1
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-Oxide in Aquatic Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14498-14520. [PMID: 38885200 DOI: 10.1021/acs.jafc.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.
Collapse
Affiliation(s)
- Xiaoyue Li
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chengcheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China
| |
Collapse
|
3
|
Xu M, Shao Q, Zhou Y, Yu Y, Wang S, Wang A, Cai Y. Potential effects of specific gut microbiota on periodontal disease: a two-sample bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1322947. [PMID: 38314435 PMCID: PMC10834673 DOI: 10.3389/fmicb.2024.1322947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Periodontal disease (PD) presents a substantial global health challenge, encompassing conditions from reversible gingivitis to irreversible periodontitis, often culminating in tooth loss. The gut-oral axis has recently emerged as a focal point, with potential gut microbiota dysbiosis exacerbating PD. Methods In this study, we employed a double-sample bidirectional Mendelian randomized (MR) approach to investigate the causal relationship between specific gut microbiota and periodontal disease (PD) and bleeding gum (BG) development, while exploring the interplay between periodontal health and the gut microenvironment. We performed genome-wide association studies (GWAS) with two cohorts, totalling 346,731 (PD and control) and 461,113 (BG and control) participants, along with data from 14,306 participants' intestinal flora GWAS, encompassing 148 traits (31 families and 117 genera). Three MR methods were used to assess causality, with the in-verse-variance-weighted (IVW) measure as the primary outcome. Cochrane's Q test, MR-Egger, and MR-PRESSO global tests were used to detect heterogeneity and pleiotropy. The leave-one-out method was used to test the stability of the MR results. An F-statistic greater than 10 was accepted for instrument exposure association. Results and conclusion Specifically, Eubacterium xylanophilum and Lachnoclostridium were associated with reduced gum bleeding risk, whereas Anaerotruncus, Eisenbergiella, and Phascolarctobacterium were linked to reduced PD risk. Conversely, Fusicatenibacter was associated with an elevated risk of PD. No significant heterogeneity or pleiotropy was detected. In conclusion, our MR analysis pinpointed specific gut flora with causal connections to PD, offering potential avenues for oral health interventions.
Collapse
Affiliation(s)
- Meng Xu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Shao
- IT Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Yinglu Zhou
- Nursing Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Yili Yu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuwei Wang
- Dental Diseases Prevention and Treatment Center of Jiading District, Shanghai, China
| | - An Wang
- Shanghai Jingan Dental Clinic, Shanghai, China
| | - Yida Cai
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Wang J, Gao Y, Ren S, Li J, Chen S, Feng J, He B, Zhou Y, Xuan R. Gut microbiota-derived trimethylamine N-Oxide: a novel target for the treatment of preeclampsia. Gut Microbes 2024; 16:2311888. [PMID: 38351748 PMCID: PMC10868535 DOI: 10.1080/19490976.2024.2311888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Pre-eclampsia (PE) is the most common complication of pregnancy and seriously threatens the health and safety of the mother and child. Studies have shown that an imbalance in gut microbiota can affect the progression of PE. Trimethylamine N-oxide (TMAO) is an intestinal microbiota-derived metabolite that is thought to be involved in the occurrence of PE; however, its causal relationship and mechanism remain unclear. In this clinical cohort study, including 28 patients with eclampsia and 39 matched healthy controls, fecal samples were collected for 16S rRNA gene sequencing, and serum was collected for targeted metabolomics research. The results showed that the level of TMAO and the abundance of its source bacteria had significantly increased in patients with PE, and were positively correlated with the clinical progression of PE. Fecal microbiota transplantation (FMT) was applied to an antibiotic-depleted-treated mouse model and targeted inhibition of TMAO. The results of the FMT experiment revealed that mice that received fecal microbiota transplantation from patients with PE developed typical PE symptoms and increased oxidative stress and inflammatory damage, both of which were reversed by 3,3-Dimethyl-1-butanol (DMB), a TMAO inhibitor, which also improved pregnancy outcomes in the model mice. Similar results were obtained in the classical NG-Nitroarginine methyl ester (L-NAME) induced PE mouse model. Mechanistically, TMAO promotes the progression of PE by regulating inflammatory and oxidative stress-related signaling pathways, affecting the migration and angiogenesis of vascular endothelial cells, as well as the migration and invasion of trophoblast cells. Our results reveal the role and mechanism of gut microbiota and TMAO in the progression of PE, provides new ideas for exploring the pathogenesis and therapeutic targets of PE, and determines the potential application value of TMAO as a target for PE intervention.
Collapse
Affiliation(s)
- Jiayi Wang
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yajie Gao
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shuaijun Ren
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jialin Li
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siqian Chen
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiating Feng
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Bing He
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Chen J, Liu Y, Wang H, Liang X, Ji S, Wang Y, Li X, Sun C. Polymethoxyflavone-Enriched Fraction from Ougan ( Citrus reticulata cv. Suavissima) Attenuated Diabetes and Modulated Gut Microbiota in Diabetic KK-A y Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6944-6955. [PMID: 37127840 DOI: 10.1021/acs.jafc.2c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diabetes mellitus is a serious, chronic disease worldwide; yet it is largely preventable through physical activity and healthy diets. Ougan (Citrus reticulata cv. Suavissima) is a characteristic citrus variety rich in polymethoxyflavones. In the present study, the anti-diabetic effects of the polymethoxyflavone-enriched fraction from Ougan (OG-PMFs) were investigated. Diabetic KK-Ay mice were supplemented with different doses of OG-PMFs for 5 weeks. Our results demonstrated that OG-PMFs exhibited robust protective effects against diabetes symptoms in KK-Ay mice. The potential mechanisms may partially be attributed to the restoration of hepatic GLUT2 and catalase expression. Notably, OG-PMF administration significantly altered the gut microbiota composition in diabetic KK-Ay, indicated by the suppression of metabolic disease-associated genera Desulfovibrio, Lachnoclostridium, Enterorhabdus, and Ralstonia, implying that the gut microbiota might be another target for OG-PMFs to show effects. Taken together, our results provided a supplementation for the metabolic-protective effects of PMFs and highlighted that OG-PMFs hold great potential to be developed as a functional food ingredient.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yang Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Huixin Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Shiyu Ji
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| |
Collapse
|
7
|
Vacca M, Porrelli A, Calabrese FM, Lippolis T, Iacobellis I, Celano G, Pinto D, Russo F, Giannelli G, De Angelis M. How Metabolomics Provides Novel Insights on Celiac Disease and Gluten-Free Diet: A Narrative Review. Front Microbiol 2022; 13:859467. [PMID: 35814671 PMCID: PMC9260055 DOI: 10.3389/fmicb.2022.859467] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Celiac disease (CD) is an inflammatory autoimmune disorder triggered by the ingestion of gluten from wheat and other cereals. Nowadays, its positive diagnosis is based on invasive approaches such as the histological examination of intestinal biopsies and positive serology screening of antibodies. After proven diagnosis, the only admissible treatment for CD individuals is strict life-long adherence to gluten-free diet (GFD), although it is not a conclusive therapy. Acting by different mechanisms and with different etiologies, both CD and GFD have a great impact on gut microbiota that result in a different taxa composition. Altered production of specific metabolites reflects these microbiota changes. In this light, the currently available literature reports some suggestions about the possible use of specific metabolites, detected by meta-omics analyses, as potential biomarkers for a CD non-invasive diagnosis. To highlight insights about metabolomics application in CD study, we conducted a narrative dissertation of selected original articles published in the last decade. By applying a systematic search, it clearly emerged how the metabolomic signature appears to be contradictory, as well as poorly investigated.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa Porrelli
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Francesco Maria Calabrese,
| | - Tamara Lippolis
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte, Italy
| | - Ilaria Iacobellis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project-HMPA, Giuliani SpA, Milan, Italy
| | - Francesco Russo
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Boysen AK, Durham BP, Kumler W, Key RS, Heal KR, Carlson L, Groussman RD, Armbrust EV, Ingalls AE. Glycine betaine uptake and metabolism in marine microbial communities. Environ Microbiol 2022; 24:2380-2403. [PMID: 35466501 PMCID: PMC9321204 DOI: 10.1111/1462-2920.16020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
Glycine betaine (GBT) is a compatible solute in high concentrations in marine microorganisms. As a component of labile organic matter, GBT has complex biochemical potential as a substrate for microbial use that is unconstrained in the environment. Here we determine the uptake kinetics and metabolic fate of GBT in two natural microbial communities in the North Pacific characterized by different nitrate concentrations. Dissolved GBT had maximum uptake rates of 0.36 and 0.56 nM h−1 with half‐saturation constants of 79 and 11 nM in the high nitrate and low nitrate stations respectively. During multiday incubations, most GBT taken into cells was retained as a compatible solute. Stable isotopes derived from the added GBT were also observed in other metabolites, including choline, carnitine and sarcosine, suggesting that GBT was used for biosynthesis and for catabolism to pyruvate and ammonium. Where nitrate was scarce, GBT was primarily metabolized via demethylation to glycine. Gene transcript data were consistent with SAR11 using GBT as a source of methyl groups to fuel the methionine cycle. Where nitrate concentrations were higher, more GBT was partitioned for lipid biosynthesis by both bacteria and eukaryotic phytoplankton. Our data highlight unexpected metabolic pathways and potential routes of microbial metabolite exchange.
Collapse
Affiliation(s)
- Angela K Boysen
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Bryndan P Durham
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - William Kumler
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rebecca S Key
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - Katherine R Heal
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Laura Carlson
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Ryan D Groussman
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D’Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci 2022; 23:4027. [PMID: 35409389 PMCID: PMC8999966 DOI: 10.3390/ijms23074027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies, such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English-language restriction using the following Boolean keywords: ("resveratrol" AND "microbio*"). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host's genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Maria Grazia Garibaldi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Zamira Kruti
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonella Tarullo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Kongresi Elbasanit, Aqif Pasha, Rruga, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Maspero
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Kenan Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Arberesha Bexheti Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| |
Collapse
|
10
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Liu J, Hefni ME, Witthöft CM, Bergström M, Burleigh S, Nyman M, Hållenius F. Effects of Whole Brown Bean and Its Isolated Fiber Fraction on Plasma Lipid Profile, Atherosclerosis, Gut Microbiota, and Microbiota-Dependent Metabolites in Apoe-/- Mice. Nutrients 2022; 14:nu14050937. [PMID: 35267913 PMCID: PMC8912725 DOI: 10.3390/nu14050937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
The health benefits of bean consumption are widely recognized and are largely attributed to the dietary fiber content. This study investigated and compared the effects of whole brown beans and an isolated bean dietary fiber fraction on the plasma lipid profile, atherosclerotic plaque amount, gut microbiota, and microbiota-dependent metabolites (cecal short-chain fatty acids (SCFAs) and plasma methylamines) in Apoe−/− mice fed high fat diets for 10.5 weeks. The results showed that both whole bean and the isolated fiber fraction had a tendency to lower atherosclerotic plaque amount, but not plasma lipid concentration. The whole bean diet led to a significantly higher diversity of gut microbiota compared with the high fat diet. Both bean diets resulted in a lower Firmicutes/Bacteroidetes ratio, higher relative abundance of unclassified S24-7, Prevotella, Bifidobacterium, and unclassified Clostridiales, and lower abundance of Lactobacillus. Both bean diets resulted in higher formation of all cecal SCFAs (higher proportion of propionic acid and lower proportion of acetic acid) and higher plasma trimethylamine N-oxide concentrations compared with the high fat diet. Whole beans and the isolated fiber fraction exerted similar positive effects on atherosclerotic plaque amount, gut microbiota, and cecal SCFAs in Apoe−/− mice compared with the control diets.
Collapse
Affiliation(s)
- Jiyun Liu
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
- Correspondence: ; Tel.: +46-072-451-6957
| | - Mohammed E. Hefni
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
- Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Cornelia M. Witthöft
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
| | - Maria Bergström
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| |
Collapse
|
12
|
Saeedi Saravi SS, Bonetti NR, Pugin B, Constancias F, Pasterk L, Gobbato S, Akhmedov A, Liberale L, Lüscher TF, Camici GG, Beer JH. Lifelong dietary omega-3 fatty acid suppresses thrombotic potential through gut microbiota alteration in aged mice. iScience 2021; 24:102897. [PMID: 34401676 PMCID: PMC8355916 DOI: 10.1016/j.isci.2021.102897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Aging is a major risk factor for cardiovascular diseases, including thrombotic events. The gut microbiota has been implicated in the development of thrombotic risk. Plant-derived omega-3 fatty acid ɑ-linolenic acid (ALA) confers beneficial anti-platelet and anti-inflammatory effects. Hence, antithrombotic activity elicited by ALA may be partly dependent on its interaction with gut microbiota during aging. Here, we demonstrate that lifelong dietary ALA decreases platelet hyperresponsiveness and thrombus formation in aged mice. These phenotypic changes can be partly attributed to alteration of microbial composition and reduction of its metabolite trimethylamine N-oxide and inflammatory mediators including TNF-α, as well as the upregulated production of short-chain fatty acid acetate. ALA-rich diet also dampens secretion of increased procoagulant factors, tissue factor and plasminogen activator inhibitor-1, in aged mice. Our results suggest long-term ALA supplementation as an attractive, accessible, and well-tolerated nutritional strategy against age-associated platelet hyperreactivity and thrombotic potential.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Nicole R. Bonetti
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lisa Pasterk
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
| | - Sara Gobbato
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Jürg H. Beer
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital Baden, Im Ergel 1, 5404 Baden, Switzerland
| |
Collapse
|
13
|
Hsu CN, Yang HW, Hou CY, Chang-Chien GP, Lin S, Tain YL. Melatonin Prevents Chronic Kidney Disease-Induced Hypertension in Young Rat Treated with Adenine: Implications of Gut Microbiota-Derived Metabolites. Antioxidants (Basel) 2021; 10:1211. [PMID: 34439458 PMCID: PMC8388963 DOI: 10.3390/antiox10081211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin, a signaling hormone with pleiotropic biofunctions, has shown health benefits. Trimethylamine-N-oxide (TMAO) and asymmetric dimethylarginine (ADMA) are uremic toxins involved in the development of hypertension. TMAO originates from trimethylamine (TMA), a gut microbial product. ADMA is an endogenous nitric oxide (NO) synthase inhibitor. We examined whether melatonin therapy could prevent hypertension and kidney disease by mediating gut microbiota-derived metabolites and the NO pathway using an adenine-induced chronic kidney disease (CKD) young rat model. Six-week-old young Sprague Dawley rats of both sexes were fed a regular diet (C group), a diet supplemented with 0.5% adenine (CKD group), or adenine plus 0.01% melatonin in their drinking water (CKD + M group) for three weeks (N = 8/group). Adenine-fed rats developed renal dysfunction, hypertension, renal hypertrophy and increased uremic toxin levels of TMAO and ADMA. Melatonin therapy prevented hypertension in both sexes and attenuated kidney injury in males. Melatonin reversed the changes to the plasma TMAO-to-TMA ratio induced by CKD in both sexes. Besides, the protective effects of melatonin were associated with restoration of gut microbiota alterations, including increased α-diversity, and enhancement of the abundance of the phylum Proteobacteria and the genus Roseburia in male rats. Melatonin therapy also partially prevented the increases in ADMA in male CKD rats. Melatonin sex-specifically protected young rats against hypertension and kidney injury induced by CKD. The results of this study contribute toward a greater understanding of the interaction between melatonin, gut microbiota-derived metabolites, and the NO pathway that is behind CKD, which will help to prevent CKD-related disorders in children.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
14
|
Nogal A, Louca P, Zhang X, Wells PM, Steves CJ, Spector TD, Falchi M, Valdes AM, Menni C. Circulating Levels of the Short-Chain Fatty Acid Acetate Mediate the Effect of the Gut Microbiome on Visceral Fat. Front Microbiol 2021; 12:711359. [PMID: 34335546 PMCID: PMC8320334 DOI: 10.3389/fmicb.2021.711359] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acetate is a short-chain fatty acid (SCFA) produced by gut bacteria, which has been implicated in cardio-metabolic health. Here we examine the relationships of circulating acetate levels with gut microbiome composition and diversity and with visceral fat in a large population-based cohort. Results Microbiome alpha-diversity was positively correlated with circulating acetate levels (Shannon, Beta [95%CI] = 0.12 [0.06, 0.18], P = 0.002) after adjustment for covariates. Six serum acetate-associated bacterial genera were also identified, including positive correlations with Coprococcus, Barnesiella, Ruminococcus, and Ruminococcaceae NK4A21 and negative correlations were observed with Lachnoclostridium and Bacteroides. We also identified a correlation between visceral fat and serum acetate levels (Beta [95%CI] = −0.07 [−0.11, −0.04], P = 2.8 × 10–4) and between visceral fat and Lachnoclostridium (Beta [95%CI] = 0.076 [0.042, 0.11], P = 1.44 × 10–5). Formal mediation analysis revealed that acetate mediates ∼10% of the total effect of Lachnoclostridium on visceral fat. The taxonomic diversity showed that Lachnoclostridium and Coprococcus comprise at least 18 and 9 species, respectively, including novel bacterial species. By predicting the functional capabilities, we found that Coprococcus spp. present pathways involved in acetate production and metabolism of vitamins B, whereas we identified pathways related to the biosynthesis of trimethylamine (TMA) and CDP-diacylglycerol in Lachnoclostridium spp. Conclusions Our data indicates that gut microbiota composition and diversity may influence circulating acetate levels and that acetate might exert benefits on certain cardio-metabolic disease risk by decreasing visceral fat. Coprococcus may play an important role in host health by its production of vitamins B and SCFAs, whereas Lachnoclostridium might have an opposing effect by influencing negatively the circulating levels of acetate and being involved in the biosynthesis of detrimental lipid compounds.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Panayiotis Louca
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Xinyuan Zhang
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Philippa M Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Ana M Valdes
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom.,Nottingham NIHR Biomedical Research Centre at the School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Daniel N, Rossi Perazza L, Varin TV, Trottier J, Marcotte B, St-Pierre P, Barbier O, Chassaing B, Marette A. Dietary fat and low fiber in purified diets differently impact the gut-liver axis to promote obesity-linked metabolic impairments. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1014-G1033. [PMID: 33881354 DOI: 10.1152/ajpgi.00028.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selecting the most relevant control diet is of critical importance for metabolic and intestinal studies in animal models. Chow and LF-purified diet differentially impact metabolic and gut microbiome outcomes resulting in major changes in intestinal integrity in LF-fed animals which contributes to altering metabolic homeostasis. Dietary fat and low fiber both contribute to the deleterious metabolic effect of purified HF diets through both selective and overlapping mechanisms.
Collapse
Affiliation(s)
- Noëmie Daniel
- Faculty of Food Science, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Laίs Rossi Perazza
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Bruno Marcotte
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Philippe St-Pierre
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases," CNRS UMR 8104, Université de Paris, Paris, France
| | - André Marette
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| |
Collapse
|
16
|
Day-Walsh P, Shehata E, Saha S, Savva GM, Nemeckova B, Speranza J, Kellingray L, Narbad A, Kroon PA. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota. Eur J Nutr 2021; 60:3987-3999. [PMID: 33934200 PMCID: PMC8437865 DOI: 10.1007/s00394-021-02572-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023]
Abstract
Purpose Plasma trimethylamine-N-oxide (TMAO) levels have been shown to correlate with increased risk of metabolic diseases including cardiovascular diseases. TMAO exposure predominantly occurs as a consequence of gut microbiota-dependent trimethylamine (TMA) production from dietary substrates including choline, carnitine and betaine, which is then converted to TMAO in the liver. Reducing microbial TMA production is likely to be the most effective and sustainable approach to overcoming TMAO burden in humans. Current models for studying microbial TMA production have numerous weaknesses including the cost and length of human studies, differences in TMA(O) metabolism in animal models and the risk of failing to replicate multi-enzyme/multi-strain pathways when using isolated bacterial strains. The purpose of this research was to investigate TMA production from dietary precursors in an in-vitro model of the human colon. Methods TMA production from choline, l-carnitine, betaine and γ-butyrobetaine was studied over 24–48 h using an in-vitro human colon model with metabolite quantification performed using LC–MS. Results Choline was metabolised via the direct choline TMA-lyase route but not the indirect choline–betaine-TMA route, conversion of l-carnitine to TMA was slower than that of choline and involves the formation of the intermediate γ-BB, whereas the Rieske-type monooxygenase/reductase pathway for l-carnitine metabolism to TMA was negligible. The rate of TMA production from precursors was choline > carnitine > betaine > γ-BB. 3,3-Dimethyl-1-butanol (DMB) had no effect on the conversion of choline to TMA. Conclusion The metabolic routes for microbial TMA production in the colon model are consistent with observations from human studies. Thus, this model is suitable for studying gut microbiota metabolism of TMA and for screening potential therapeutic targets that aim to attenuate TMA production by the gut microbiota. Trial registration number NCT02653001 (http://www.clinicaltrials.gov), registered 12 Jan 2016. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02572-6.
Collapse
Affiliation(s)
| | - Emad Shehata
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chemistry of Flavour and Aroma Dept, National Research Centre, 33 El Buhouth St, Giza, 12622, Dokki, Egypt
| | - Shikha Saha
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - George M Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Barbora Nemeckova
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Jasmine Speranza
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Lee Kellingray
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
| |
Collapse
|
17
|
TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies. J Cardiovasc Transl Res 2021; 14:1117-1124. [PMID: 33709384 DOI: 10.1007/s12265-021-10115-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Hypertension is the most prevalent chronic disease and a risk factor for various diseases. Although its mechanisms and therapies are constantly being updated and developed, they are still not fully clarified. In recent years, novel gut microbiota and its metabolites have attracted widespread attention. It is strongly linked with physiological and pathological systems, especially TMA and TMAO. TMA is formed by intestinal microbial metabolism of choline and L-carnitine and converted into TMAO by FMO3. This paper collected and collated the latest researches and mainly discussed the following four parts. It introduced gut microbiota; provided a focus on TMA, TMA-producing bacteria, and TMAO; summarized the alternations in hypertensive patients and animals; discussed the mechanisms of TMAO with two respects; and summarized the regulatory factors may be as new interventions and therapies of hypertension. And, more relevant studies are still prospected to be accomplished between hypertension and TMA/TMAO for further clinical services.
Collapse
|
18
|
Quareshy M, Shanmugam M, Townsend E, Jameson E, Bugg TDH, Cameron AD, Chen Y. Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer. J Biol Chem 2020; 296:100038. [PMID: 33158989 PMCID: PMC7948474 DOI: 10.1074/jbc.ra120.016019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022] Open
Abstract
Microbial metabolism of carnitine to trimethylamine (TMA) in the gut can accelerate atherosclerosis and heart disease, and these TMA-producing enzymes are therefore important drug targets. Here, we report the first structures of the carnitine oxygenase CntA, an enzyme of the Rieske oxygenase family. CntA exists in a head-to-tail α3 trimeric structure. The two functional domains (the Rieske and the catalytic mononuclear iron domains) are located >40 Å apart in the same monomer but adjacent in two neighboring monomers. Structural determination of CntA and subsequent electron paramagnetic resonance measurements uncover the molecular basis of the so-called bridging glutamate (E205) residue in intersubunit electron transfer. The structures of the substrate-bound CntA help to define the substrate pocket. Importantly, a tyrosine residue (Y203) is essential for ligand recognition through a π-cation interaction with the quaternary ammonium group. This interaction between an aromatic residue and quaternary amine substrates allows us to delineate a subgroup of Rieske oxygenases (group V) from the prototype ring-hydroxylating Rieske oxygenases involved in bioremediation of aromatic pollutants in the environment. Furthermore, we report the discovery of the first known CntA inhibitors and solve the structure of CntA in complex with the inhibitor, demonstrating the pivotal role of Y203 through a π-π stacking interaction with the inhibitor. Our study provides the structural and molecular basis for future discovery of drugs targeting this TMA-producing enzyme in human gut.
Collapse
Affiliation(s)
- Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology & Photon Science Institute, The University of Manchester, Manchester, UK
| | | | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
19
|
Gut microbial composition in patients with atrial fibrillation: effects of diet and drugs. Heart Vessels 2020; 36:105-114. [PMID: 32683492 PMCID: PMC7788021 DOI: 10.1007/s00380-020-01669-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Atrial fibrillation (AF) reduces the quality of life by triggering stroke and heart failure. The association between AF onset and gut metabolites suggests a causal relationship between AF and gut microbiota dysbiosis; however, the relationship remains poorly understood. We prospectively enrolled 34 hospitalized patients with AF and 66 age-, sex-, and comorbidity-matched control subjects without a history of AF. Gut microbial compositions were evaluated by amplicon sequencing targeting the 16S ribosomal RNA gene. We assessed differences in dietary habits by using a brief-type self-administered diet history questionnaire (BDHQ). Gut microbial richness was lower in AF patients, although the diversity of gut microbiota did not differ between the two groups. At the genus level, Enterobacter was depleted, while Parabacteroides, Lachnoclostridium, Streptococcus, and Alistipes were enriched in AF patients compared to control subjects. The BDHQ revealed that the intake of n-3 polyunsaturated fatty acids and eicosadienoic acid was higher in AF patients. Our results suggested that AF patients had altered gut microbial composition in connection with dietary habits.
Collapse
|
20
|
Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics. Appl Microbiol Biotechnol 2020; 104:4705-4716. [PMID: 32281023 DOI: 10.1007/s00253-020-10599-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Trimethylamine (TMA) and its oxide TMAO are important biomolecules involved in disease-associated processes in humans (e.g., trimethylaminuria and cardiovascular diseases). TMAO in plasma (pTMAO) stems from intestinal TMA, which is formed from various components of the diet in a complex interplay between diet, gut microbiota, and the human host. Most approaches to prevent the occurrence of such deleterious molecules focus on actions to interfere with gut microbiota metabolism to limit the synthesis of TMA. Some human gut archaea however use TMA as terminal electron acceptor for producing methane, thus indicating that intestinal TMA does not accumulate in some human subjects. Therefore, a rational alternative approach is to eliminate neo-synthesized intestinal TMA. This can be achieved through bioremediation of TMA by these peculiar methanogenic archaea, either by stimulating or providing them, leading to a novel kind of next-generation probiotics referred to as archaebiotics. Finally, specific components which are involved in this archaeal metabolism could also be used as intestinal TMA sequesters, facilitating TMA excretion along with stool. Referring to a standard pharmacological approach, these TMA traps could be synthesized ex vivo and then delivered into the human gut. Another approach is the engineering of known probiotic strain in order to metabolize TMA, i.e., live engineered biotherapeutic products. These alternatives would require, however, to take into account the necessity of synthesizing the 22nd amino acid pyrrolysine, i.e., some specificities of the genetics of TMA-consuming archaea. Here, we present an overview of these different strategies and recent advances in the field that will sustain such biotechnological developments. KEY POINTS: • Some autochthonous human archaea can use TMA for their essential metabolism, a methyl-dependent hydrogenotrophic methanogenesis. • They could therefore be used as next-generation probiotics for preventing some human diseases, especially cardiovascular diseases and trimethylaminuria. • Their genetic capacities can also be used to design live recombinant biotherapeutic products. • Encoding of the 22nd amino acid pyrrolysine is necessary for such alternative developments.
Collapse
|
21
|
Rath S, Rud T, Pieper DH, Vital M. Potential TMA-Producing Bacteria Are Ubiquitously Found in Mammalia. Front Microbiol 2020; 10:2966. [PMID: 31998260 PMCID: PMC6964529 DOI: 10.3389/fmicb.2019.02966] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023] Open
Abstract
Human gut bacteria metabolize dietary components such as choline and carnitine to trimethylamine (TMA) that is subsequently oxidized to trimethylamine-N-oxide (TMAO) by hepatic enzymes. Increased plasma levels of TMAO are associated with the development of cardiovascular and renal disease. In this study, we applied gene-targeted assays in order to quantify (qPCR) and characterize (MiSeq) bacterial genes encoding enzymes responsible for TMA production, namely choline-TMA lyase (CutC), carnitine oxygenase (CntA) and betaine reductase (GrdH) in 89 fecal samples derived from various mammals spanning three dietary groups (carnivores, omnivores and herbivores) and four host orders (Carnivora, Primates, Artiodactyla and Perissodactyla). All samples contained potential TMA-producing bacteria, however, at low abundances (<1.2% of total community). The cutC gene was more abundant in omnivores and carnivores compared with herbivores. CntA was almost absent from herbivores and grdH showed lowest average abundance of all three genes. Bacteria harboring cutC and grdH displayed high diversities where sequence types affiliated with various taxa within Firmicutes dominated, whereas cntA comprised sequences primarily linked to Escherichia. Composition of TMA-forming communities was strongly influenced by diet and host taxonomy and despite their high correlation, both factors contributed uniquely to community structure. Furthermore, Random Forest (RF) models could differentiate between groups at high accuracies. This study gives a comprehensive overview of potential TMA-producing bacteria in the mammalian gut demonstrating that both diet and host taxonomy govern their abundance and composition. It highlights the role of functional redundancy sustaining potential TMA formation in distinct gut environments.
Collapse
Affiliation(s)
- Silke Rath
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tatjana Rud
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
22
|
Urinary TMAO Levels Are Associated with the Taxonomic Composition of the Gut Microbiota and with the Choline TMA-Lyase Gene ( cutC) Harbored by Enterobacteriaceae. Nutrients 2019; 12:nu12010062. [PMID: 31881690 PMCID: PMC7019844 DOI: 10.3390/nu12010062] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Gut microbiota metabolization of dietary choline may promote atherosclerosis through trimethylamine (TMA), which is rapidly absorbed and converted in the liver to proatherogenic trimethylamine-N-oxide (TMAO). The aim of this study was to verify whether TMAO urinary levels may be associated with the fecal relative abundance of specific bacterial taxa and the bacterial choline TMA-lyase gene cutC. The analysis of sequences available in GenBank grouped the cutC gene into two main clusters, cut-Dd and cut-Kp. A quantitative real-time polymerase chain reaction (qPCR) protocol was developed to quantify cutC and was used with DNA isolated from three fecal samples collected weekly over the course of three consecutive weeks from 16 healthy adults. The same DNA was used for 16S rRNA gene profiling. Concomitantly, urine was used to quantify TMAO by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). All samples were positive for cutC and TMAO. Correlation analysis showed that the cut-Kp gene cluster was significantly associated with Enterobacteriaceae. Linear mixed models revealed that urinary TMAO levels may be predicted by fecal cut-Kp and by 23 operational taxonomic units (OTUs). Most of the OTUs significantly associated with TMAO were also significantly associated with cut-Kp, confirming the possible relationship between these two factors. In conclusion, this preliminary method-development study suggests the existence of a relationship between TMAO excreted in urine, specific fecal bacterial OTUs, and a cutC subgroup ascribable to the choline-TMA conversion enzymes of Enterobacteriaceae.
Collapse
|
23
|
Day RLJ, Harper AJ, Woods RM, Davies OG, Heaney LM. Probiotics: current landscape and future horizons. Future Sci OA 2019; 5:FSO391. [PMID: 31114711 PMCID: PMC6511921 DOI: 10.4155/fsoa-2019-0004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
In recent years there has been a rapid rise in interest for the application of probiotic supplements to act as mediators in health and disease. This appeal is predominantly due to ever-increasing evidence of the interaction of the microbiota and pathophysiological processes of disease within the human host. This narrative review considers the current landscape of the probiotic industry and its research, and discusses current pitfalls in the lack of translation from laboratory science to clinical application. Future considerations into how industry and academia must adapt probiotic research to maximize success are suggested, including more targeted application of probiotic strains dependent on individual capabilities as well as application of multiple advanced analytical technologies to further understand and accelerate microbiome science.
Collapse
Affiliation(s)
| | | | - Rachel M Woods
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Owen G Davies
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Liam M Heaney
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
24
|
Wang F, Xu J, Jakovlić I, Wang WM, Zhao YH. Dietary betaine reduces liver lipid accumulationviaimprovement of bile acid and trimethylamine-N-oxide metabolism in blunt-snout bream. Food Funct 2019; 10:6675-6689. [DOI: 10.1039/c9fo01853k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary betaine decreased liver lipid accumulation caused by dietary carbohydrate through changes of TMA formation and TMAO and bile acid metabolism.
Collapse
Affiliation(s)
- Fan Wang
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | - Jia Xu
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | | | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University
- Key Lab of Freshwater Animal Breeding
- Ministry of Agriculture
- Key Lab of Agricultural Animal Genetics
- Breeding and Reproduction of Ministry of Education
| |
Collapse
|
25
|
Sun J, Mausz MA, Chen Y, Giovannoni SJ. Microbial trimethylamine metabolism in marine environments. Environ Microbiol 2018; 21:513-520. [PMID: 30370577 DOI: 10.1111/1462-2920.14461] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
Trimethylamine (TMA) is common in marine environments. Although the presence of this compound in the oceans has been known for a long time, unlike the mammalian gastrointestinal tract, where TMA metabolism by microorganisms has been studied intensely, many questions remain unanswered about the microbial metabolism of marine TMA. This minireview summarizes what is currently known about the sources and fate of TMA in marine environments and the different pathways and enzymes involved in TMA metabolism in marine bacteria. This review also raises several questions about microbial TMA metabolism in the marine environments and proposes potential directions for future studies.
Collapse
Affiliation(s)
- Jing Sun
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Michaela A Mausz
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
26
|
Jameson E, Quareshy M, Chen Y. Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut. Methods 2018; 149:42-48. [PMID: 29684641 PMCID: PMC6200775 DOI: 10.1016/j.ymeth.2018.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/14/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
The bacterial formation of trimethylamine (TMA) has been linked to cardiovascular disease. This review focuses on the methods employed to investigate the identity of the bacteria responsible for the formation of TMA from dietary choline and carnitine in the human gut. Recent studies have revealed the metabolic pathways responsible for bacterial TMA production, primarily the anaerobic glycyl radical-containing, choline-TMA lyase, CutC and the aerobic carnitine monooxygenase, CntA. Identification of these enzymes has enabled bioinformatics approaches to screen both human-associated bacterial isolate genomes and whole gut metagenomes to determine which bacteria are responsible for TMA formation in the human gut. We centre on several key methodological aspects for identifying the TMA-producing bacteria and report how these pathways can be identified in human gut microbiota through bioinformatics analysis of available bacterial genomes and gut metagenomes.
Collapse
Affiliation(s)
- Eleanor Jameson
- The University of Warwick, School of Life Sciences, United Kingdom.
| | - Mussa Quareshy
- The University of Warwick, School of Life Sciences, United Kingdom
| | - Yin Chen
- The University of Warwick, School of Life Sciences, United Kingdom
| |
Collapse
|
27
|
Rath S, Rud T, Karch A, Pieper DH, Vital M. Pathogenic functions of host microbiota. MICROBIOME 2018; 6:174. [PMID: 30266099 PMCID: PMC6162913 DOI: 10.1186/s40168-018-0542-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND It is becoming evident that certain features of human microbiota, encoded by distinct autochthonous taxa, promote disease. As a result, borders between the so-called opportunistic pathogens, pathobionts, and commensals are increasingly blurred, and specific targets for manipulating microbiota to improve host health are becoming elusive. RESULTS In this study, we focus on the functions of host bacterial communities that have the potential to cause disease, proposing the term "pathogenic function (pathofunction)". The concept is presented via three distinct examples, namely, the formation of (i) trimethylamine, (ii) secondary bile acids, and (iii) hydrogen sulfide, which represent metabolites of the gut microbiota linked to the development of non-communicable diseases. Using publicly available metagenomic and metatranscriptomic data (n = 2975), we quantified those pathofunctions in health and disease and exposed the key players. Pathofunctions were ubiquitously present with increased abundances in patient groups. Overall, the three pathofunctions were detected at low mean concentrations (< 1% of total bacteria carried respective genes) and encompassed various taxa, including uncultured members. CONCLUSIONS We outline how this function-centric approach, where all members of a community exhibiting a particular pathofunction are redundant, can contribute to risk assessment and the development of precision treatment directing gut microbiota to increase host health.
Collapse
Affiliation(s)
- Silke Rath
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tatjana Rud
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - André Karch
- Epidemiological and Statistical Methods Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar Helmut Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
28
|
Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment. ISME JOURNAL 2018; 13:277-289. [PMID: 30206424 PMCID: PMC6331629 DOI: 10.1038/s41396-018-0269-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Abstract
Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment.
Collapse
|
29
|
Hoyles L, Jiménez-Pranteda ML, Chilloux J, Brial F, Myridakis A, Aranias T, Magnan C, Gibson GR, Sanderson JD, Nicholson JK, Gauguier D, McCartney AL, Dumas ME. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. MICROBIOME 2018; 6:73. [PMID: 29678198 PMCID: PMC5909246 DOI: 10.1186/s40168-018-0461-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The dietary methylamines choline, carnitine, and phosphatidylcholine are used by the gut microbiota to produce a range of metabolites, including trimethylamine (TMA). However, little is known about the use of trimethylamine N-oxide (TMAO) by this consortium of microbes. RESULTS A feeding study using deuterated TMAO in C57BL6/J mice demonstrated microbial conversion of TMAO to TMA, with uptake of TMA into the bloodstream and its conversion to TMAO. Microbial activity necessary to convert TMAO to TMA was suppressed in antibiotic-treated mice, with deuterated TMAO being taken up directly into the bloodstream. In batch-culture fermentation systems inoculated with human faeces, growth of Enterobacteriaceae was stimulated in the presence of TMAO. Human-derived faecal and caecal bacteria (n = 66 isolates) were screened on solid and liquid media for their ability to use TMAO, with metabolites in spent media analysed by 1H-NMR. As with the in vitro fermentation experiments, TMAO stimulated the growth of Enterobacteriaceae; these bacteria produced most TMA from TMAO. Caecal/small intestinal isolates of Escherichia coli produced more TMA from TMAO than their faecal counterparts. Lactic acid bacteria produced increased amounts of lactate when grown in the presence of TMAO but did not produce large amounts of TMA. Clostridia (sensu stricto), bifidobacteria, and coriobacteria were significantly correlated with TMA production in the mixed fermentation system but did not produce notable quantities of TMA from TMAO in pure culture. CONCLUSIONS Reduction of TMAO by the gut microbiota (predominantly Enterobacteriaceae) to TMA followed by host uptake of TMA into the bloodstream from the intestine and its conversion back to TMAO by host hepatic enzymes is an example of metabolic retroconversion. TMAO influences microbial metabolism depending on isolation source and taxon of gut bacterium. Correlation of metabolomic and abundance data from mixed microbiota fermentation systems did not give a true picture of which members of the gut microbiota were responsible for converting TMAO to TMA; only by supplementing the study with pure culture work and additional metabolomics was it possible to increase our understanding of TMAO bioconversions by the human gut microbiota.
Collapse
Affiliation(s)
- Lesley Hoyles
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Maria L. Jiménez-Pranteda
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Faculty of Life Sciences, The University of Reading, Whiteknights Campus, Reading, RG6 6UR UK
| | - Julien Chilloux
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Francois Brial
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France
| | - Antonis Myridakis
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Thomas Aranias
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France
| | - Christophe Magnan
- Sorbonne Paris Cité, Université Denis Diderot, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, 75205 Paris, France
| | - Glenn R. Gibson
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Faculty of Life Sciences, The University of Reading, Whiteknights Campus, Reading, RG6 6UR UK
| | - Jeremy D. Sanderson
- Department of Gastroenterology, Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jeremy K. Nicholson
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Dominique Gauguier
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France
| | - Anne L. McCartney
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Faculty of Life Sciences, The University of Reading, Whiteknights Campus, Reading, RG6 6UR UK
| | - Marc-Emmanuel Dumas
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| |
Collapse
|
30
|
Abstract
Given its pivotal role in fatty acid oxidation and energy metabolism, l-carnitine has been investigated as ergogenic aid for enhancing exercise capacity in the healthy athletic population. Early research indicates its beneficial effects on acute physical performance, such as increased maximum oxygen consumption and higher power output. Later studies point to the positive impact of dietary supplementation with l-carnitine on the recovery process after exercise. It is demonstrated that l-carnitine alleviates muscle injury and reduces markers of cellular damage and free radical formation accompanied by attenuation of muscle soreness. The supplementation-based increase in serum and muscle l-carnitine contents is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function thereby reducing hypoxia-induced cellular and biochemical disruptions. Studies in older adults further showed that l-carnitine intake can lead to increased muscle mass accompanied by a decrease in body weight and reduced physical and mental fatigue. Based on current animal studies, a role of l-carnitine in the prevention of age-associated muscle protein degradation and regulation of mitochondrial homeostasis is suggested.
Collapse
Affiliation(s)
- Roger Fielding
- Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Linda Riede
- analyze & realize GmbH, Waldseeweg 6, 13467 Berlin, Germany.
| | - James P Lugo
- Lonza Inc., 90 Boroline Road, Allendale, NJ 07401, USA.
| | | |
Collapse
|
31
|
Romano KA, Martinez-Del Campo A, Kasahara K, Chittim CL, Vivas EI, Amador-Noguez D, Balskus EP, Rey FE. Metabolic, Epigenetic, and Transgenerational Effects of Gut Bacterial Choline Consumption. Cell Host Microbe 2017; 22:279-290.e7. [PMID: 28844887 DOI: 10.1016/j.chom.2017.07.021] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/13/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023]
Abstract
Choline is an essential nutrient and methyl donor required for epigenetic regulation. Here, we assessed the impact of gut microbial choline metabolism on bacterial fitness and host biology by engineering a microbial community that lacks a single choline-utilizing enzyme. Our results indicate that choline-utilizing bacteria compete with the host for this nutrient, significantly impacting plasma and hepatic levels of methyl-donor metabolites and recapitulating biochemical signatures of choline deficiency. Mice harboring high levels of choline-consuming bacteria showed increased susceptibility to metabolic disease in the context of a high-fat diet. Furthermore, bacterially induced reduction of methyl-donor availability influenced global DNA methylation patterns in both adult mice and their offspring and engendered behavioral alterations. Our results reveal an underappreciated effect of bacterial choline metabolism on host metabolism, epigenetics, and behavior. This work suggests that interpersonal differences in microbial metabolism should be considered when determining optimal nutrient intake requirements.
Collapse
Affiliation(s)
- Kymberleigh A Romano
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ana Martinez-Del Campo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Carina L Chittim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
32
|
Quantification of glycine betaine, choline and trimethylamine N-oxide in seawater particulates: Minimisation of seawater associated ion suppression. Anal Chim Acta 2016; 938:114-22. [PMID: 27619093 DOI: 10.1016/j.aca.2016.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/11/2016] [Accepted: 07/17/2016] [Indexed: 11/22/2022]
Abstract
A liquid chromatography/mass spectrometry (LC/MS, electrospray ionisation) method has been developed for the quantification of nitrogenous osmolytes (N-osmolytes) in the particulate fraction of natural water samples. Full method validation demonstrates the validity of the method for measuring glycine betaine (GBT), choline and trimethylamine N-oxide (TMAO) in particulates from seawater. Limits of detection were calculated as 3.5, 1.2 and 5.9 pg injected onto column (equivalent to 1.5, 0.6 and 3.9 nmol per litre) for GBT, choline and TMAO respectively. Precision of the method was typically 3% for both GBT and choline and 6% for TMAO. Collection of the particulate fraction of natural samples was achieved via in-line filtration. Resulting chromatography and method sensitivity was assessed and compared for the use of both glass fibre and polycarbonate filters during sample collection. Ion suppression was shown to be a significant cause of reduced instrument response to N-osmolytes and was associated with the presence of seawater in the sample matrix.
Collapse
|