1
|
Teixeira DC, de Castro PASV, Lima MCDAG, Romanelli RMDC, Silva ACSE, Diniz LMO. Inflammatory markers in cerebrospinal fluid in pediatric Brazilian spotted fever with neurological manifestations. Rev Inst Med Trop Sao Paulo 2025; 67:e32. [PMID: 40435109 PMCID: PMC12105850 DOI: 10.1590/s1678-9946202567032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/02/2025] [Indexed: 06/01/2025] Open
Affiliation(s)
- Daniela Caldas Teixeira
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Pediatria, Belo Horizonte, Minas Gerais, Brazil
- Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Ana Cristina Simões e Silva
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Pediatria, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian Martins Oliveira Diniz
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Pediatria, Belo Horizonte, Minas Gerais, Brazil
- Fundação Hospitalar de Minas Gerais, Hospital Infantil João Paulo II, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Cente M, Danchenko M, Skultety L, Filipcik P, Sekeyova Z. Rickettsia Deregulates Genes Coding for the Neurotoxic Cell Response Pathways in Cerebrocortical Neurons In Vitro. Cells 2023; 12:cells12091235. [PMID: 37174635 PMCID: PMC10177168 DOI: 10.3390/cells12091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Rickettsial infections of the central nervous system (CNS) are manifested by severe neurological symptoms and represent a serious life-threatening condition. Despite the considerable health danger, only a few studies have been conducted focusing on the pathogenesis induced by Rickettsia sp. in CNS. To investigate the signaling pathways associated with the neurotoxic effects of rickettsiae, we employed an experimental model of cerebrocortical neurons combined with molecular profiling and comprehensive bioinformatic analysis. The cytopathic effect induced by Rickettsia akari and Rickettsia slovaca was demonstrated by decreased neuronal viability, structural changes in cell morphology, and extensive fragmentation of neurites in vitro. Targeted profiling revealed the deregulation of genes involved in the neuroinflammatory and neurotoxic cell response pathways. Although quantitative analysis showed differences in gene expression response, functional annotation revealed that the biological processes are largely shared between both Rickettsia species. The identified enriched pathways are associated with cytokine signaling, chemotaxis of immune cells, responses to infectious agents, interactions between neurons, endothelial and glial cells, and regulation of neuronal apoptotic processes. The findings of our study provide new insight into the etiopathogenesis of CNS infection and further expand the understanding of molecular signaling associated with neuroinvasive Rickettsia species.
Collapse
Affiliation(s)
- Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Monika Danchenko
- Department of Rickettsiology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Ludovit Skultety
- Department of Rickettsiology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Zuzana Sekeyova
- Department of Rickettsiology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
3
|
Kask L, Påhlson C, Staxäng K, Nilsson K. Signatures in in vitro infection of NSC-34 mouse neurons and their cell nucleus with Rickettsia helvetica. BMC Microbiol 2023; 23:113. [PMID: 37085774 PMCID: PMC10120103 DOI: 10.1186/s12866-023-02859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Rickettsia helvetica, a spotted fever rickettsia, is transmitted to humans via ticks in Europe, North Africa, and Asia. The central nervous system is a crucial target for rickettsial diseases, which has been reported for 12 of the 31 species, of which R. helvetica is one. This study aimed, in an experimental model, to identify characteristics of R. helvetica infection in a mouse neuronal cell line, NSC-34. RESULTS NSC-34, a fusion cell line of mouse motor spinal cord neurons and neuroblastoma cells, was used as a model. Propagation of R. helvetica in neurons was confirmed. Short actin tails were shown at the polar end of the bacteria, which makes it likely that they can move intracellularly, and even spread between cells. Another protein, Sca4, which with the cell adhesion protein vinculin enables the passage of the cell membrane, was expressed during infection. No significant increase in TNFα levels was seen in the infected neurons, which is of interest because TNFα protects the host cell from infection-induced apoptotic death which is crucial for host cell survival. The bacteria were also shown to invade and grow in the cell nucleus of the neuron. CONCLUSIONS The findings suggest that a R. helvetica infection may be harmful to NSC-34 neurons under these in vitro conditions, but the full effects of the infection on the cell need to be studied further, also on human neurons, to also understand the possible significance of this infection in relation to pathogenetic mechanisms.
Collapse
Affiliation(s)
- Lena Kask
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl Påhlson
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Staxäng
- Department of Immunology, Genetics and Pathology-Biovis Platform, Uppsala University, Uppsala, Sweden
| | - Kenneth Nilsson
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Chakravarthi ST, Joshi SG. An Association of Pathogens and Biofilms with Alzheimer's Disease. Microorganisms 2021; 10:microorganisms10010056. [PMID: 35056505 PMCID: PMC8778325 DOI: 10.3390/microorganisms10010056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
As one of the leading causes of dementia, Alzheimer's disease (AD) is a condition in which individuals experience progressive cognitive decline. Although it is known that beta-amyloid (Aβ) deposits and neurofibrillary tangles (NFT) of tau fibrils are hallmark characteristics of AD, the exact causes of these pathologies are still mostly unknown. Evidence that infectious diseases may cause AD pathology has been accumulating for decades. The association between microbial pathogens and AD is widely studied, and there are noticeable correlations between some bacterial species and AD pathologies, especially spirochetes and some of the oral microbes. Borrelia burgdorferi has been seen to correlate with Aβ plaques and NFTs in infected cells. Because of the evidence of spirochetes in AD patients, Treponema pallidum and other oral treponemes are speculated to be a potential cause of AD. T. pallidum has been seen to form aggregates in the brain when the disease disseminates to the brain that closely resemble the Aβ plaques of AD patients. This review examines the evidence as to whether pathogens could be the cause of AD and its pathology. It offers novel speculations that treponemes may be able to induce or correlate with Alzheimer's disease.
Collapse
Affiliation(s)
- Sandhya T. Chakravarthi
- Center for Surgical Infection and Biofilm, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
| | - Suresh G. Joshi
- Center for Surgical Infection and Biofilm, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
- Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA
- Correspondence: or ; Tel.: +1-215-895-1988
| |
Collapse
|
5
|
Abstract
Over the last decades, rickettsioses are emerging worldwide. These diseases are caused by intracellular bacteria. Although rickettsioses can be treated with antibiotics, a vaccine against rickettsiae is highly desired for several reasons. Rickettsioses are highly prevalent, especially in poor countries, and there are indications of the development of antibiotic resistance. In addition, some rickettsiae can persist and cause recurrent disease. The development of a vaccine requires the understanding of the immune mechanisms that are involved in protection as well as in immunopathology. Knowledge about these immune responses is accumulating, and efforts have been undertaken to identify antigenic components of rickettsiae that may be useful as a vaccine. This review provides an overview on current knowledge of adaptive immunity against rickettsiae, which is essential for defense, rickettsial antigens that have been identified so far, and on vaccination strategies that have been used in animal models of rickettsial infections.
Collapse
|
6
|
Fisher J, Card G, Soong L. Neuroinflammation associated with scrub typhus and spotted fever group rickettsioses. PLoS Negl Trop Dis 2020; 14:e0008675. [PMID: 33091013 PMCID: PMC7580963 DOI: 10.1371/journal.pntd.0008675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Scrub typhus and spotted fever rickettsioses (SFR) are understudied, vector-borne diseases of global significance. Over 1 billion individuals are at risk for scrub typhus alone in an endemic region, spanning across eastern and southern Asia to Northern Australia. While highly treatable, diagnostic challenges make timely antibiotic intervention difficult for these diseases. Delayed therapy may lead to severe outcomes affecting multiple organs, including the central nervous system (CNS), where infection and associated neuroinflammation may be lethal or lead to lasting sequelae. Meningitis and encephalitis are prevalent in both scrub typhus and SFR. Additionally, case reports detailing focal neurological deficits have come to light, with attention to both acute and chronic sequelae of infection. Despite the increasing number of clinical reports outlining neurologic consequences of these diseases, relatively little research has examined underlying mechanisms of neuroinflammation. Animal models of scrub typhus have identified cerebral T-cell infiltration and vascular damage associated with endothelial infection and neuropathogenesis. Differential gene expression analysis of brain tissues during murine scrub typhus have revealed selective increases in CXCR3 ligands, proinflammatory and type-1 cytokines and chemokines, and cytotoxicity molecules, as well as alterations in the complement pathway. In SFR, microglial expansion and macrophage infiltration contribute to neurological disease progression. This narrative Review highlights clinical neurologic features of scrub typhus and SFR and evaluates our current understanding of basic research into neuroinflammation for both diseases in animal models. Further investigation into key mediators of neuropathogenesis may yield prognostic markers and treatment regimens for severe patients.
Collapse
Affiliation(s)
- James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Galen Card
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
7
|
Sekeyová Z, Danchenko M, Filipčík P, Fournier PE. Rickettsial infections of the central nervous system. PLoS Negl Trop Dis 2019; 13:e0007469. [PMID: 31465452 PMCID: PMC6715168 DOI: 10.1371/journal.pntd.0007469] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
As a result of migrations and globalization, people may face a possible increase in the incidence of central nervous system rickettsial infections (CNS R). These diseases, caused by Rickettsia species and transmitted to humans by arthropod bites, are putatively lethal. However, the diagnosis of CNS R is challenging and often delayed due to their nonspecific clinical presentation and the strict intracellular nature of rickettsiae. Furthermore, transfer of rickettsiae to the brain parenchyma is not yet understood. The aim of this review is to analyze and summarize the features and correlated findings of CNS R in order to focus attention on these intriguing but frequently neglected illnesses. We also incorporated data on CNS infections caused by Rickettsia-related microorganisms.
Collapse
Affiliation(s)
- Zuzana Sekeyová
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta, Bratislava, Slovakia
| | - Monika Danchenko
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta, Bratislava, Slovakia
| | - Peter Filipčík
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta, Bratislava, Slovakia
| | - Pierre Edouard Fournier
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Mediterranée-Infection, Marseille, France
- Centre National de Référence des Rickettsia, Coxiella et Bartonella, IHU Mediterranée-Infection, Marseille, France
- * E-mail:
| |
Collapse
|
8
|
Osterloh A. Immune response against rickettsiae: lessons from murine infection models. Med Microbiol Immunol 2017; 206:403-417. [PMID: 28770333 PMCID: PMC5664416 DOI: 10.1007/s00430-017-0514-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Rickettsiae are small intracellular bacteria that can cause life-threatening febrile diseases. Rickettsioses occur worldwide with increasing incidence. Therefore, a vaccine is highly desired. A prerequisite for the development of a vaccine is the knowledge of the immune response against these bacteria, in particular protective immunity. In recent years murine models of rickettsial infections have been established, and the study of immune response against rickettsiae in mice provided many new insights into protective and pathological immune reactions. This review summarizes the current knowledge about immune mechanisms in protection and pathology in rickettsial infections.
Collapse
Affiliation(s)
- Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
9
|
Persisting Rickettsia typhi Causes Fatal Central Nervous System Inflammation. Infect Immun 2016; 84:1615-1632. [PMID: 26975992 DOI: 10.1128/iai.00034-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/06/2016] [Indexed: 01/03/2023] Open
Abstract
Rickettsioses are emerging febrile diseases caused by obligate intracellular bacteria belonging to the family Rickettsiaceae. Rickettsia typhi belongs to the typhus group (TG) of this family and is the causative agent of endemic typhus, a disease that can be fatal. In the present study, we analyzed the course of R. typhi infection in C57BL/6 RAG1(-/-) mice. Although these mice lack adaptive immunity, they developed only mild and temporary symptoms of disease and survived R. typhi infection for a long period of time. To our surprise, 3 to 4 months after infection, C57BL/6 RAG1(-/-) mice suddenly developed lethal neurological disorders. Analysis of these mice at the time of death revealed high bacterial loads, predominantly in the brain. This was accompanied by a massive expansion of microglia and by neuronal cell death. Furthermore, high numbers of infiltrating CD11b(+) macrophages were detectable in the brain. In contrast to the microglia, these cells harbored R. typhi and showed an inflammatory phenotype, as indicated by inducible nitric oxide synthase (iNOS) expression, which was not observed in the periphery. Having shown that R. typhi persists in immunocompromised mice, we finally asked whether the bacteria are also able to persist in resistant C57BL/6 and BALB/c wild-type mice. Indeed, R. typhi could be recultivated from lung, spleen, and brain tissues from both strains even up to 1 year after infection. This is the first report demonstrating persistence and reappearance of R. typhi, mainly restricted to the central nervous system in immunocompromised mice.
Collapse
|
10
|
Bohácsová M, Filipčík P, Opattová A, Valáriková J, Quevedo Diaz M, Škultéty L, Novák M, Sekeyová Z. Survival of rat cerebrocortical neurons after rickettsial infection. Microbes Infect 2015; 17:845-9. [PMID: 26432946 DOI: 10.1016/j.micinf.2015.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022]
Abstract
Neuroinvasive microorganisms are suspected to play an important role in the etiopathogenesis of neurological diseases. However, direct evidence for the pathogenic function is still missing. The main aim of this study was to investigate biochemical and morphological changes that may occur as a result of an in vitro infection of rat cerebrocortical neurons by selected members of the genus Rickettsia. Our results showed that survival of the neurons is significantly reduced after the infection. Intracellular level of ATP is gradually decreased and inversely correlates with the load of rickettsiae. Immunofluorescence revealed that rickettsiae can enter the neurons and are localized in perinuclear space and also in neuronal processes. Data obtained in this study correspond to the idea of possible involvement of rickettsiae in the etiopathogenesis of various neuropathies.
Collapse
Affiliation(s)
- Monika Bohácsová
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Filipčík
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Opattová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Valáriková
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Ludovit Škultéty
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novák
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Sekeyová
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
11
|
Albertson R, Tan V, Leads RR, Reyes M, Sullivan W, Casper-Lindley C. Mapping Wolbachia distributions in the adult Drosophila brain. Cell Microbiol 2013; 15:1527-44. [PMID: 23490256 DOI: 10.1111/cmi.12136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 02/22/2013] [Accepted: 03/02/2013] [Indexed: 01/03/2023]
Abstract
The maternally inherited bacterium Wolbachia infects the germline of most arthropod species. Using Drosophila simulans and D. melanogaster, we demonstrate that localization of Wolbachia to the fat bodies and adult brain is likely also a conserved feature of Wolbachia infection. Examination of three Wolbachia strains (WMel , WRiv , WPop ) revealed that the bacteria preferentially concentrate in the central brain with low titres in the optic lobes. Distribution within regions of the central brain is largely determined by the Wolbachia strain, while the titre is influenced by both, the host species and the bacteria strain. In neurons of the central brain and ventral nerve cord, Wolbachia preferentially localizes to the neuronal cell bodies but not to axons. All examined Wolbachia strains are present intracellularly or in extracellular clusters, with the pathogenic WPop strain exhibiting the largest and most abundant clusters. We also discovered that 16 of 40 lines from the Drosophila Genetic Reference Panel are Wolbachia infected. Direct comparison of Wolbachia infected and cured lines from this panel reveals that differences in physiological traits (chill coma recovery, starvation, longevity) are partially due to host line influences. In addition, a tetracycline-induced increase in Drosophila longevity was detected many generations after treatment.
Collapse
|
12
|
Parthasarathy G, Philipp MT. Review: apoptotic mechanisms in bacterial infections of the central nervous system. Front Immunol 2012; 3:306. [PMID: 23060884 PMCID: PMC3463897 DOI: 10.3389/fimmu.2012.00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/15/2012] [Indexed: 01/18/2023] Open
Abstract
In this article we review the apoptotic mechanisms most frequently encountered in bacterial infections of the central nervous system (CNS). We focus specifically on apoptosis of neural cells (neurons and glia), and provide first an overview of the phenomenon of apoptosis itself and its extrinsic and intrinsic pathways. We then describe apoptosis in the context of infectious diseases and inflammation caused by bacteria, and review its role in the pathogenesis of the most relevant bacterial infections of the CNS.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Covington, LA, USA
| | | |
Collapse
|
13
|
Shanker K, Tolan RW. A child with a hive-like rash and bilateral sixth nerve palsies. Clin Pediatr (Phila) 2011; 50:573-4. [PMID: 20724345 DOI: 10.1177/0009922810373652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kanika Shanker
- The Children's Hospital at Saint Peter's University Hospital, New Brunswick, NJ, USA
| | | |
Collapse
|