1
|
Gohar D, Põldmaa K, Pent M, Rahimlou S, Cerk K, Ng DY, Hildebrand F, Bahram M. Genomic evidence of symbiotic adaptations in fungus-associated bacteria. iScience 2025; 28:112253. [PMID: 40290873 PMCID: PMC12023794 DOI: 10.1016/j.isci.2025.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Fungi harbor diverse bacteria that engage in various relationships. While these relationships potentially influence fungal functioning, their underlying genetic mechanisms remain unexplored. Here, we aimed to elucidate the key genomic features of fungus-associated bacteria (FaB) by comparing 163 FaB genomes to 1,048 bacterial genomes from other hosts and habitats. Our analyses revealed several distinctive genomic features of FaB. We found that FaB are enriched in carbohydrate transport/metabolism- and motility-related genes, suggesting an adaptation for utilizing complex fungal carbon sources. They are also enriched in genes targeting fungal biomass, likely reflecting their role in recycling and rebuilding fungal structures. Additionally, FaB associated with plant-mutualistic fungi possess a wider array of carbon-acquisition enzymes specific to fungal and plant substrates compared to those residing with saprotrophic fungi. These unique genomic features highlight FaB' potential as key players in fungal nutrient acquisition and decomposition, ultimately influencing plant-fungal symbiosis and ecosystem functioning.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Klara Cerk
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Duncan Y.K. Ng
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Mo Bahram
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|
2
|
Baltrus DA, Carter M, Clark M, Smith C, Spraker J, Inderbitzin P, Arnold AE. Luteibacter mycovicinus sp. nov., a yellow-pigmented gammaproteobacterium found as an endohyphal symbiont of endophytic Ascomycota. Int J Syst Evol Microbiol 2024; 74:006240. [PMID: 38695275 PMCID: PMC11165876 DOI: 10.1099/ijsem.0.006240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024] Open
Abstract
We isolated and described a yellow-pigmented strain of bacteria (strain 9143T), originally characterized as an endohyphal inhabitant of an endophytic fungus in the Ascomycota. Although the full-length sequence of its 16S rRNA gene displays 99 % similarity to Luteibacter pinisoli, genomic hybridization demonstrated <30 % genomic similarity between 9143T and its closest named relatives, further supported by average nucleotide identity results. This and related endohyphal strains form a well-supported clade separate from L. pinisoli and other validly named species including the most closely related Luteibacter rhizovicinus. The name Luteibacter mycovicinus sp. nov. is proposed, with type strain 9143T (isolate DBL433), for which a genome has been sequenced and is publicly available from the American Type Culture Collection (ATCC TSD-257T) and from the Leibniz Institute DSMZ (DSM 112764T). The type strain reliably forms yellow colonies across diverse media and growth conditions (lysogeny broth agar, King's Medium B, potato dextrose agar, trypticase soy agar and Reasoner's 2A (R2A) agar). It forms colonies readily at 27 °C on agar with a pH of 6-8, and on salt (NaCl) concentrations up to 2 %. It lacks the ability to utilize sulphate as a sulphur source and thus only forms colonies on minimal media if supplemented with alternative sulphur sources. It is catalase-positive and oxidase-negative. Although it exhibits a single polar flagellum, motility was only clearly visible on R2A agar. Its host range and close relatives, which share the endohyphal lifestyle, are discussed.
Collapse
Affiliation(s)
- David A. Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Morgan Carter
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Meara Clark
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Caitlin Smith
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Joseph Spraker
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | | | - A. Elizabeth Arnold
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Pilgrim J. Comparative genomics of a novel Erwinia species associated with the Highland midge ( Culicoides impunctatus). Microb Genom 2024; 10. [PMID: 38630610 DOI: 10.1099/mgen.0.001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Zhang P, Huguet-Tapia J, Peng Z, Liu S, Obasa K, Block AK, White FF. Genome analysis and hyphal movement characterization of the hitchhiker endohyphal Enterobacter sp. from Rhizoctonia solani. Appl Environ Microbiol 2024; 90:e0224523. [PMID: 38319098 PMCID: PMC10952491 DOI: 10.1128/aem.02245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.
Collapse
Affiliation(s)
- Peiqi Zhang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jose Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Ken Obasa
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- High Plains Plant Disease Diagnostic Lab, Texas A&M AgriLife Extension Service, Amarillo, Texas, USA
| | - Anna K. Block
- Chemistry Research Unit, US Department of Agriculture-Agricultural Research Service, Gainesville, Florida, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Liu XL, Zhao H, Wang YX, Liu XY, Jiang Y, Tao MF, Liu XY. Detecting and characterizing new endofungal bacteria in new hosts: Pandoraea sputorum and Mycetohabitans endofungorum in Rhizopus arrhizus. Front Microbiol 2024; 15:1346252. [PMID: 38486702 PMCID: PMC10939042 DOI: 10.3389/fmicb.2024.1346252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
The fungus Rhizopus arrhizus (=R. oryzae) is commonly saprotrophic, exhibiting a nature of decomposing organic matter. Additionally, it serves as a crucial starter in food fermentation and can act as a pathogen causing mucormycosis in humans and animals. In this study, two distinct endofungal bacteria (EFBs), associated with individual strains of R. arrhizus, were identified using live/dead staining, fluorescence in situ hybridization, transmission electron microscopy, and 16S rDNA sequencing. The roles of these bacteria were elucidated through antibiotic treatment, pure cultivation, and comparative genomics. The bacterial endosymbionts, Pandoraea sputorum EFB03792 and Mycetohabitans endofungorum EFB03829, were purified from the host fungal strains R. arrhizus XY03792 and XY03829, respectively. Notably, this study marks the first report of Pandoraea as an EFB genus. Compared to its free-living counterparts, P. sputorum EFB03792 exhibited 28 specific virulence factor-related genes, six specific CE10 family genes, and 74 genes associated with type III secretion system (T3SS), emphasizing its pivotal role in invasion and colonization. Furthermore, this study introduces R. arrhizus as a new host for EFB M. endofungorum, with EFB contributing to host sporulation. Despite a visibly reduced genome, M. endofungorum EFB03829 displayed a substantial number of virulence factor-related genes, CE10 family genes, T3SS genes, mobile elements, and significant gene rearrangement. While EFBs have been previously identified in R. arrhizus, their toxin-producing potential in food fermentation has not been explored until this study. The discovery of these two new EFBs highlights their potential for toxin production within R. arrhizus, laying the groundwork for identifying suitable R. arrhizus strains for fermentation processes.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Heng Zhao
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yi-Xin Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin-Ye Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yang Jiang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Meng-Fei Tao
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Kelliher JM, Robinson AJ, Longley R, Johnson LYD, Hanson BT, Morales DP, Cailleau G, Junier P, Bonito G, Chain PSG. The endohyphal microbiome: current progress and challenges for scaling down integrative multi-omic microbiome research. MICROBIOME 2023; 11:192. [PMID: 37626434 PMCID: PMC10463477 DOI: 10.1186/s40168-023-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
As microbiome research has progressed, it has become clear that most, if not all, eukaryotic organisms are hosts to microbiomes composed of prokaryotes, other eukaryotes, and viruses. Fungi have only recently been considered holobionts with their own microbiomes, as filamentous fungi have been found to harbor bacteria (including cyanobacteria), mycoviruses, other fungi, and whole algal cells within their hyphae. Constituents of this complex endohyphal microbiome have been interrogated using multi-omic approaches. However, a lack of tools, techniques, and standardization for integrative multi-omics for small-scale microbiomes (e.g., intracellular microbiomes) has limited progress towards investigating and understanding the total diversity of the endohyphal microbiome and its functional impacts on fungal hosts. Understanding microbiome impacts on fungal hosts will advance explorations of how "microbiomes within microbiomes" affect broader microbial community dynamics and ecological functions. Progress to date as well as ongoing challenges of performing integrative multi-omics on the endohyphal microbiome is discussed herein. Addressing the challenges associated with the sample extraction, sample preparation, multi-omic data generation, and multi-omic data analysis and integration will help advance current knowledge of the endohyphal microbiome and provide a road map for shrinking microbiome investigations to smaller scales. Video Abstract.
Collapse
Affiliation(s)
| | | | - Reid Longley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Transcriptional Profiles of a Foliar Fungal Endophyte ( Pestalotiopsis, Ascomycota) and Its Bacterial Symbiont ( Luteibacter, Gammaproteobacteria) Reveal Sulfur Exchange and Growth Regulation during Early Phases of Symbiotic Interaction. mSystems 2022; 7:e0009122. [PMID: 35293790 PMCID: PMC9040847 DOI: 10.1128/msystems.00091-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiosis with bacteria is widespread among eukaryotes, including fungi. Bacteria that live within fungal mycelia (endohyphal bacteria) occur in many plant-associated fungi, including diverse Mucoromycota and Dikarya. Pestalotiopsis sp. strain 9143 is a filamentous ascomycete isolated originally as a foliar endophyte of Platycladus orientalis (Cupressaceae). It is infected naturally with the endohyphal bacterium Luteibacter sp. strain 9143, which influences auxin and enzyme production by its fungal host. Previous studies have used transcriptomics to examine similar symbioses between endohyphal bacteria and root-associated fungi such as arbuscular mycorrhizal fungi and plant pathogens. However, currently there are no gene expression studies of endohyphal bacteria of Ascomycota, the most species-rich fungal phylum. To begin to understand such symbioses, we developed methods for assessing gene expression by Pestalotiopsis sp. and Luteibacter sp. when grown in coculture and when each was grown axenically. Our assays showed that the density of Luteibacter sp. in coculture was greater than in axenic culture, but the opposite was true for Pestalotiopsis sp. Dual-transcriptome sequencing (RNA-seq) data demonstrate that growing in coculture modulates developmental and metabolic processes in both the fungus and bacterium, potentially through changes in the balance of organic sulfur via methionine acquisition. Our analyses also suggest an unexpected, potential role of the bacterial type VI secretion system in symbiosis establishment, expanding current understanding of the scope and dynamics of fungal-bacterial symbioses. IMPORTANCE Interactions between microbes and their hosts have important outcomes for host and environmental health. Foliar fungal endophytes that infect healthy plants can harbor facultative endosymbionts called endohyphal bacteria, which can influence the outcome of plant-fungus interactions. These bacterial-fungal interactions can be influential but are poorly understood, particularly from a transcriptome perspective. Here, we report on a comparative, dual-RNA-seq study examining the gene expression patterns of a foliar fungal endophyte and a facultative endohyphal bacterium when cultured together versus separately. Our findings support a role for the fungus in providing organic sulfur to the bacterium, potentially through methionine acquisition, and the potential involvement of a bacterial type VI secretion system in symbiosis establishment. This work adds to the growing body of literature characterizing endohyphal bacterial-fungal interactions, with a focus on a model facultative bacterial-fungal symbiosis in two species-rich lineages, the Ascomycota and Proteobacteria.
Collapse
|
8
|
Ravi S, Sevugapperumal N, Nallusamy S, Shanmugam H, Mathiyazhagan K, Rangasamy A, Akkanna Subbiah K, Varagur Ganesan M. Differential bacterial endophytome in Foc-resistant banana cultivar displays enhanced antagonistic activity against Fusarium oxysporum f.sp. cubense (Foc). Environ Microbiol 2021; 24:2701-2715. [PMID: 34622537 DOI: 10.1111/1462-2920.15800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
Diverse endophytes with multiple functions exist in different banana cultivars. However, the diversity of cultivable bacterial endophytome that contributes to antifungal activity against Fusarium oxysporum f.sp. cubense (Foc) in resistant and susceptible banana cultivars is mostly unknown. In the present study, we isolated bacterial endophytes from resistant Yengambi KM5 (AAA) and susceptible banana cultivar Ney Poovan (AB) to determine the diversity of cultivable bacterial endophytes. Our study revealed the presence of 56 cultivable bacterial endophytes and 6 nectar-associated bacteria in YKM5 and 31 cultivable bacterial endophytes in Ney Poovan. The identified cultivable bacterial genera in YKM5 included Alcaligenes, Arthrobacter, Azotobacter, Acinetobacter, Agrobacterium, Bacillus, Brucella, Brevundimonas, Brachybacterium, Beijerinckia, Klebsiella, Leclercia, Lysinibacillus, Myroides, Ochrobactrum, Pseudomonas, Rhizobium, Stenotrophomonas, Serratia, and Verticiella. In Ney Poovan, the cultivable endophytic bacterial genera present were Agrobacterium, Bacillus, Bradyrhizobium, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Rhizobium, and Sphingobium. Thus, the composition and diversity of cultivable endophytic bacterial genera were higher in Foc-resistant YKM5. The antifungal efficacy of bacterial endophytes Brachybacterium paraconglomeratum YEBPT2 (65.5%), Brucella melitensis YEBPS3 (63.3%), Bacillus velezensis YEBBR6 (63.3%), and nectar-associated Bacillus albus YEBN2 (61.1%) from YKM5 showed the highest antifungal activity against Foc, compared with the antifungal activity of endophytes from the susceptible cultivar.
Collapse
Affiliation(s)
- Saravanan Ravi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Nakkeeran Sevugapperumal
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Saranya Nallusamy
- Department of Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Haripriya Shanmugam
- Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Kavino Mathiyazhagan
- Department of Fruit Crops, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Anandham Rangasamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Malathi Varagur Ganesan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
9
|
Robinson AJ, House GL, Morales DP, Kelliher JM, Gallegos-Graves LV, LeBrun ES, Davenport KW, Palmieri F, Lohberger A, Bregnard D, Estoppey A, Buffi M, Paul C, Junier T, Hervé V, Cailleau G, Lupini S, Nguyen HN, Zheng AO, Gimenes LJ, Bindschedller S, Rodrigues DF, Werner JH, Young JD, Junier P, Chain PSG. Widespread bacterial diversity within the bacteriome of fungi. Commun Biol 2021; 4:1168. [PMID: 34621007 PMCID: PMC8497576 DOI: 10.1038/s42003-021-02693-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Knowledge of associations between fungal hosts and their bacterial associates has steadily grown in recent years as the number and diversity of examinations have increased, but current knowledge is predominantly limited to a small number of fungal taxa and bacterial partners. Here, we screened for potential bacterial associates in over 700 phylogenetically diverse fungal isolates, representing 366 genera, or a tenfold increase compared with previously examined fungal genera, including isolates from several previously unexplored phyla. Both a 16 S rDNA-based exploration of fungal isolates from four distinct culture collections spanning North America, South America and Europe, and a bioinformatic screen for bacterial-specific sequences within fungal genome sequencing projects, revealed that a surprisingly diverse array of bacterial associates are frequently found in otherwise axenic fungal cultures. We demonstrate that bacterial associations with diverse fungal hosts appear to be the rule, rather than the exception, and deserve increased consideration in microbiome studies and in examinations of microbial interactions.
Collapse
Affiliation(s)
- Aaron J Robinson
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Geoffrey L House
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Demosthenes P Morales
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Julia M Kelliher
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - La Verne Gallegos-Graves
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Erick S LeBrun
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Karen W Davenport
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Andrea Lohberger
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Danaé Bregnard
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Matteo Buffi
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Christophe Paul
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Simone Lupini
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Hang N Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Amy O Zheng
- Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235-1604, USA
| | - Luciana Jandelli Gimenes
- Center for Environmental Research and Training, University of São Paulo, Cubatão, São Paulo, 11.540 -990, Brazil
| | - Saskia Bindschedller
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - James H Werner
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235-1604, USA
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
10
|
Muller LAH, Ballhausen MB, Andrade-Linares DR, Pinek L, Golubeva P, Rillig MC. Fungus-bacterium associations are widespread in fungal cultures isolated from a semi-arid natural grassland in Germany. FEMS Microbiol Ecol 2021; 97:6228834. [PMID: 33861336 DOI: 10.1093/femsec/fiab059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
We report on a study that aimed at establishing a large soil-fungal culture collection spanning a wide taxonomic diversity and systematically screening the collection for bacterial associations. Fungal cultures were isolated from soil samples obtained from a natural grassland in eastern Germany and bacterial associations were assessed by PCR-amplification and sequencing of bacterial 16S rRNA. In addition, intraspecies genetic diversities of a subset of the isolated species were estimated by double-digest restriction associated DNA sequencing. A total of 688 fungal cultures, representing at least 106 fungal species from 36 different families, were obtained and even though clonal isolates were identified in almost all fungal species subjected to ddRAD-seq, relatively high genetic diversities could be observed in some of the isolated species. A total of 69% of the fungal isolates in our collection were found to be associated with bacteria and the most commonly identified bacterial genera were Pelomonas, Enterobacter and Burkholderia. Our results indicate that bacterial associations commonly occur in soil fungi, even if antibiotics are being applied during the isolation process, and provide a basis for the use of our culture collection in ecological experiments that want to acknowledge the importance of intraspecies genetic diversity.
Collapse
Affiliation(s)
- L A H Muller
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - M-B Ballhausen
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - D R Andrade-Linares
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - L Pinek
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - P Golubeva
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - M C Rillig
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| |
Collapse
|
11
|
Aghdam SA, Brown AMV. Deep learning approaches for natural product discovery from plant endophytic microbiomes. ENVIRONMENTAL MICROBIOME 2021; 16:6. [PMID: 33758794 PMCID: PMC7972023 DOI: 10.1186/s40793-021-00375-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 05/10/2023]
Abstract
Plant microbiomes are not only diverse, but also appear to host a vast pool of secondary metabolites holding great promise for bioactive natural products and drug discovery. Yet, most microbes within plants appear to be uncultivable, and for those that can be cultivated, their metabolic potential lies largely hidden through regulatory silencing of biosynthetic genes. The recent explosion of powerful interdisciplinary approaches, including multi-omics methods to address multi-trophic interactions and artificial intelligence-based computational approaches to infer distribution of function, together present a paradigm shift in high-throughput approaches to natural product discovery from plant-associated microbes. Arguably, the key to characterizing and harnessing this biochemical capacity depends on a novel, systematic approach to characterize the triggers that turn on secondary metabolite biosynthesis through molecular or genetic signals from the host plant, members of the rich 'in planta' community, or from the environment. This review explores breakthrough approaches for natural product discovery from plant microbiomes, emphasizing the promise of deep learning as a tool for endophyte bioprospecting, endophyte biochemical novelty prediction, and endophyte regulatory control. It concludes with a proposed pipeline to harness global databases (genomic, metabolomic, regulomic, and chemical) to uncover and unsilence desirable natural products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40793-021-00375-0.
Collapse
Affiliation(s)
- Shiva Abdollahi Aghdam
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| | - Amanda May Vivian Brown
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| |
Collapse
|
12
|
|
13
|
Steffan BN, Venkatesh N, Keller NP. Let's Get Physical: Bacterial-Fungal Interactions and Their Consequences in Agriculture and Health. J Fungi (Basel) 2020; 6:E243. [PMID: 33114069 PMCID: PMC7712096 DOI: 10.3390/jof6040243] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Fungi serve as a biological scaffold for bacterial attachment. In some specialized interactions, the bacteria will invade the fungal host, which in turn provides protection and nutrients for the bacteria. Mechanisms of the physical interactions between fungi and bacteria have been studied in both clinical and agricultural settings, as discussed in this review. Fungi and bacteria that are a part of these dynamic interactions can have altered growth and development as well as changes in microbial fitness as it pertains to antibiotic resistance, nutrient acquisition, and microbial dispersal. Consequences of these interactions are not just limited to the respective microorganisms, but also have major impacts in the health of humans and plants alike. Examining the mechanisms behind the physical interactions of fungi and bacteria will provide us with an understanding of multi-kingdom community processes and allow for the development of therapeutic approaches for disease in both ecological settings.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.N.S.); (N.V.)
| | - Nandhitha Venkatesh
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.N.S.); (N.V.)
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.N.S.); (N.V.)
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Bastías DA, Johnson LJ, Card SD. Symbiotic bacteria of plant-associated fungi: friends or foes? CURRENT OPINION IN PLANT BIOLOGY 2020; 56:1-8. [PMID: 31786411 DOI: 10.1016/j.pbi.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Many bacteria form symbiotic associations with plant-associated fungi. The effects of these symbionts on host fitness usually depend on symbiont or host genotypes and environmental conditions. However, bacterial endosymbionts, that is those living within fungal cells, may positively regulate host performance as their survival is often heavily dependent on host fitness. Contrary to this, bacteria that establish ectosymbiotic associations with fungi, that is those located on the hyphal surface or in close vicinity to fungal mycelia, may not have an apparent net effect on fungal performance due to the low level of fitness dependency on their host. Our analysis supports the hypothesis that endosymbiotic bacteria of fungi are beneficial symbionts, and that effects of ectosymbiotic bacteria on fungal performance depends on the bacterial type involved in the interaction (e.g. helper versus pathogen of fungi). Ecological scenarios, where the presence of beneficial bacterial endosymbionts of fungi could be compromised, are also discussed.
Collapse
Affiliation(s)
- Daniel A Bastías
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.
| | - Linda J Johnson
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
15
|
John MS, Nagoth JA, Ramasamy KP, Ballarini P, Mozzicafreddo M, Mancini A, Telatin A, Liò P, Giuli G, Natalello A, Miceli C, Pucciarelli S. Horizontal gene transfer and silver nanoparticles production in a new Marinomonas strain isolated from the Antarctic psychrophilic ciliate Euplotes focardii. Sci Rep 2020; 10:10218. [PMID: 32576860 PMCID: PMC7311414 DOI: 10.1038/s41598-020-66878-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/23/2020] [Indexed: 01/23/2023] Open
Abstract
We isolated a novel bacterial strain from a prokaryotic consortium associated to the psychrophilic marine ciliate Euplotes focardii, endemic of the Antarctic coastal seawater. The 16S rDNA sequencing and the phylogenetic analysis revealed the close evolutionary relationship to the Antarctic marine bacterium Marinomonas sp. BSw10506 and the sub antarctic Marinomonas polaris. We named this new strain Marinomonas sp. ef1. The optimal growth temperature in LB medium was 22 °C. Whole genome sequencing and analysis showed a reduced gene loss limited to regions encoding for transposases. Additionally, five genomic islands, e.g. DNA fragments that facilitate horizontal gene transfer phenomena, were identified. Two open reading frames predicted from the genomic islands coded for enzymes belonging to the Nitro-FMN-reductase superfamily. One of these, the putative NAD(P)H nitroreductase YfkO, has been reported to be involved in the bioreduction of silver (Ag) ions and the production of silver nanoparticles (AgNPs). After the Marinomonas sp. ef1 biomass incubation with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. The AgNPs were relatively small in size (50 nm) and had a strong antimicrobial activity against twelve common nosocomial pathogenic microorganisms including Staphylococcus aureus and two Candida strains. To our knowledge, this is the first report of AgNPs biosynthesis by a Marinomonas strain. This biosynthesis may play a dual role in detoxification from silver nitrate and protection from pathogens for the bacterium and potentially for the associated ciliate. Biosynthetic AgNPs also represent a promising alternative to conventional antibiotics against common pathogens.
Collapse
Affiliation(s)
- Maria Sindhura John
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Joseph Amruthraj Nagoth
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Kesava Priyan Ramasamy
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Patrizia Ballarini
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Matteo Mozzicafreddo
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Alessio Mancini
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Andrea Telatin
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Program, Norwich Research Park, Norwich, UK
| | - Pietro Liò
- Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge, UK
| | - Gabriele Giuli
- School of Science and Technology, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Cristina Miceli
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy
| | - Sandra Pucciarelli
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino, Italy.
| |
Collapse
|
16
|
Abstract
Diverse strains of Luteibacter (Gammaproteobacteria) have been isolated from a variety of environments, most frequently in association with both plants and fungi. Motivated by the lack of genomic information for strains throughout the genus Luteibacter, we report here a complete genome sequence for Luteibacter pinisoli strain MAH-14. Diverse strains of Luteibacter (Gammaproteobacteria) have been isolated from a variety of environments, most frequently in association with both plants and fungi. Motivated by the lack of genomic information for strains throughout the genus Luteibacter, we report here a complete genome sequence for Luteibacter pinisoli strain MAH-14.
Collapse
|
17
|
Guo Y, Matsuoka Y, Miura T, Nishizawa T, Ohta H, Narisawa K. Complete genome sequence of Agrobacterium pusense VsBac-Y9, a bacterial symbiont of the dark septate endophytic fungus Veronaeopsis simplex Y34 with potential for improving fungal colonization in roots. J Biotechnol 2018; 284:31-36. [PMID: 30077583 DOI: 10.1016/j.jbiotec.2018.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022]
Abstract
A Rhizobium-related bacterium (Rhizobium sp. VsBac-Y9) is a symbiont living with the dark septate endophytic (DSE) fungus Veronaeopsis simplex Y34. Co-inoculation of Rhizobium sp. VsBac-Y9 with V. simplex Y34 improves the fungal colonization of tomato roots, resulting in a significant increase in aboveground biomass. This study sequenced the complete genome of this V. simplex-helper bacterium using the PacBio and Illumina MiSeq platforms. Hybrid assembly using SPAdes outputted a circular chromosome, a linear chromid, and a circular plasmid for a total genome 5,321,211 bp in size with a G + C content of 59.2%. Analysis of concatenated housekeeping genes (atpD-dnaK-groEL-lepA-recA-rpoB-thrE) and calculation of average nucleotide identity, showed that VsBac-Y9 was affiliated with the species Agrobacterium pusense (syn. Rhizobium pusense). Genome analysis revealed that A. pusense VsBac-Y9 contains a series of genes responsible for the host interactions with both fungus and plant. Such genomic information will provide new insights into developing co-inoculants of endophytic fungus and its symbiotic bacterium in future agricultural innovation.
Collapse
Affiliation(s)
- Yong Guo
- College of Agriculture, Ibaraki University, Ibaraki, Japan.
| | - Yuuto Matsuoka
- Graduate School of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan
| | - Tomoyasu Nishizawa
- College of Agriculture, Ibaraki University, Ibaraki, Japan; Graduate School of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Hiroyuki Ohta
- College of Agriculture, Ibaraki University, Ibaraki, Japan; Graduate School of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Kazuhiko Narisawa
- College of Agriculture, Ibaraki University, Ibaraki, Japan; Graduate School of Agriculture, Ibaraki University, Ibaraki, Japan.
| |
Collapse
|
18
|
Unveiling Concealed Functions of Endosymbiotic Bacteria Harbored in the Ascomycete Stachylidium bicolor. Appl Environ Microbiol 2018; 84:AEM.00660-18. [PMID: 29858203 DOI: 10.1128/aem.00660-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Among the plethora of unusual secondary metabolites isolated from Stachylidium bicolor are the tetrapeptidic endolides A and B. Both tetrapeptides contain 3-(3-furyl)-alanine residues, previously proposed to originate from bacterial metabolism. Inspired by this observation, we aimed to identify the presence of endosymbiotic bacteria in S. bicolor and to discover the true producer of the endolides. The endobacterium Burkholderia contaminans was initially detected by 16S rRNA gene amplicon sequencing from the fungal metagenome and was subsequently isolated. It was confirmed that the tetrapeptides were produced by the axenic B. contaminans only when in latency. Fungal colonies unable to produce conidia and the tetrapeptides were isolated and confirmed to be free of B. contaminans A second endosymbiont identified as related to Sphingomonas leidyi was also isolated. In situ imaging of the mycelium supported an endosymbiotic relationship between S. bicolor and the two endobacteria. Besides the technical novelty, our in situ analyses revealed that the two endobacteria are compartmentalized in defined fungal cells, prevailing mostly in latency when in symbiosis. Within the emerging field of intracellular bacterial symbioses, fungi are the least studied eukaryotic hosts. Our study further supports the Fungi as a valuable model for understanding endobacterial symbioses in eukaryotes.IMPORTANCE The discovery of two bacterial endosymbionts harbored in Stachylidium bicolor mycelium, Burkholderia contaminans and Sphingomonas leidyi, is described here. Production of tetrapeptides inside the mycelium is ensured by B. contaminans, and fungal sporulation is influenced by the endosymbionts. Here, we illustrate the bacterial endosymbiotic origin of secondary metabolites in an Ascomycota host.
Collapse
|
19
|
Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan WY, van Zyl E, Blom J, Venter SN. Mixta gen. nov., a new genus in the Erwiniaceae. Int J Syst Evol Microbiol 2018; 68:1396-1407. [DOI: 10.1099/ijsem.0.002540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Juanita R. Avontuur
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Biotechnology Platform (BTP), Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Elritha van Zyl
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N. Venter
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Guo Y, Matsuoka Y, Nishizawa T, Ohta H, Narisawa K. Effects of Rhizobium Species Living with the Dark Septate Endophytic Fungus Veronaeopsis simplex on Organic Substrate Utilization by the Host. Microbes Environ 2018; 33:102-106. [PMID: 29459501 PMCID: PMC5877336 DOI: 10.1264/jsme2.me17144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/13/2017] [Indexed: 01/04/2023] Open
Abstract
Bacteria harbored in/on the hyphae of the dark septate endophyte, Veronaeopsis simplex Y34, were identified as a single Rhizobium species by molecular analyses of bacterial 16S rRNA genes, and were successfully isolated from the endophyte. The Rhizobium-cured fungus was prepared thoroughly by an antibiotic treatment, thereby allowing an examination of their effects on organic substrate utilization. Assays with Biolog® FF microplates revealed that the respiration potential for 52.6% of the tested compounds were significantly different between Rhizobium-harboring and -cured fungal hosts, indicating that organic substrate utilization by V. simplex Y34 was significantly influenced by the presence of the associated Rhizobium sp. VsBac-Y9.
Collapse
Affiliation(s)
- Yong Guo
- Ibaraki University College of AgricultureIbaraki, Japan, 3–21–1 Chuou, Ami, Ibaraki 300–0393Japan
| | - Yuuto Matsuoka
- Graduate School of Agriculture, Ibaraki UniversityIbaraki, Japan, 3–21–1 Chuou, Ami, Ibaraki 300–0393Japan
| | - Tomoyasu Nishizawa
- Ibaraki University College of AgricultureIbaraki, Japan, 3–21–1 Chuou, Ami, Ibaraki 300–0393Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
| | - Hiroyuki Ohta
- Ibaraki University College of AgricultureIbaraki, Japan, 3–21–1 Chuou, Ami, Ibaraki 300–0393Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
| | - Kazuhiko Narisawa
- Ibaraki University College of AgricultureIbaraki, Japan, 3–21–1 Chuou, Ami, Ibaraki 300–0393Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
| |
Collapse
|
21
|
Borruso L, Salomone-Stagni M, Polsinelli I, Schmitt AO, Benini S. Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes. Arch Microbiol 2017; 199:1335-1344. [PMID: 28695265 PMCID: PMC5663808 DOI: 10.1007/s00203-017-1409-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Marco Salomone-Stagni
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Ivan Polsinelli
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Armin Otto Schmitt
- Department of Nutztierwissenschaften, Breeding Informatics, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
22
|
Araldi-Brondolo SJ, Spraker J, Shaffer JP, Woytenko EH, Baltrus DA, Gallery RE, Arnold AE. Bacterial Endosymbionts: Master Modulators of Fungal Phenotypes. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0056-2016. [PMID: 28936944 PMCID: PMC11687546 DOI: 10.1128/microbiolspec.funk-0056-2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 01/26/2023] Open
Abstract
The ecological modes of fungi are shaped not only by their intrinsic features and the environment in which they occur, but also by their interactions with diverse microbes. Here we explore the ecological and genomic features of diverse bacterial endosymbionts-endohyphal bacteria-that together are emerging as major determinants of fungal phenotypes and plant-fungi interactions. We first provide a historical perspective on the study of endohyphal bacteria. We then propose a functional classification of three main groups, providing an overview of their genomic, phylogenetic, and ecological traits. Last, we explore frontiers in the study of endohyphal bacteria, with special attention to those facultative and horizontally transmitted bacteria that associate with some of the most diverse lineages of fungi. Overall, our aim is to synthesize the rich literature from nearly 50 years of studies on endohyphal bacteria as a means to highlight potential applications and new research directions.
Collapse
Affiliation(s)
| | | | | | - Emma H Woytenko
- School of Plant Sciences
- Graduate Interdisciplinary Program in Genetics
| | | | | | - A Elizabeth Arnold
- School of Plant Sciences
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
23
|
Partida‐Martínez LP. The fungal holobiont: Evidence from early diverging fungi. Environ Microbiol 2017; 19:2919-2923. [DOI: 10.1111/1462-2920.13731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Laila P. Partida‐Martínez
- Departamento de Ingeniería GenéticaCentro de Investigación y de Estudios Avanzados del IPNIrapuato 36821, Gto México
| |
Collapse
|
24
|
Shaffer JP, U'Ren JM, Gallery RE, Baltrus DA, Arnold AE. An Endohyphal Bacterium ( Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum ( F. solani Species Complex, Nectriaceae). Front Microbiol 2017; 8:350. [PMID: 28382021 PMCID: PMC5361657 DOI: 10.3389/fmicb.2017.00350] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/20/2017] [Indexed: 01/12/2023] Open
Abstract
Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions.
Collapse
Affiliation(s)
| | - Jana M U'Ren
- School of Plant Sciences, University of ArizonaTucson, AZ, USA; Department of Agricultural and Biosystems Engineering, University of ArizonaTucson, AZ, USA
| | - Rachel E Gallery
- School of Natural Resources and the Environment, University of ArizonaTucson, AZ, USA; Department of Ecology and Evolutionary Biology, University of ArizonaTucson, AZ, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona Tucson, AZ, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of ArizonaTucson, AZ, USA; Department of Ecology and Evolutionary Biology, University of ArizonaTucson, AZ, USA
| |
Collapse
|