a vaccine candidate against P. aeruginosa.
Collapse
Affiliation(s)
- Safar Farajnia
- a Research Center for Infectious and Tropical Disease, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
20
|
Najafzadeh F, Shapouri R, Rahnema M, Rokhsartalab Azar S, Kianmehr A. Pseudomonas aeruginosa PAO-1 Lipopolysaccharide-Diphtheria Toxoid Conjugate Vaccine: Preparation, Characterization and Immunogenicity. Jundishapur J Microbiol 2015; 8:e17712. [PMID: 26301059 PMCID: PMC4541022 DOI: 10.5812/jjm.8(5)2015.17712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/26/2014] [Accepted: 06/07/2014] [Indexed: 12/05/2022] Open
Abstract
Background: Treatment of Pseudomonas aeruginosa PAO-1 infections through immunological means has been proved to be efficient and protective. Objectives: The purpose of this study was to produce a conjugate vaccine composed of detoxified lipopolysaccharide (D-LPS) P. aeruginosa and diphtheria toxoid (DT). Materials and Methods: Firstly, LPS was purified and characterized from P. aeruginosa PAO1 and then detoxified. D-LPS was covalently coupled to DT as a carrier protein via amidation method with adipic acid dihydrazide (ADH) as a spacer molecule and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDAC) as a linker. The molar ratio of LPS to DT in the prepared conjugate was 3:1. The immunogenicity of D-LPS-DT conjugate vaccine in mice model was evaluated as well. Results: The conjugate was devoid of endotoxin activity and 0.125 U/mL of D-LPS was acceptable for immunization. D-LPS-DT conjugate was nonpyrogenic for rabbits and nontoxic for mice. Mice immunization with D-LPS-DT conjugate vaccine elicited the fourfold higher IgG antibody compared to D-LPS. Anti-LPS IgG antibody was predominantly IgG1 subclass and then IgG3, IgG2a and IgG2b, respectively. Conclusions: Vaccine based on the conjugation of P. aeruginosa PAO-1 LPS with DT increased anti-LPS antibodies and had a significant potential to protect against Pseudomonas infections.
Collapse
Affiliation(s)
- Faezeh Najafzadeh
- Young Researchers Club, Bonab Branch, Islamic Azad University, Bonab, IR Iran
| | - Reza Shapouri
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, IR Iran
| | - Mehdi Rahnema
- Biologic Research Center, Zanjan Branch, Islamic Azad University, Zanjan, IR Iran
| | | | - Anvarsadat Kianmehr
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, IR Iran
- Corresponding author: Anvarsadat Kianmehr, Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, IR Iran. Tel: +98-2166402770, Fax: +98-2166465132, E-mail:
| |
Collapse
|
21
|
Farjah A, Owlia P, Siadat SD, Mousavi SF, Ardestani MS, Mohammadpour HK. Immunological evaluation of an alginate-based conjugate as a vaccine candidate againstPseudomonas aeruginosa. APMIS 2014; 123:175-83. [DOI: 10.1111/apm.12337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Farjah
- Department of Biology; Shahed University; Tehran Iran
- Department of Microbiology; Microbial research center; Pasteur Institute of Iran; Tehran Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center; Shahed University; Tehran Iran
| | - Seyed Davar Siadat
- Department of Microbiology; Microbial research center; Pasteur Institute of Iran; Tehran Iran
| | - Seyed Fazlollah Mousavi
- Department of Microbiology; Microbial research center; Pasteur Institute of Iran; Tehran Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy; Faculty of pharmacy; Tehran University of Medical Science; Tehran Iran
| | | |
Collapse
|
22
|
Farjah A, Owlia P, Siadat SD, Mousavi SF, Shafieeardestani M. Conjugation of alginate to a synthetic peptide containing T- and B-cell epitopes as an induction for protective immunity against Pseudomonas aeruginosa. J Biotechnol 2014; 192 Pt A:240-7. [DOI: 10.1016/j.jbiotec.2014.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/14/2014] [Accepted: 10/20/2014] [Indexed: 11/26/2022]
|
23
|
McCaslin CA, Petrusca DN, Poirier C, Serban KA, Anderson GG, Petrache I. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance. J Cyst Fibros 2014; 14:70-77. [PMID: 25027418 DOI: 10.1016/j.jcf.2014.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophage cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. A mannuronic-specific alginate lyase did not restore efferocytosis inhibited by exogenous guluronic-rich marine alginate, but had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to chronic airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate production and synergy with LPS, suggesting that alginate lyase may be an attractive therapeutic approach to airway inflammation in cystic fibrosis and other chronic obstructive pulmonary diseases characterized by P. aeruginosa colonization.
Collapse
Affiliation(s)
- Charlie A McCaslin
- Department of Pediatrics, Pediatric Pulmonology, Indiana University Purdue University Indianapolis, Indianapolis, IN
| | - Daniela N Petrusca
- Department of Medicine, School of Medicine, Indiana University Purdue University Indianapolis, Indianapolis, IN
| | - Christophe Poirier
- Department of Medicine, School of Medicine, Indiana University Purdue University Indianapolis, Indianapolis, IN
| | - Karina A Serban
- Department of Medicine, School of Medicine, Indiana University Purdue University Indianapolis, Indianapolis, IN
| | - Gregory G Anderson
- Department of Biology; Indiana University Purdue University Indianapolis, Indianapolis, IN
| | - Irina Petrache
- Department of Medicine, School of Medicine, Indiana University Purdue University Indianapolis, Indianapolis, IN.,Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, IN
| |
Collapse
|
24
|
Santos RD, Caron L, Gonçalves M, Sierakowsk M, Ferreira C, Ono L. OBTENÇÃO E CARACTERIZAÇÃO DE IMUNÓGENO CONJUGADO DE LIPOPOLISSACARÍDEO DE PSEUDOMONAS AERUGINOSA E ALBUMINA BOVINA. ARQUIVOS DO INSTITUTO BIOLÓGICO 2011. [DOI: 10.1590/1808-1657v78p4792011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO A Pseudomonas aeruginosa é agente etiológico de infecções oportunistas, principalmente em pacientes imunocomprometidos. Suas características inerentes em desenvolver resistência aos mais variados tipos de antibacterianos a torna um ponto crítico no controle de infecções. Em animais, os problemas com multirresistência ocorrem principalmente em casos de otite, cistite, úveo-conjuntivite, endometrite e mastite, não havendo vacina comercialmente disponível. No intuito de melhorar a imunogenicidade desse antígeno, foi testada a técnica de conjugação do lipopolissacarídeo (LPS) de P. aeruginosa à albumina bovina (BSA) por aminação redutiva direta utilizando .-periodato de sódio. A conjugação foi avaliada por cromatografia de gel-permeação, dosando-se açúcar e proteína totais, e tanto o LPS quanto a BSA foram identificados em proporções semelhantes. A imunização de camundongos com a vacina conjugada LPS-BSA conferiu títulos de anticorpos aglutinantes contra P. aeruginosa inferiores aos obtidos com a mistura de LPS e BSA livres. Foram 65% e 86% menores na 6ª e na 10ª semanas após o procedimento de hiperimunização, respectivamente. Isto indica que a reação de conjugação resultou em um produto imunogênico, porém, sua qualidade precisará ser melhorada.
Collapse
Affiliation(s)
| | | | - M.L.L. Gonçalves
- Secretaria de Agricultura e do Abastecimento do Estado do Paraná, Brasil
| | | | | | - L. Ono
- Universidade Federal do Paraná, Brasil
| |
Collapse
|
25
|
Sharma A, Krause A, Worgall S. Recent developments for Pseudomonas vaccines. HUMAN VACCINES 2011; 7:999-1011. [PMID: 21941090 DOI: 10.4161/hv.7.10.16369] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with Pseudomonas aeruginosa are a major health problem for immune-compromised patients and individuals with cystic fibrosis. A vaccine against: P. aeruginosa has long been sought after, but is so far not available. Several vaccine candidates have been assessed in experimental animals and humans, which include sub-cellular fractions, capsule components, purified and recombinant proteins. Unique characteristics of the host and the pathogen have complicated the vaccine development. This review summarizes the current state of vaccine development for this ubiquitous pathogen, in particular to provide mucosal immunity against infections of the respiratory tract in susceptible individuals with cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | | | |
Collapse
|
26
|
Efficacy of a conjugate vaccine containing polymannuronic acid and flagellin against experimental Pseudomonas aeruginosa lung infection in mice. Infect Immun 2011; 79:3455-64. [PMID: 21628521 DOI: 10.1128/iai.00157-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vaccines that could effectively prevent Pseudomonas aeruginosa pulmonary infections in the settings of cystic fibrosis (CF) and nosocomial pneumonia could be exceedingly useful, but to date no effective immunotherapy targeting this pathogen has been successfully developed for routine use in humans. Evaluations using animals and limited human trials of vaccines and their associated immune effectors against different P. aeruginosa antigens have suggested that antibody to the conserved surface polysaccharide alginate, as well as the flagellar proteins, often give high levels of protection. However, alginate itself does not elicit protective antibody in humans, and flagellar vaccines containing the two predominant serotypes of this antigen may not provide sufficient coverage against variant flagellar types. To evaluate if combining these antigens in a conjugate vaccine would be potentially efficacious, we conjugated polymannuronic acid (PMA), containing the blocks of mannuronic acid conserved in all P. aeruginosa alginates, to type a flagellin (FLA) and evaluated immunogenicity, opsonic killing activity, and passive protective efficacy in mice. The PMA-FLA conjugate was highly immunogenic in mice and rabbits and elicited opsonic antibodies against mucoid but not nonmucoid P. aeruginosa, but nonetheless rabbit antibody to PMA-FLA showed evidence of protective efficacy against both types of this organism in a mouse lung infection model. Importantly, the PMA-FLA conjugate vaccine did not elicit antibodies that neutralized the Toll-like receptor 5 (TLR5)-activating activity of flagellin, an important part of innate immunity to flagellated microbial pathogens. Conjugation of PMA to FLA appears to be a promising path for developing a broadly protective vaccine against P. aeruginosa.
Collapse
|
27
|
Abstract
OBJECTIVE Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjunctive therapies. DATA SOURCE Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. DATA EXTRACTION AND SYNTHESIS P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus on much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjunctive therapies capable of improving outcomes. CONCLUSIONS Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections.
Collapse
|
28
|
Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine 2008; 26:1011-24. [PMID: 18242792 DOI: 10.1016/j.vaccine.2007.12.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 11/21/2022]
|