1
|
Aygun A, Topyıldız E, Geyik M, Karaca NE, Durmaz A, Aksu G, Aykut A, Kutukculer N. Current genetic defects in common variable immunodeficiency patients on the geography between Europe and Asia: a single-center experience. Immunol Res 2024; 72:225-233. [PMID: 37840117 DOI: 10.1007/s12026-023-09426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Identification of the causes of monogenetic common variable immunodeficiency (CVID) patients has rapidly increased in the last years by means of worldwide availability of appropriate genetic diagnostic methods. However, up to date, very limited numbers of reports demonstrating the role of geography, ethnicity, and consanguinity have been published. Here, we reported the first study of Turkish CVID patients and compared them with the results of three countries from America, Europe, and Asia. A total of 100 children diagnosed as CVID according to the criteria of European Society for Immunodeficiencies were enrolled, and they were genetically analyzed by using targeted next-generation sequencing and whole-exome sequencing. The median age of our patients was 5.8 years (range, 3.0-16.0 years) at clinical diagnosis and 9.0 years (range, 4.8-21.0 years) at the time of genetic diagnosis. The consanguinity rate was 24%. Disease-causing pathogenic variants were defined in 40% of patients in a total of 17 different genes. Sixteen of 40 identified pathogenic variants were novel (40%). We determined 18 surface molecular defects, 10 cytosolic defects, 9 nuclear defects, and 3 others. In our cohort, the most common gene was TACI (15/40 in pathogenic variant identified cases and 15/100 in all cases) followed by the others such as PLCү2, LRBA, TCF3, and STAT1. In contrast to our expectations, our results were more similar to American and European population rather than Asians, although we also have high consanguinity rates and live on the geography between Europe and Asia. Genetic investigation is a great challenge, because of the complexity and heterogeneity of the disease, and each country has to know their own current genetic landscape in CVID for a better and successful management of the patients.
Collapse
Affiliation(s)
- Ayse Aygun
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ezgi Topyıldız
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Mehmet Geyik
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Neslihan Edeer Karaca
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Asude Durmaz
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Guzide Aksu
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ayca Aykut
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
2
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I. González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children’s Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M. Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Tang WJ, Hu WH, Huang Y, Wu BB, Peng XM, Zhai XW, Qian XW, Ye ZQ, Xia HJ, Wu J, Shi JR. Potential protein–phenotype correlation in three lipopolysaccharide-responsive beige-like anchor protein-deficient patients. World J Clin Cases 2021; 9:5873-5888. [PMID: 34368306 PMCID: PMC8316938 DOI: 10.12998/wjcc.v9.i21.5873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with lipopolysaccharide (LPS)-responsive beige-like anchor protein (LRBA) deficiency have a variety of clinical symptoms, but there is no apparent genotype–phenotype correlation, and patients carrying the same mutations may have different phenotypes. Therefore, it is not easy for doctors to make a decision regarding hematopoietic stem cell transplantation (HSCT) for LRBA-deficient patients. We hypothesized that there may be a protein–phenotype correlation to indicate HSCT for LRBA-deficient patients.
AIM To report on three Chinese LRBA-deficient patients and determine the correlation between residual protein expression and disease phenotypes.
METHODS Clinical data of three Chinese LRBA-deficient patients were collected, and protein levels were detected by Western blot analysis. In addition, LRBA mutation information of another 83 previously reported patients was summarized.
RESULTS All the major clinical findings indicated enteropathy, but patients 1 and 3 presented with more severe symptoms than patient 2. Endoscopy and histology indicated nonspecific colitis for patients 1 and 3 but Crohn's disease-like colitis for patient 2. Compound heterozygous mutations in LRBA were found in patient 1, and homozygous mutations in LRBA were found in patient 2 and patient 3. Only patient 2 responded well to traditional immunosuppressive treatment. Residual expression of the LRBA protein in patients 1 and 3 was very low, but in patient 2, a more than 0.5-fold in expression of the LRBA protein was found compared to that in the control. After HSCT, patient 1 had increased LRBA protein expression. We summarized the genetic information of 86 patients, and the mutations in patients 1 and 3 were novel mutations.
CONCLUSION We described three Chinese LRBA-deficient patients, two of whom carried novel mutations. These patients had no genotype-phenotype correlations, but their residual LRBA protein expression might be associated with disease outcome and could be an indicator for HSCT.
Collapse
Affiliation(s)
- Wen-Juan Tang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wen-Hui Hu
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Bing-Bing Wu
- The Molecular Genetic Diagnosis Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Min Peng
- The Molecular Genetic Diagnosis Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Wen Zhai
- Department of Hematology Oncology, Children's Hospital of Fudan university, National Children's Medical Center, Shanghai 201102, China
| | - Xiao-Wen Qian
- Department of Hematology Oncology, Children's Hospital of Fudan university, National Children's Medical Center, Shanghai 201102, China
| | - Zi-Qing Ye
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hai-Jiao Xia
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jie Wu
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jie-Ru Shi
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
4
|
Kardelen AD, Kara M, Güller D, Ozturan EK, Abalı ZY, Ceylaner S, Kıykım A, Cantez S, Torun SH, Poyrazoglu S, Bas F, Darendelıler F. LRBA deficiency: a rare cause of type 1 diabetes, colitis, and severe immunodeficiency. Hormones (Athens) 2021; 20:389-394. [PMID: 33155142 DOI: 10.1007/s42000-020-00257-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
The biological role of the lipopolysaccharide-responsive beige-like anchor (LRBA) protein associated with the immune system is not to date well known. However, it is thought to regulate the CTLA4 protein, an inhibitory immunoreceptor. Chronic diarrhea, autoimmune disorders, organomegaly, frequent recurrent infections, hypogammaglobulinemia, chronic lung manifestations, and growth retardation are some features of LRBA deficiency. This rare disease is observed as a result of homozygous mutations in the LRBA gene. An 11.3-year-old male patient presented because of short stature and high blood glucose level. He had a previous history of lymphoproliferative disease, chronic diarrhea, and recurrent infections. His parents were first-degree consanguineous relatives. A diagnosis of type 1 diabetes mellitus (T1DM) was added to the preexisting diagnoses of immunodeficiency, recurrent infection, enteropathy, chronic diarrhea, lymphadenopathy, hepatomegaly, and short stature. Genetic analysis revealed a homozygous mutation in the LRBA gene, c.5047C>T (p.R1683*) (p.Arg1683*). Abatacept treatment was started: the patient's hospital admission frequency decreased, and glucose regulation improved. At follow-up, growth hormone (GH) deficiency was diagnosed, although it was not treated because the underlying disease was not under control. Nevertheless, the patient's height improved with abatacept treatment. LRBA deficiency should be considered in the presence of consanguineous marriage, diabetes, immunodeficiency, and additional autoimmune symptoms. LRBA phenotypes are variable even when the same variants in the LRBA gene are present. Genetic diagnosis is important to determine optimal treatment options. In addition to chronic malnutrition and immunosuppressive therapy, GH deficiency may be one of the causes of short stature in these patients.
Collapse
Affiliation(s)
- Aslı Derya Kardelen
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Manolya Kara
- Department of Pediatric Infectious Diseases, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Dilek Güller
- Department of Pediatric Gastroenterology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Karakılıc Ozturan
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zehra Yavas Abalı
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Ayça Kıykım
- Department of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Serdar Cantez
- Department of Pediatric Gastroenterology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selda Hancerlı Torun
- Department of Pediatric Infectious Diseases, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukran Poyrazoglu
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Firdevs Bas
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Feyza Darendelıler
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Boz V, Valencic E, Girardelli M, Pin A, Gàmez-Diaz L, Tommasini A, Lega S, Bramuzzo M. Case Report: Refractory Autoimmune Gastritis Responsive to Abatacept in LRBA Deficiency. Front Immunol 2021; 12:619246. [PMID: 33717114 PMCID: PMC7952427 DOI: 10.3389/fimmu.2021.619246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Primary immunodeficiency (PID) with immune dysregulation may present with early onset gastrointestinal autoimmune disorders. When gastrointestinal autoimmunity is associated with multiple extraintestinal immune system dysfunction the diagnosis of PID is straightforward. However, with the advent of next generation sequencing technologies, genetic defects in PID genes have been increasingly recognized even when a single or no extraintestinal signs of immune dysregulation are present. A genetic diagnosis is especially important considering the expanding armamentarium of therapies designed to inhibit specific molecular pathways. We describe a boy with early-onset severe, refractory autoimmune gastritis and biallelic mutations in the LRBA gene causing a premature STOP-codon who was successfully treated with CTLA4-Ig, abatacept, with long term clinical and endoscopic remission. The case underscores the importance to consider a monogenetic defect in early onset autoimmune disorders, since the availability of targeted treatments may significantly improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Martina Girardelli
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Laura Gàmez-Diaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Sara Lega
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Matteo Bramuzzo
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
6
|
Chen CB, Tahboub F, Plesec T, Kay M, Radhakrishnan K. A Review of Autoimmune Enteropathy and Its Associated Syndromes. Dig Dis Sci 2020; 65:3079-3090. [PMID: 32833153 DOI: 10.1007/s10620-020-06540-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023]
Abstract
Autoimmune enteropathy is an extremely rare condition characterized by an abnormal intestinal immune response which typically manifests within the first 6 months of life as severe, intractable diarrhea that does not respond to dietary modification. Affected individuals frequently present with other signs of autoimmunity. The diagnosis is made based on a characteristic combination of clinical symptoms, laboratory studies, and histological features on small bowel biopsy. Autoimmune enteropathy is associated with a number of other conditions and syndromes, most notably immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome and autoimmune polyglandular syndrome type 1 (APS-1). Diagnosis and treatment is challenging, and further research is needed to better understand the pathogenesis, disease progression, and long-term outcomes of these conditions.
Collapse
Affiliation(s)
- Charles B Chen
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| | - Farah Tahboub
- The University of Jordan School of Medicine, Queen Rania St 212, Amman, Jordan
| | - Thomas Plesec
- Department of Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Marsha Kay
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Kadakkal Radhakrishnan
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| |
Collapse
|
7
|
Ghaini M, Arzanian MT, Shamsian BS, Sadr S, Rohani P, Keramatipour M, Mesdaghi M, Eskandarzadeh S, Lo B, Jamee M, Chavoshzadeh Z. Identifying Novel Mutations in Iranian Patients with LPS-responsive Beige-like Anchor Protein (LRBA) Deficiency. Immunol Invest 2020; 50:399-405. [PMID: 32476511 DOI: 10.1080/08820139.2020.1770784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
LPS-responsive beige-like anchor protein (LRBA) deficiency is a monogenic primary immunodeficiency characterized by a heterogeneous spectrum of clinical manifestations associated with immune dysregulation. In this study, we reported clinical, immunologic, and genetic evaluation of two Iranian patients from unrelated families, both suffering from recurrent respiratory tract infections, failure to thrive, interstitial lung disease, autoimmune cytopenia, and hypogammaglobulinemia. Pulmonary abscess in one patient and persistent enteropathy in another were also observed. Further investigations revealed causative mutations in the exon (c.2166_2766del) and intron (c.4730-3 T > G) of the LRBA gene. These results may provide further elucidation of the clinical phenotypes and responsible genetic factors of LRBA deficiency.
Collapse
Affiliation(s)
- Mehdi Ghaini
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Taghi Arzanian
- Department of Pediatric Hematology and Oncology, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bibi Shahin Shamsian
- Department of Pediatric Hematology and Oncology, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Saeed Sadr
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pejman Rohani
- Department of Pediatric Gastroenterology and Hepatology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Shabnam Eskandarzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bernice Lo
- Department of Human Genetics, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Jamee M, Zaki-Dizaji M, Lo B, Abolhassani H, Aghamahdi F, Mosavian M, Nademi Z, Mohammadi H, Jadidi-Niaragh F, Rojas M, Anaya JM, Azizi G. Clinical, Immunological, and Genetic Features in Patients with Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) and IPEX-like Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2747-2760.e7. [PMID: 32428713 DOI: 10.1016/j.jaip.2020.04.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare inborn error of immunity caused by mutations in the forkhead box P3 (FOXP3) gene. OBJECTIVE In this study, we conducted a systematic review of patients with IPEX and IPEX-like syndrome to delineate differences in these 2 major groups. METHODS The literature search was performed in PubMed, Web of Science, and Scopus databases, and demographic, clinical, immunologic, and molecular data were compared between the IPEX and IPEX-like groups. RESULTS A total of 459 patients were reported in 148 eligible articles. Major clinical differences between patients with IPEX and IPEX-like syndrome were observed in rates of pneumonia (11% vs 31%, P < .001), bronchiectasis (0.3% vs 14%, P < .001), diarrhea (56% vs 42%, P = .020), and organomegaly (10% vs 23%, P = .001), respectively. Eosinophilia (95% vs 100%), low regulatory T-cell count (68% vs 50%), and elevated IgE (87% vs 61%) were the most prominent laboratory findings in patients with IPEX and IPEX-like syndrome, respectively. In the IPEX group, a lower mortality rate was observed among patients receiving hematopoietic stem cell transplantation (HSCT) (24%) compared with other patients (43%), P = .008; however, in the IPEX-like group, it was not significant (P = .189). CONCLUSIONS Patients with IPEX syndrome generally suffer from enteropathy, autoimmunity, dermatitis, eosinophilia, and elevated serum IgE. Despite similarities in their clinical presentations, patients with IPEX-like syndrome are more likely to present common variable immunodeficiency-like phenotype such as respiratory tract infections, bronchiectasis, and organomegaly. HSCT is currently the only curative therapy for both IPEX and IPEX-like syndrome and may result in favorable outcome.
Collapse
Affiliation(s)
- Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran; Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Bernice Lo
- Sidra Medicine, Division of Translational Medicine, Research Branch, Doha, Qatar
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fatemeh Aghamahdi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mosavian
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zohreh Nademi
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle, United Kingdom
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
9
|
Phan ANL, Pham TTT, Huynh N, Nguyen TM, Cao CTT, Nguyen DT, Le DT, Bui C. Novel compound heterozygous stop-gain mutations of LRBA in a Vietnamese patient with Common Variable Immune Deficiency. Mol Genet Genomic Med 2020; 8:e1216. [PMID: 32154999 PMCID: PMC7216813 DOI: 10.1002/mgg3.1216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Lipopolysaccharide‐responsive and beige‐like anchor (LRBA) deficiency is a rare autosomal recessive common variable immunodeficiency (CVID), affecting 1:25,000–1:50,000 people worldwide. Biallelic mutations in the gene LRBA have been implicated in affected individuals. Methods We report a 16‐year‐old Vietnamese, male patient with recurrent CVID symptoms including chronic diarrhea, interstitial pneumonia, cutaneous granulomatous lesions, hepatosplenomegaly, and finger clubbing. Immunological analyses and whole exome sequencing (WES) were performed to investigate phenotypic and genotypic features. Results Immunological analyses revealed hypogammaglobulinemia and low ratios of CD4+/CD8+ T cells. Two novel compound heterozygous stop‐gain mutation in LRBA were identified: c.1933C > T (p.R645X) and c.949C > T (p.R317X). Sanger sequencing confirmed the segregation of these variants from the intact parents. The abolished LRBA protein expression was shown by immunoblot analysis. Subsequent treatment potentially saves the child from the same immune thrombocytopenia which led to his brother's untimely death; likely caused by the same LRBA mutations. Conclusion This first report of LRBA deficiency in Vietnam expands our knowledge of the diverse phenotypes and genotypes driving CVID. Finally, the utilization of WES shows great promise as an effective diagnostic for CVID in our setting.
Collapse
Affiliation(s)
| | - Thuy T. T. Pham
- Functional Genomic UnitDNA Medical TechnologyHo Chi Minh CityVietnam
| | - Nghia Huynh
- Department of HematologyHo Chi Minh City University of Medicine and PharmacyHo Chi Minh CityVietnam
| | | | | | | | - Duc T. Le
- Functional Genomic UnitDNA Medical TechnologyHo Chi Minh CityVietnam
| | - Chi‐Bao Bui
- Functional Genomic UnitDNA Medical TechnologyHo Chi Minh CityVietnam
- Biomedical Research CenterSchool of Medicine, Vietnam National University HCMCHo Chi Minh CityVietnam
- Molecular GeneticsCity Children’s HospitalHo Chi Minh CityVietnam
| |
Collapse
|
10
|
Tesch VK, Abolhassani H, Shadur B, Zobel J, Mareika Y, Sharapova S, Karakoc-Aydiner E, Rivière JG, Garcia-Prat M, Moes N, Haerynck F, Gonzales-Granado LI, Santos Pérez JL, Mukhina A, Shcherbina A, Aghamohammadi A, Hammarström L, Dogu F, Haskologlu S, İkincioğulları AI, Köstel Bal S, Baris S, Kilic SS, Karaca NE, Kutukculer N, Girschick H, Kolios A, Keles S, Uygun V, Stepensky P, Worth A, van Montfrans JM, Peters AMJ, Meyts I, Adeli M, Marzollo A, Padem N, Khojah AM, Chavoshzadeh Z, Avbelj Stefanija M, Bakhtiar S, Florkin B, Meeths M, Gamez L, Grimbacher B, Seppänen MRJ, Lankester A, Gennery AR, Seidel MG. Long-term outcome of LRBA deficiency in 76 patients after various treatment modalities as evaluated by the immune deficiency and dysregulation activity (IDDA) score. J Allergy Clin Immunol 2019; 145:1452-1463. [PMID: 31887391 DOI: 10.1016/j.jaci.2019.12.896] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Recent findings strongly support hematopoietic stem cell transplantation (HSCT) in patients with severe presentation of LPS-responsive beige-like anchor protein (LRBA) deficiency, but long-term follow-up and survival data beyond previous patient reports or meta-reviews are scarce for those patients who do not receive a transplant. OBJECTIVE This international retrospective study was conducted to elucidate the longitudinal clinical course of patients with LRBA deficiency who do and do not receive a transplant. METHOD We assessed disease burden and treatment responses with a specially developed immune deficiency and dysregulation activity score, reflecting the sum and severity of organ involvement and infections, days of hospitalization, supportive care requirements, and performance indices. RESULTS Of 76 patients with LRBA deficiency from 29 centers (median follow-up, 10 years; range, 1-52), 24 underwent HSCT from 2005 to 2019. The overall survival rate after HSCT (median follow-up, 20 months) was 70.8% (17 of 24 patients); all deaths were due to nonspecific, early, transplant-related mortality. Currently, 82.7% of patients who did not receive a transplant (43 of 52; age range, 3-69 years) are alive. Of 17 HSCT survivors, 7 are in complete remission and 5 are in good partial remission without treatment (together, 12 of 17 [70.6%]). In contrast, only 5 of 43 patients who did not receive a transplant (11.6%) are without immunosuppression. Immune deficiency and dysregulation activity scores were significantly lower in patients who survived HSCT than in those receiving conventional treatment (P = .005) or in patients who received abatacept or sirolimus as compared with other therapies, and in patients with residual LRBA expression. Higher disease burden, longer duration before HSCT, and lung involvement were associated with poor outcome. CONCLUSION The lifelong disease activity, implying a need for immunosuppression and risk of malignancy, must be weighed against the risks of HSCT.
Collapse
Affiliation(s)
- Victoria Katharina Tesch
- Research Unit for Pediatric Hematology and Immunology, Medical University Graz, Graz, Austria; Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Bella Shadur
- Department of Bone Marrow Transplantation, Hadassah, Hebrew University Medical Centre, Jerusalem, Israel; Garvan Institute of Medical Research, Department of Immunology, Darlinghurst, Australia
| | - Joachim Zobel
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Yuliya Mareika
- Bone Marrow Transplantation Unit, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Svetlana Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Pediatric Immunology and Allergy Division, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Nicolette Moes
- Department of Pediatric Gastroenterology, Antwerp University Hospital, Edegem, and Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Lab and Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Luis I Gonzales-Granado
- Immunodeficiencies Unit, Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (i+12), Madrid, Spain
| | - Juan Luis Santos Pérez
- Infectious Diseases and Immunodeficiencies Unit, Service of Pediatrics, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Anna Mukhina
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Aydan I İkincioğulları
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Sevgi Köstel Bal
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Safa Baris
- Faculty of Medicine, Pediatric Immunology and Allergy Division, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Sara Sebnem Kilic
- Pediatric Immunology-Rheumatology, Medical Faculty Department of Pediatrics, Uludag University Bursa, Bursa, Turkey
| | - Neslihan Edeer Karaca
- Ege University Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| | - Necil Kutukculer
- Ege University Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| | - Hermann Girschick
- Children's Hospital, Vivantes Berlin Friedrichshain, Berlin, Germany
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sevgi Keles
- Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Vedat Uygun
- Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah, Hebrew University Medical Centre, Jerusalem, Israel
| | - Austen Worth
- Institute of Child Health, University College London, London, United Kingdom
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, UMC Utrecht, The Netherlands
| | - Anke M J Peters
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Freiburg, Germany
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, and the Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mehdi Adeli
- Sidra Medicine/Hamad Medical Corporation, Doha, Qatar
| | - Antonio Marzollo
- Pediatric Hematology-Oncology Unit, Department of Women's and Children's Health, Azienda Ospedaliera-University of Padova, Padova, Italy
| | - Nurcicek Padem
- Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Amer M Khojah
- Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Zahra Chavoshzadeh
- Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Magdalena Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Benoit Florkin
- Immuno-Hémato-Rhumatologie Pédiatrique, Service de Pédiatrie, CHR Citadelle, Liege, Belgium
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health and Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Laura Gamez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST-Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Mikko R J Seppänen
- Rare Diseases Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland; Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki, and HUS Helsinki University Hospital, Helsinki, Finland; Translational Immunology, Research Programs Unit and Clinicum, University of Helsinki, Helsinki, Finland
| | - Arjan Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Medical University Graz, Graz, Austria; Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria.
| | | |
Collapse
|
11
|
Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, Dogruel D, Karaca NE, Cogurlu MT, Bilir OA, Cansever M, Kapakli H, Baser D, Kasap N, Kutlug S, Altintas DU, Al-Shaibi A, Agrebi N, Kara M, Guven A, Somer A, Aydogmus C, Ayaz NA, Metin A, Aydogan M, Uncuoglu A, Patiroglu T, Yildiran A, Guner SN, Keles S, Reisli I, Aksu G, Kutukculer N, Kilic SS, Yilmaz M, Karakoc-Aydiner E, Lo B, Ozen A, Chatila TA, Baris S. Abatacept as a Long-Term Targeted Therapy for LRBA Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:2790-2800.e15. [PMID: 31238161 DOI: 10.1016/j.jaip.2019.06.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND LPS-responsive beige-like anchor (LRBA) deficiency presents with susceptibility to infections, autoimmunity, and lymphoproliferation. The long-term efficacy of cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin (abatacept) as targeted therapy for its immune dysregulatory features remains to be established. OBJECTIVE To determine the clinical and immunologic features of LRBA deficiency and long-term efficacy of abatacept treatment in controlling the different disease manifestations. METHODS Twenty-two LRBA-deficient patients were recruited from different immunology centers and followed prospectively. Eighteen patients on abatacept were evaluated every 3 months for long-term clinical and immunologic responses. LRBA expression, lymphocyte subpopulations, and circulating T follicular helper cells were determined by flow cytometry. RESULTS The mean age of the patients was 13.4 ± 7.9 years, and the follow-up period was 3.4 ± 2.3 years. Recurrent infections (n = 19 [86.4%]), immune dysregulation (n = 18 [81.8%]), and lymphoproliferation (n = 16 [72.7%]) were common clinical features. The long-term benefits of abatacept in 16 patients were demonstrated by complete control of lymphoproliferation and chronic diarrhea followed by immune dysregulation, most notably autoimmune cytopenias. Weekly or every other week administration of abatacept gave better disease control compared with every 4 weeks. There were no serious side effects related to the abatacept therapy. Circulating T follicular helper cell frequencies were found to be a reliable biomarker of disease activity, which decreased on abatacept therapy in most subjects. However, high circulating T follicular helper cell frequencies persisted in 2 patients who had a more severe disease phenotype that was relatively resistant to abatacept therapy. CONCLUSIONS Long-term abatacept therapy is effective in most patients with LRBA deficiency.
Collapse
Affiliation(s)
- Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ismail Ogulur
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Esra Dursun
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Louis Marie Charbonnier
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Ercan Nain
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Sukru Cekic
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Dilek Dogruel
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Neslihan Edeer Karaca
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Mujde Tuba Cogurlu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Ozlem Arman Bilir
- Division of Pediatric Hematology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Murat Cansever
- Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hasan Kapakli
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Dilek Baser
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Seyhan Kutlug
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Derya Ufuk Altintas
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Ahmad Al-Shaibi
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Nourhen Agrebi
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Manolya Kara
- Division of Pediatric Infectious Diseases, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ayla Guven
- Division of Pediatric Endocrinology Clinic, Medical Faculty, Zeynep Kamil Women and Children Hospital, Saglik Bilimleri University, Istanbul, Turkey
| | - Ayper Somer
- Division of Pediatric Infectious Diseases, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Cigdem Aydogmus
- Division of Pediatric Allergy and Immunology, Kanuni Sultan Suleyman Training Hospital, Istanbul, Turkey
| | - Nuray Aktay Ayaz
- Division of Pediatric Rheumatology, Kanuni Sultan Suleyman Training Hospital, Istanbul, Turkey
| | - Ayse Metin
- Division of Pediatric Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Metin Aydogan
- Division of Pediatric Gastroenterology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Aysen Uncuoglu
- Division of Pediatric Gastroenterology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Turkan Patiroglu
- Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Alisan Yildiran
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Guzide Aksu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sara S Kilic
- Division of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Mustafa Yilmaz
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Bernice Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
| |
Collapse
|
12
|
Habibi S, Zaki-Dizaji M, Rafiemanesh H, Lo B, Jamee M, Gámez-Díaz L, Salami F, Kamali AN, Mohammadi H, Abolhassani H, Yazdani R, Aghamohammadi A, Anaya JM, Azizi G. Clinical, Immunologic, and Molecular Spectrum of Patients with LPS-Responsive Beige-Like Anchor Protein Deficiency: A Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:2379-2386.e5. [PMID: 30995531 DOI: 10.1016/j.jaip.2019.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency and immune dysregulation syndrome caused by biallelic mutations in the LRBA gene. These mutations usually abrogate the protein expression of LRBA, leading to a broad spectrum of clinical phenotypes including autoimmunity, chronic diarrhea, hypogammaglobulinemia, and recurrent infections. OBJECTIVE Our aim was to systematically collect all studies reporting on the clinical manifestations, molecular and laboratory findings, and management of patients with LRBA deficiency. METHODS We searched in PubMed, Web of Science, and Scopus without any restrictions on study design and publication time. A total of 109 LRBA-deficient cases were identified from 45 eligible articles. For all patients, demographic information, clinical records, and immunologic and molecular data were collected. RESULTS Of the patients with LRBA deficiency, 93 had homozygous and 16 had compound heterozygous mutations in LRBA. The most common clinical manifestations were autoimmunity (82%), enteropathy (63%), splenomegaly (57%), and pneumonia (49%). Reduction in numbers of CD4+ T cells and regulatory T cells as well as IgG levels was recorded for 21.6%, 65.6%, and 54.2% of evaluated patients, respectively. B-cell subpopulation analysis revealed low numbers of switched-memory and increased numbers of CD21low B cells in 73.5% and 77.8% of patients, respectively. Eighteen (16%) patients underwent hematopoietic stem cell transplantation due to the severity of complications and the outcomes improved in 13 of them. CONCLUSIONS Autoimmune disorders are the main clinical manifestations of LRBA deficiency. Therefore, LRBA deficiency should be included in the list of monogenic autoimmune diseases, and screening for LRBA mutations should be routinely performed for patients with these conditions.
Collapse
Affiliation(s)
- Sima Habibi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bernice Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|