1
|
Bentum KE, Kuufire E, Nyarku R, Osei V, Adu-Addai B, Frye JG, Jackson CR, Samuel T, Abebe W. Comparative Genomic Profiles of Salmonella Typhimurium and Salmonella Dublin Bovine Isolates from the U.S. Indicate Possible Factors Associated with the Host Adaptation of Salmonella Dublin in the Region. Microorganisms 2025; 13:886. [PMID: 40284722 PMCID: PMC12029969 DOI: 10.3390/microorganisms13040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Salmonella Dublin (S. Dublin) and Salmonella Typhimurium (S. Typhimurium) are commonly linked to bovine salmonellosis. S. Dublin is, however, considered a bovine-adapted serovar for primarily infecting and thriving in cattle. Using S. Typhimurium (a generalist serovar) as a benchmark, this study investigates genomic factors contributing to S. Dublin's adaptation to cattle hosts in the U.S. A total of 1337 S. Dublin and 787 S. Typhimurium whole-genome sequences from bovine sources were analyzed with CARD (version 4.0.0), ARG-NOTT (version 6), and AMRfinderPlus (version 4.0.3) for antimicrobial resistance (AMR) genes; VFDB and AMRfinderPlus for virulence genes; AMRFinderPlus for stress genes; and Plasmidfinder for plasmids. Existing clonal groups among isolates of the two serovars were also investigated using the Hierarchical Clustering of Core Genome Multi-Locus Sequence Typing (HierCC-cgMLST) model. The results revealed minimal genomic variation among S. Dublin isolates. Comparatively, the IncX1 plasmid was somewhat exclusively identified in S. Dublin isolates and each carried an average of four plasmids (p-value < 0.05). Furthermore, S. Dublin isolates exhibited a higher prevalence of AMR genes against key antimicrobials, including aminoglycosides, beta-lactams, tetracyclines, and sulfonamides, commonly used in U.S. cattle production. Additionally, Type VI secretion system genes tssJKLM and hcp2/tssD2, essential for colonization, were found exclusively in S. Dublin isolates with over 50% of these isolates possessing genes that confer resistance to heavy metal stressors, like mercury. These findings suggest that S. Dublin's adaptation to bovine hosts in the U.S. is supported by a conserved genetic makeup enriched with AMR genes, virulence factors, and stress-related genes, enabling it to colonize and persist in the bovine gut.
Collapse
Affiliation(s)
- Kingsley E. Bentum
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (K.E.B.); (E.K.); (R.N.); (V.O.); (T.S.)
| | - Emmanuel Kuufire
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (K.E.B.); (E.K.); (R.N.); (V.O.); (T.S.)
| | - Rejoice Nyarku
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (K.E.B.); (E.K.); (R.N.); (V.O.); (T.S.)
| | - Viona Osei
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (K.E.B.); (E.K.); (R.N.); (V.O.); (T.S.)
| | - Benjamin Adu-Addai
- Department of Biomedical Science, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (J.G.F.); (C.R.J.)
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (J.G.F.); (C.R.J.)
| | - Temesgen Samuel
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (K.E.B.); (E.K.); (R.N.); (V.O.); (T.S.)
| | - Woubit Abebe
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (K.E.B.); (E.K.); (R.N.); (V.O.); (T.S.)
| |
Collapse
|
2
|
Henigman U, Kušar D, Biasizzo M, Vadnjal S, Avberšek J, Papić B. Genomic analysis reveals the presence of hypervirulent and fluoroquinolone-resistant Clostridioides difficile in farmed mussels (Mytilus galloprovincialis) in Slovenia. Int J Food Microbiol 2025; 428:110982. [PMID: 39580990 DOI: 10.1016/j.ijfoodmicro.2024.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Clostridioides difficile is one of the leading causes of antibiotic-associated diarrhea. In this study, we characterized 76C. difficile isolates, obtained from three Mediterranean mussel (Mytilus galloprovincialis) farms in Slovenia from November 2014 to October 2015 (sampling period 1) and from January to December 2021 (sampling period 2). The overall isolation rate of C. difficile from all the examined mussels was 59.8 %. A statistically significant trend of seasonal variation was observed, with a higher isolation rate in the colder months of the year (87.9 %; sea temperature ≤ 15 °C) compared with the warmer months (31.8 %; sea temperature > 15 °C). Whole-genome sequencing (WGS) revealed that the isolates belonged to 31 different sequence types (STs), which were associated with three clades (1, 4, and 5) and two cryptic clades (C-II and C-III). Five isolates, which belonged to ST11 (clade 5), harbored all the main toxin genes (A+B+CDT+) and chromosomal mutations conferring fluoroquinolone resistance. Core genome multilocus sequence typing (cgMLST) revealed four clusters of 2-3 isolates, three of which included isolates from different farms, suggesting that clonal C. difficile strains are circulating among the Slovenian mussel farms. The results highlight the presence of hypervirulent strains in mussels; therefore, at-risk population groups should be alerted to the risks associated with consuming shellfish.
Collapse
Affiliation(s)
- Urška Henigman
- University of Ljubljana, Veterinary Faculty, National Veterinary Institute, Institute of Food Safety, Feed and Environment, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - Darja Kušar
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Majda Biasizzo
- University of Ljubljana, Veterinary Faculty, National Veterinary Institute, Institute of Food Safety, Feed and Environment, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Stanka Vadnjal
- University of Ljubljana, Veterinary Faculty, National Veterinary Institute, Institute of Food Safety, Feed and Environment, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Jana Avberšek
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Bojan Papić
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Ngbede EO, Junker V, Kolte B, Frentrup M, Boldt J, Fawley WN, Wilcox MH, Kuijper EJ, Smits WK, Nübel U. Clostridioides difficile recovered from hospital patients, livestock and dogs in Nigeria share near-identical genome sequences. Microb Genom 2025; 11. [PMID: 39883484 DOI: 10.1099/mgen.0.001342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Genomic data on Clostridioides difficile from the African continent are currently lacking, resulting in the region being under-represented in global analyses of C. difficile infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare C. difficile isolates from diarrhoeic human patients (n=142), livestock (n=38), poultry manure (n=5) and dogs (n=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global C. difficile population. In addition, selected isolates were tested for antimicrobial susceptibility (n=33) and characterized by PCR ribotyping (n=53). Hierarchical clustering of core-genome multilocus sequence typing (cgMLST) allelic profiles revealed large diversity at the level HC150 (i.e. clusters of related genomes with maximally 150 pairwise allelic differences), which was previously shown to correlate with PCR ribotypes (RT). While several globally disseminated strains were detected, including HC150_1 (associated with RT078), HC150_3 (RT001) and HC150_3622 (RT014), 42 HC150 clusters (79%) represented unique genotypes that were new to the public genomic record, and 16 (30%) of these were novel PCR ribotypes. Considerable proportions of the C. difficile isolates displayed resistance to fluoroquinolones, macrolides and linezolid, potentially reflecting human and animal antibiotic consumption patterns in the region. Notably, our comparative phylogenomic analyses revealed human-human, human-livestock and farm-farm sharing of near-identical C. difficile genomes (≤2 core-genome allelic differences), suggesting the continued spread of multiple strains across human and animal (pig, poultry, cattle and dog) host populations. Our findings highlight the interconnectivity between livestock production and the epidemiology of human CDI and inform the need for increased CDI awareness among clinicians in this region. A large proportion of C. difficile strains appeared to be unique to the region, reflecting both the significant geographic patterning present in the C. difficile population and a general need for additional pathogen sequencing data from Africa.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria
- Present address: Institute of Medical Microbiology and Hygiene University of Saarland, Homburg, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
| | - Baban Kolte
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Martinique Frentrup
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
| | - Judith Boldt
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Warren N Fawley
- School of Medicine, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Mark H Wilcox
- School of Medicine, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Ed J Kuijper
- Leiden University Medical Center, National Expertise Center for C. difficile Infections, Leiden, Netherlands
| | - Wiep Klaas Smits
- Leiden University Medical Center, National Expertise Center for C. difficile Infections, Leiden, Netherlands
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
4
|
Rupnik M, Viprey V, Janezic S, Tkalec V, Davis G, Sente B, Devos N, Muller BH, Santiago-Allexant E, Cleuziat P, Wilcox M, Davies K. Distribution of Clostridioides difficile ribotypes and sequence types across humans, animals and food in 13 European countries. Emerg Microbes Infect 2024; 13:2427804. [PMID: 39535868 PMCID: PMC11610360 DOI: 10.1080/22221751.2024.2427804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile is a One Health pathogen found in humans, animals, and the environment, with food representing a potential transmission route. One Health studies are often limited to a single country or selected reservoirs and ribotypes. This study provides a varied and accessible collection of C. difficile isolates and sequencing data derived from human, animal, and food sources across 13 European countries. A total of 441 strains (human hospital- and community-associated cases n = 280, animal n = 96, food n = 65) were analysed by ribotyping, toxinotyping and whole-genome sequencing (WGS). We detected 83 sequence types (STs), with ST11 (n = 80 isolates) and ST1 (n = 54 isolates) being the most represented. Several STs included strains originating from all source combinations. Further genomic analysis confirmed close genetic relatedness in some of the STs. Additionally, the genomic analysis identified 10 strains from cryptic clades (C-I to C-III) and 4 of them were mono-toxigenic possessing only a variant form of tcdA gene. Amongst 106 ribotypes, 10 were shared between all 3 sources and 68 were source-specific. Some ribotypes were only found at the intersection of human and food source (RT023, RT027), or between human and animal source (RT009, RT045, RT046). C. difficile ribotypes and STs in Europe were diverse. In this collection, some ribotypes showed potential association with food or animal transmission routes. C. difficile strains from divergent clades CI-III, currently emerging in the human population, were rare and mostly food-associated.Trial registration: ClinicalTrials.gov identifier: NCT03503474.
Collapse
Affiliation(s)
- Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- European Study Group Clostridioidies difficile, ESCMID
| | - Virginie Viprey
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Valerija Tkalec
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Georgina Davis
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | | | | | | | | | - Mark Wilcox
- European Study Group Clostridioidies difficile, ESCMID
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Kerrie Davies
- European Study Group Clostridioidies difficile, ESCMID
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - on behalf of the COMBACTE-CDI consortium
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- European Study Group Clostridioidies difficile, ESCMID
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- GSK Vaccines, Rixensart, Belgium
- bioMérieux, Marcy-l'Etoile, France
- NIHR Leeds Biomedical Research Centre, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
5
|
Tercero-Guerrero D, Blanco JL, Hernández M, Torre-Fuentes L, Alvarez J, García ME. Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BMC Vet Res 2024; 20:479. [PMID: 39434132 PMCID: PMC11492571 DOI: 10.1186/s12917-024-04332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected.
Collapse
Affiliation(s)
- Daniela Tercero-Guerrero
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain.
| | - Marta Hernández
- Area of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Julio Alvarez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
| |
Collapse
|
6
|
Martinez E, Berg N, Rodriguez C, Daube G, Taminiau B. Influence of microbiota on the growth and gene expression of Clostridioides difficile in an in vitro coculture model. Microbiologyopen 2024; 13:e70001. [PMID: 39404502 PMCID: PMC11633334 DOI: 10.1002/mbo3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 12/13/2024] Open
Abstract
Clostridioides difficile is an anaerobic, spore-forming, Gram-positive pathogenic bacterium. This study aimed to analyze the effect of two samples of healthy fecal microbiota on C. difficile gene expression and growth using an in vitro coculture model. The inner compartment was cocultured with spores of the C. difficile polymerase chain reaction (PCR)-ribotype 078, while the outer compartment contained fecal samples from donors to mimic the microbiota (FD1 and FD2). A fecal-free plate served as a control (CT). RNA-Seq and quantitative PCR confirmation were performed on the inner compartment sample. Similarities in gene expression were observed in the presence of the microbiota. After 12 h, the expression of genes associated with germination, sporulation, toxin production, and growth was downregulated in the presence of the microbiota. At 24 h, in an iron-deficient environment, C. difficile activated several genes to counteract iron deficiency. The expression of genes associated with germination and sporulation was upregulated at 24 h compared with 12 h in the presence of microbiota from donor 1 (FD1). This study confirmed previous findings that C. difficile can use ethanolamine as a primary nutrient source. To further investigate this interaction, future studies will use a simplified coculture model with an artificial bacterial consortium instead of fecal samples.
Collapse
Affiliation(s)
- Elisa Martinez
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Noémie Berg
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Cristina Rodriguez
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Unidadde Gestión Clínica de Aparato DigestivoHospital Universitario Virgen de laVictoriaMálagaSpain
| | - Georges Daube
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Bernard Taminiau
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| |
Collapse
|
7
|
Cheney L, Payne M, Kaur S, Lan R. SaLTy: a novel Staphylococcus aureus Lineage Typer. Microb Genom 2024; 10:001250. [PMID: 38739116 PMCID: PMC11165655 DOI: 10.1099/mgen.0.001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus aureus asymptomatically colonises 30 % of humans but can also cause a range of diseases, which can be fatal. In 2017 S. aureus was associated with 20 000 deaths in the USA alone. Dividing S. aureus isolates into smaller sub-groups can reveal the emergence of distinct sub-populations with varying potential to cause infections. Despite multiple molecular typing methods categorising such sub-groups, they do not take full advantage of S. aureus genome sequences when describing the fundamental population structure of the species. In this study, we developed Staphylococcus aureus Lineage Typing (SaLTy), which rapidly divides the species into 61 phylogenetically congruent lineages. Alleles of three core genes were identified that uniquely define the 61 lineages and were used for SaLTy typing. SaLTy was validated on 5000 genomes and 99.12 % (4956/5000) of isolates were assigned the correct lineage. We compared SaLTy lineages to previously calculated clonal complexes (CCs) from BIGSdb (n=21 173). SALTy improves on CCs by grouping isolates congruently with phylogenetic structure. SaLTy lineages were further used to describe the carriage of Staphylococcal chromosomal cassette containing mecA (SCCmec) which is carried by methicillin-resistant S. aureus (MRSA). Most lineages had isolates lacking SCCmec and the four largest lineages varied in SCCmec over time. Classifying isolates into SaLTy lineages, which were further SCCmec typed, allowed SaLTy to describe high-level MRSA epidemiology. We provide SaLTy as a simple typing method that defines phylogenetic lineages (https://github.com/LanLab/SaLTy). SaLTy is highly accurate and can quickly analyse large amounts of S. aureus genome data. SaLTy will aid the characterisation of S. aureus populations and ongoing surveillance of sub-groups that threaten human health.
Collapse
Affiliation(s)
- Liam Cheney
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
9
|
Filippidis P, Senn L, Poncet F, Grandbastien B, Prod'hom G, Greub G, Guery B, Blanc DS. Core genome multilocus sequence typing of Clostridioides difficile to investigate transmission in the hospital setting. Eur J Clin Microbiol Infect Dis 2023; 42:1469-1476. [PMID: 37870711 PMCID: PMC10651541 DOI: 10.1007/s10096-023-04676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE Traditional epidemiological investigations of healthcare-associated Clostridioides difficile infection (HA-CDI) are often insufficient. This study aimed to evaluate a procedure that includes secondary isolation and genomic typing of single toxigenic colonies using core genome multilocus sequence typing (cgMLST) for the investigation of C. difficile transmission. METHODS We analyzed retrospectively all toxigenic C. difficile-positive stool samples stored at the Lausanne University Hospital over 6 consecutive months. All isolates were initially typed and classified using a modified double-locus sequence typing (DLST) method. Genome comparison of isolates with the same DLST and clustering were subsequently performed using cgMLST. The electronic administrative records of patients with CDI were investigated for spatiotemporal epidemiological links supporting hospital transmission. A comparative descriptive analysis between genomic and epidemiological data was then performed. RESULTS From January to June 2021, 86 C. difficile isolates were recovered from thawed samples of 71 patients. Thirteen different DLST types were shared by > 1 patient, and 13 were observed in single patients. A genomic cluster was defined as a set of isolates from different patients with ≤ 3 locus differences, determined by cgMLST. Seven genomic clusters were identified, among which plausible epidemiological links were identified in only 4/7 clusters. CONCLUSION Among clusters determined by cgMLST analysis, roughly 40% included unexplained HA-CDI acquisitions, which may be explained by unidentified epidemiological links, asymptomatic colonization, and/or shared common community reservoirs. The use of DLST, followed by whole genome sequencing analysis, is a promising and cost-effective stepwise approach for the investigation of CDI transmission in the hospital setting.
Collapse
Affiliation(s)
- Paraskevas Filippidis
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence Senn
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabrice Poncet
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Bruno Grandbastien
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Guy Prod'hom
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoit Guery
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique S Blanc
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
10
|
Schmidt K, Scholz HC, Appelt S, Michel J, Jacob D, Dupke S. Virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 acquired in Germany and other European countries. Front Microbiol 2023; 14:1282135. [PMID: 38075873 PMCID: PMC10703170 DOI: 10.3389/fmicb.2023.1282135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2025] Open
Abstract
Global warming has caused an increase in the emergence of Vibrio species in marine and estuarine environments as well as fresh water bodies. Over the past decades, antimicrobial resistance (AMR) has evolved among Vibrio species toward various antibiotics commonly used for the treatment of Vibrio infections. In this study, we assessed virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 strains derived from Germany and other European countries. A total of 63 clinical and 24 environmental Vibrio cholerae non-O1/non-O139 strains, collected between 2011 and 2021, were analyzed. In silico antibiotic resistances were compared with resistance phenotypes according to EUCAST breakpoints. Additionally, genetic relatedness between isolates was assessed by two cgMLST schemes (SeqSphere +, pubMLST). Both cgMLST schemes yielded similar results, indicating high genetic diversity among V. cholerae non-O1/non-O139 isolates. Some isolates were found to be genetically closely related (allelic distance < 20), which suggests an epidemiological link. Thirty-seven virulence genes (VGs) were identified among 87 V. cholerae non-O1/non-O139 isolates, which resulted in 38 virulence profiles (VPs). VPs were similar between clinical and environmental isolates, with the exception of one clinical isolate that displayed a higher abundance of VGs. Also, a cluster of 11 environmental isolates was identified to have the lowest number of VGs. Among all strains, the predominant virulence factors were quorum sensing protein (luxS), repeats-in-toxins (rtxC/rtxD), hemolysin (hlyA) and different type VI secretion systems (T6SS) genes. The genotypic profiles revealed antibiotic resistance genes (ARGs) associated with resistance to beta-lactams, quinolones, macrolides, tetracycline, antifolate, aminoglycosides, fosfomycin, phenicols and sulfonamide. Carbapenemase gene VCC-1 was detected in 10 meropenem-resistant V. cholerae non-O1/non-O139 isolates derived from surface water in Germany. The proportion of resistance among V. cholerae non-O1/non-O139 species isolates against first line treatment (3rd generation cephalosporin, tetracycline and fluoroquinolone) was low. Empirical treatment would likely have been effective for all of the clinical V. cholerae non-O1/non-O139 isolates examined. Nevertheless, carbapenem-resistant isolates have been present in fresh water in Germany and might represent a reservoir for ARGs. Monitoring antimicrobial resistance is crucial for public health authorities to minimize the risks for the human population.
Collapse
Affiliation(s)
- Katarzyna Schmidt
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Holger C Scholz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Sandra Appelt
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Jana Michel
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Susann Dupke
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
11
|
Williamson CHD, Roe CC, Terriquez J, Hornstra H, Lucero S, Nunnally AE, Vazquez AJ, Vinocur J, Plude C, Nienstadt L, Stone NE, Celona KR, Wagner DM, Keim P, Sahl JW. A local-scale One Health genomic surveillance of Clostridioides difficile demonstrates highly related strains from humans, canines, and the environment. Microb Genom 2023; 9. [PMID: 37347682 DOI: 10.1099/mgen.0.001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Although infections caused by Clostridioides difficile have historically been attributed to hospital acquisition, growing evidence supports the role of community acquisition in C. difficile infection (CDI). Symptoms of CDI can range from mild, self-resolving diarrhoea to toxic megacolon, pseudomembranous colitis, and death. In this study, we sampled C. difficile from clinical, environmental, and canine reservoirs in Flagstaff, Arizona, USA, to understand the distribution and transmission of the pathogen in a One Health framework; Flagstaff is a medium-sized, geographically isolated city with a single hospital system, making it an ideal site to characterize genomic overlap between sequenced C. difficile isolates across reservoirs. An analysis of 562 genomes from Flagstaff isolates identified 65 sequence types (STs), with eight STs being found across all three reservoirs and another nine found across two reservoirs. A screen of toxin genes in the pathogenicity locus identified nine STs where all isolates lost the toxin genes needed for CDI manifestation (tcdB, tcdA), demonstrating the widespread distribution of non-toxigenic C. difficile (NTCD) isolates in all three reservoirs; 15 NTCD genomes were sequenced from symptomatic, clinical samples, including two from mixed infections that contained both tcdB+ and tcdB- isolates. A comparative single nucleotide polymorphism (SNP) analysis of clinically derived isolates identified 78 genomes falling within clusters separated by ≤2 SNPs, indicating that ~19 % of clinical isolates are associated with potential healthcare-associated transmission clusters; only symptomatic cases were sampled in this study, and we did not sample asymptomatic transmission. Using this same SNP threshold, we identified genomic overlap between canine and soil isolates, as well as putative transmission between environmental and human reservoirs. The core genome of isolates sequenced in this study plus a representative set of public C. difficile genomes (n=136), was 2690 coding region sequences, which constitutes ~70 % of an individual C. difficile genome; this number is significantly higher than has been published in some other studies, suggesting that genome data quality is important in understanding the minimal number of genes needed by C. difficile. This study demonstrates the close genomic overlap among isolates sampled across reservoirs, which was facilitated by maximizing the genomic search space used for comprehensive identification of potential transmission events. Understanding the distribution of toxigenic and non-toxigenic C. difficile across reservoirs has implications for surveillance sampling strategies, characterizing routes of infections, and implementing mitigation measures to limit human infection.
Collapse
Affiliation(s)
| | - Chandler C Roe
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Samantha Lucero
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Amalee E Nunnally
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Adam J Vazquez
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | - Nathan E Stone
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kimberly R Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
12
|
Wang S, Ju X, Heuler J, Zhang K, Duan Z, Warnakulasuriya Patabendige HML, Zhao S, Sun X. Recombinant Fusion Protein Vaccine Containing Clostridioides difficile FliC and FliD Protects Mice against C. difficile Infection. Infect Immun 2023; 91:e0016922. [PMID: 36939332 PMCID: PMC10112125 DOI: 10.1128/iai.00169-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/09/2023] [Indexed: 03/21/2023] Open
Abstract
Bacterial flagella are involved in infection through their roles in host cell adhesion, cell invasion, auto-agglutination, colonization, the formation of biofilms, and the regulation and secretion of nonflagellar bacterial proteins that are involved in the virulence process. In this study, we constructed a fusion protein vaccine (FliCD) containing the Clostridioides difficile flagellar proteins FliC and FliD. The immunization of mice with FliCD induced potent IgG and IgA antibody responses against FliCD, protected mice against C. difficile infection (CDI), and decreased the C. difficile spore and toxin levels in the feces after infection. Additionally, the anti-FliCD serum inhibited the binding of C. difficile vegetative cells to HCT8 cells. These results suggest that FliCD may represent an effective vaccine candidate against CDI.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xianghong Ju
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Joshua Heuler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Keshan Zhang
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Zhibian Duan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | - Song Zhao
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
13
|
Alves F, Castro R, Pinto M, Nunes A, Pomba C, Oliveira M, Silveira L, Gomes JP, Oleastro M. Molecular epidemiology of Clostridioides difficile in companion animals: Genetic overlap with human strains and public health concerns. Front Public Health 2023; 10:1070258. [PMID: 36684930 PMCID: PMC9853383 DOI: 10.3389/fpubh.2022.1070258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction The changing epidemiology of Clostridioides difficile reflects a well-established and intricate community transmission network. With rising numbers of reported community-acquired infections, recent studies tried to identify the role played by non-human reservoirs in the pathogen's transmission chain. This study aimed at describing the C. difficile strains circulating in canine and feline populations, and to evaluate their genetic overlap with human strains to assess the possibility of interspecies transmission. Methods Fecal samples from dogs (n = 335) and cats (n = 140) were collected from two populations (group A and group B) in Portugal. C. difficile isolates were characterized for toxigenic profile and PCR-ribotyping. The presence of genetic determinants of antimicrobial resistance was assessed in all phenotypically resistant isolates. To evaluate the genetic overlap between companion animals and human isolates from Portugal, RT106 (n = 42) and RT014/020 (n = 41) strains from both sources were subjected to whole genome sequencing and integrated with previously sequenced RT106 (n = 43) and RT014/020 (n = 142) genomes from different countries. The genetic overlap was assessed based on core-single nucleotide polymorphism (SNP) using a threshold of 2 SNP. Results The overall positivity rate for C. difficile was 26% (76/292) in group A and 18.6% (34/183) in group B. Toxigenic strains accounted for 50% (38/76) and 52.9% (18/34) of animal carriage rates, respectively. The most prevalent ribotypes (RT) were the toxigenic RT106 and RT014/020, and the non-toxigenic RT010 and RT009. Antimicrobial resistance was found for clindamycin (27.9%), metronidazole (17.1%) and moxifloxacin (12.4%), associated with the presence of the ermB gene, the pCD-METRO plasmid and point mutations in the gyrA gene, respectively. Both RT106 and RT014/020 genetic analysis revealed several clusters integrating isolates from animal and human sources, supporting the possibility of clonal interspecies transmission or a shared environmental contamination source. Discussion This study shows that companion animals may constitute a source of infection of toxigenic and antimicrobial resistant human associated C. difficile isolates. Additionally, it contributes with important data on the genetic proximity between C. difficile isolates from both sources, adding new information to guide future work on the role of animal reservoirs in the establishment of community associated transmission networks and alerting for potential public health risk.
Collapse
Affiliation(s)
- Frederico Alves
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rita Castro
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Alexandra Nunes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Constança Pomba
- Genevet–Veterinary Molecular Diagnostic Laboratory, Carnaxide, Portugal
- CIISA–Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA–Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Leonor Silveira
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Mónica Oleastro
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| |
Collapse
|
14
|
Finsterwalder SK, Loncaric I, Cabal A, Szostak MP, Barf LM, Marz M, Allerberger F, Burgener IA, Tichy A, Feßler AT, Schwarz S, Monecke S, Ehricht R, Ruppitsch W, Spergser J, Künzel F. Dogs as carriers of virulent and resistant genotypes of Clostridioides difficile. Zoonoses Public Health 2022; 69:673-681. [PMID: 35546073 PMCID: PMC9544694 DOI: 10.1111/zph.12956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
While previous research on zoonotic transmission of community-acquired Clostridioides difficile infection (CA-CDI) focused on food-producing animals, the present study aimed to investigate whether dogs are carriers of resistant and/or virulent C. difficile strains. Rectal swabs were collected from 323 dogs and 38 C. difficile isolates (11.8%) were obtained. Isolates were characterized by antimicrobial susceptibility testing, whole-genome sequencing (WGS) and a DNA hybridization assay. Multilocus sequence typing (MLST), core genome MLST (cgMLST) and screening for virulence and antimicrobial resistance genes were performed based on WGS. Minimum inhibitory concentrations for erythromycin, clindamycin, tetracycline, vancomycin and metronidazole were determined by E-test. Out of 38 C. difficile isolates, 28 (73.7%) carried genes for toxins. The majority of isolates belonged to MLST sequence types (STs) of clade I and one to clade V. Several isolates belonged to STs previously associated with human CA-CDI. However, cgMLST showed low genetic relatedness between the isolates of this study and C. difficile strains isolated from humans in Austria for which genome sequences were publicly available. Four isolates (10.5%) displayed resistance to three of the tested antimicrobial agents. Isolates exhibited resistance to erythromycin, clindamycin, tetracycline and metronidazole. These phenotypic resistances were supported by the presence of the resistance genes erm(B), cfr(C) and tet(M). All isolates were susceptible to vancomycin. Our results indicate that dogs may carry virulent and antimicrobial-resistant C. difficile strains.
Collapse
Affiliation(s)
- SK Finsterwalder
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| | - I Loncaric
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - A Cabal
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - MP Szostak
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - LM Barf
- Faculty of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany
- Max Planck Institute for Science of Human HistoryJenaGermany
| | - M Marz
- Faculty of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany
- FLI Leibniz Institute for Age ResearchJenaGermany
- InfectoGnostics Research Campus JenaJenaGermany
| | - F Allerberger
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - IA Burgener
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| | - A Tichy
- Department of Biomedical ScienceUniversity of Veterinary Medicine ViennaViennaAustria
| | - AT Feßler
- Department of Veterinary Medicine, Centre of Infection Medicine, Institute of Microbiology and EpizooticsFreie Universität BerlinBerlinGermany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR)Freie Universität BerlinBerlinGermany
| | - S Schwarz
- Department of Veterinary Medicine, Centre of Infection Medicine, Institute of Microbiology and EpizooticsFreie Universität BerlinBerlinGermany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR)Freie Universität BerlinBerlinGermany
| | - S Monecke
- InfectoGnostics Research Campus JenaJenaGermany
- Leibniz Institute of Photonic Technology (IPHT)JenaGermany
- Institut für Medizinische Mikrobiologie und HygieneUniversitätsklinik DresdenDresdenGermany
| | - R Ehricht
- InfectoGnostics Research Campus JenaJenaGermany
- Leibniz Institute of Photonic Technology (IPHT)JenaGermany
- Institute of Physical ChemistryFriedrich Schiller University JenaJenaGermany
| | - W Ruppitsch
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - J Spergser
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - F Künzel
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
15
|
Moore MP, Wilcox MH, Walker AS, Eyre DW. K-mer based prediction of Clostridioides difficile relatedness and ribotypes. Microb Genom 2022; 8. [PMID: 35384833 PMCID: PMC9453075 DOI: 10.1099/mgen.0.000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Comparative analysis of Clostridioides difficile whole-genome sequencing (WGS) data enables fine scaled investigation of transmission and is increasingly becoming part of routine surveillance. However, these analyses are constrained by the computational requirements of the large volumes of data involved. By decomposing WGS reads or assemblies into k-mers and using the dimensionality reduction technique MinHash, it is possible to rapidly approximate genomic distances without alignment. Here we assessed the performance of MinHash, as implemented by sourmash, in predicting single nucleotide differences between genomes (SNPs) and C. difficile ribotypes (RTs). For a set of 1905 diverse C. difficile genomes (differing by 0–168 519 SNPs), using sourmash to screen for closely related genomes, at a sensitivity of 100 % for pairs ≤10 SNPs, sourmash reduced the number of pairs from 1 813 560 overall to 161 934, i.e. by 91 %, with a positive predictive value of 32 % to correctly identify pairs ≤10 SNPs (maximum SNP distance 4144). At a sensitivity of 95 %, pairs were reduced by 94 % to 108 266 and PPV increased to 45 % (maximum SNP distance 1009). Increasing the MinHash sketch size above 2000 produced minimal performance improvement. We also explored a MinHash similarity-based ribotype prediction method. Genomes with known ribotypes (n=3937) were split into a training set (2937) and test set (1000) randomly. The training set was used to construct a sourmash index against which genomes from the test set were compared. If the closest five genomes in the index had the same ribotype this was taken to predict the searched genome’s ribotype. Using our MinHash ribotype index, predicted ribotypes were correct in 780/1000 (78 %) genomes, incorrect in 20 (2 %), and indeterminant in 200 (20 %). Relaxing the classifier to 4/5 closest matches with the same RT improved the correct predictions to 87 %. Using MinHash it is possible to subsample C. difficile genome k-mer hashes and use them to approximate small genomic differences within minutes, significantly reducing the search space for further analysis.
Collapse
Affiliation(s)
- Matthew Phillip Moore
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mark H Wilcox
- Healthcare Associated Infection Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| |
Collapse
|
16
|
Boekhoud IM, Sidorov I, Nooij S, Harmanus C, Bos-Sanders IMJG, Viprey V, Spittal W, Clark E, Davies K, Freeman J, Kuijper EJ, Smits WK. Haem is crucial for medium-dependent metronidazole resistance in clinical isolates of Clostridioides difficile. J Antimicrob Chemother 2021; 76:1731-1740. [PMID: 33876817 PMCID: PMC8212768 DOI: 10.1093/jac/dkab097] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background Until recently, metronidazole was the first-line treatment for Clostridioides difficile infection and it is still commonly used. Though resistance has been reported due to the plasmid pCD-METRO, this does not explain all cases. Objectives To identify factors that contribute to plasmid-independent metronidazole resistance of C. difficile. Methods Here, we investigate resistance to metronidazole in a collection of clinical isolates of C. difficile using a combination of antimicrobial susceptibility testing on different solid agar media and WGS of selected isolates. Results We find that nearly all isolates demonstrate a haem-dependent increase in the MIC of metronidazole, which in some cases leads to isolates qualifying as resistant (MIC >2 mg/L). Moreover, we find an SNP in the haem-responsive gene hsmA, which defines a metronidazole-resistant lineage of PCR ribotype 010/MLST ST15 isolates that also includes pCD-METRO-containing strains. Conclusions Our data demonstrate that haem is crucial for medium-dependent metronidazole resistance in C. difficile.
Collapse
Affiliation(s)
- Ilse M Boekhoud
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Igor Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sam Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Céline Harmanus
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Virginie Viprey
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - William Spittal
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Emma Clark
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Kerrie Davies
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK.,European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD), Basel, Switzerland
| | - Jane Freeman
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK.,European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD), Basel, Switzerland
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD), Basel, Switzerland.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.,European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD), Basel, Switzerland
| | | |
Collapse
|
17
|
Seth-Smith HMB, Biggel M, Roloff T, Hinic V, Bodmer T, Risch M, Casanova C, Widmer A, Sommerstein R, Marschall J, Tschudin-Sutter S, Egli A. Transition From PCR-Ribotyping to Whole Genome Sequencing Based Typing of Clostridioides difficile. Front Cell Infect Microbiol 2021; 11:681518. [PMID: 34141631 PMCID: PMC8204696 DOI: 10.3389/fcimb.2021.681518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Roloff
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Vladimira Hinic
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Thomas Bodmer
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Martin Risch
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andreas Widmer
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland.,Infectious Diseases, Hirslanden Central Switzerland, Lucerne, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Frentrup M, Thiel N, Junker V, Behrens W, Münch S, Siller P, Kabelitz T, Faust M, Indra A, Baumgartner S, Schepanski K, Amon T, Roesler U, Funk R, Nübel U. Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile. Environ Microbiol 2021; 23:7591-7602. [PMID: 33998128 DOI: 10.1111/1462-2920.15601] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022]
Abstract
During a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (also known as Clostridium) difficile in broiler faeces, manure, dust and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease. Genomic relatedness of C. difficile isolates from dust and from soil, recovered more than 2 years after fertilization, traced their origins to the specific chicken farm that had delivered the manure. We present evidence of long-term contamination of agricultural soil with manure-derived C. difficile and demonstrate the potential for airborne dispersal of C. difficile through dust emissions during manure application. Clostridioides genome sequences virtually identical to those from manure had been recovered from chicken meat and from human infections in previous studies, suggesting broiler-associated C. difficile are capable of zoonotic transmission.
Collapse
Affiliation(s)
- Martinique Frentrup
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nadine Thiel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Vera Junker
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wiebke Behrens
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Paul Siller
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Matthias Faust
- Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Alexander Indra
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria.,Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | | | - Thomas Amon
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany.,Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Ulrich Nübel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| |
Collapse
|
19
|
Aguilar-Zamora E, Weimer BC, Torres RC, Gómez-Delgado A, Ortiz-Olvera N, Aparicio-Ozores G, Barbero-Becerra VJ, Torres J, Camorlinga-Ponce M. Molecular Epidemiology and Antimicrobial Resistance of Clostridioides difficile in Hospitalized Patients From Mexico. Front Microbiol 2021; 12:787451. [PMID: 35360652 PMCID: PMC8960119 DOI: 10.3389/fmicb.2021.787451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a global public health problem, which is a primary cause of antibiotic-associated diarrhea in humans. The emergence of hypervirulent and antibiotic-resistant strains is associated with the increased incidence and severity of the disease. There are limited studies on genomic characterization of C. difficile in Latin America. We aimed to learn about the molecular epidemiology and antimicrobial resistance in C. difficile strains from adults and children in hospitals of México. We studied 94 C. difficile isolates from seven hospitals in Mexico City from 2014 to 2018. Whole-genome sequencing (WGS) was used to determine the genotype and examine the toxigenic profiles. Susceptibility to antibiotics was determined by E-test. Multilocus sequence typing (MLST) was used to determine allelic profiles. Results identified 20 different sequence types (ST) in the 94 isolates, mostly clade 2 and clade 1. ST1 was predominant in isolates from adult and children. Toxigenic strains comprised 87.2% of the isolates that were combinations of tcdAB and cdtAB (tcdA+/tcdB+/cdtA+/cdtB+, followed by tcdA+/tcdB+/cdtA-/cdtB-, tcdA-/tcdB+/cdtA-/ cdtB-, and tcdA-/tcdB-/cdtA+/cdtB+). Toxin profiles were more diverse in isolates from children. All 94 isolates were susceptible to metronidazole and vancomycin, whereas a considerable number of isolates were resistant to clindamycin, fluroquinolones, rifampicin, meropenem, and linezolid. Multidrug-resistant isolates (≥3 antibiotics) comprised 65% of the isolates. The correlation between resistant genotypes and phenotypes was evaluated by the kappa test. Mutations in rpoB and rpoC showed moderate concordance with resistance to rifampicin and mutations in fusA substantial concordance with fusidic acid resistance. cfrE, a gene recently described in one Mexican isolate, was present in 65% of strains linezolid resistant, all ST1 organisms. WGS is a powerful tool to genotype and characterize virulence and antibiotic susceptibility patterns.
Collapse
Affiliation(s)
- Emmanuel Aguilar-Zamora
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | - Roberto C. Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Alejandro Gómez-Delgado
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Nayeli Ortiz-Olvera
- Departamento de Gastroenterología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- *Correspondence: Javier Torres,
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Margarita Camorlinga-Ponce,
| |
Collapse
|
20
|
Heise J, Witt P, Maneck C, Wichmann-Schauer H, Maurischat S. Prevalence and phylogenetic relationship of Clostridioides difficile strains in fresh poultry meat samples processed in different cutting plants. Int J Food Microbiol 2020; 339:109032. [PMID: 33388709 DOI: 10.1016/j.ijfoodmicro.2020.109032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023]
Abstract
Clostridioides difficile is one of the most frequent causes of nosocomial infections in humans leading to (antibiotic-associated) diarrhea and severe pseudomembranous colitis. With an increasing frequency, C. difficile infections (CDI) are also observed independently of hospitalization and the age of the patients in an ambulant setting. One potential source of so-called community-acquired CDI is a zoonotic transmission to humans based on direct contact with animals or the consumption of food. To estimate the exposure of humans with C. difficile via food, we screened 364 different retail fresh poultry meat products purchased in Berlin and Brandenburg, Germany and further characterized the isolates. None of the 42 turkey or chicken meat samples without skin was contaminated. However, 51 (15.8%) of 322 tested fresh chicken meat samples with skin were C. difficile-positive. The vast majority (84.3%) of all isolates exhibited toxin genes tcdA and tcdB, whereas the binary toxin cdtA/B was absent. Most of the isolates (50/51) were susceptible to all six investigated antimicrobials. However, one non-toxigenic strain was multidrug resistant to the antimicrobials clindamycin and erythromycin. The isolates were mainly represented by PCR-ribotypes (RT) 001, RT002, RT005, and RT014, which were already associated with human CDI cases in Germany and were partially detected in poultry. The relatively high contamination rate of fresh retail chicken meat with skin purchased in Germany indicates chicken meat as a potential source of human infections. Moreover, we identified cutting plants with a higher rate of a C. difficile-contamination (21.4-32.8%). To compare the phylogenetic relationship of the isolated strains from certain cutting plants over several months in 2018 and 2019, we analyzed them using NGS followed by core genome MLST. Interestingly, highly related strains (0-3 alleles distance) of common clinical RT001 and RT002 isolates, as well as of the non-toxigenic RT205 isolates were detectable in same cutting plants over a period of three and 16 months, respectively.The continuous contamination with the same strain could be explained by the longterm persistence of this strain within the cutting plant (e.g., within the scalder), or with a recurring entry e.g. from the same fattening farm.
Collapse
Affiliation(s)
- Janine Heise
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Pascal Witt
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Corinna Maneck
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Heidi Wichmann-Schauer
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Sven Maurischat
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
21
|
Goyal M, Hauben L, Pouseele H, Jaillard M, De Bruyne K, van Belkum A, Goering R. Retrospective Definition of Clostridioides difficile PCR Ribotypes on the Basis of Whole Genome Polymorphisms: A Proof of Principle Study. Diagnostics (Basel) 2020; 10:diagnostics10121078. [PMID: 33322677 PMCID: PMC7764247 DOI: 10.3390/diagnostics10121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a cause of health care-associated infections. The epidemiological study of C. difficile infection (CDI) traditionally involves PCR ribotyping. However, ribotyping will be increasingly replaced by whole genome sequencing (WGS). This implies that WGS types need correlation with classical ribotypes (RTs) in order to perform retrospective clinical studies. Here, we selected genomes of hyper-virulent C. difficile strains of RT001, RT017, RT027, RT078, and RT106 to try and identify new discriminatory markers using in silico ribotyping PCR and De Bruijn graph-based Genome Wide Association Studies (DBGWAS). First, in silico ribotyping PCR was performed using reference primer sequences and 30 C. difficile genomes of the five different RTs identified above. Second, discriminatory genomic markers were sought with DBGWAS using a set of 160 independent C. difficile genomes (14 ribotypes). RT-specific genetic polymorphisms were annotated and validated for their specificity and sensitivity against a larger dataset of 2425 C. difficile genomes covering 132 different RTs. In silico PCR ribotyping was unsuccessful due to non-specific or missing theoretical RT PCR fragments. More successfully, DBGWAS discovered a total of 47 new markers (13 in RT017, 12 in RT078, 9 in RT106, 7 in RT027, and 6 in RT001) with minimum q-values of 0 to 7.40 × 10-5, indicating excellent marker selectivity. The specificity and sensitivity of individual markers ranged between 0.92 and 1.0 but increased to 1 by combining two markers, hence providing undisputed RT identification based on a single genome sequence. Markers were scattered throughout the C. difficile genome in intra- and intergenic regions. We propose here a set of new genomic polymorphisms that efficiently identify five hyper-virulent RTs utilizing WGS data only. Further studies need to show whether this initial proof-of-principle observation can be extended to all 600 existing RTs.
Collapse
Affiliation(s)
- Manisha Goyal
- BioMérieux, Open Innovation and Partnerships, 3 Route du Port Michaud, 38390 La Balme Les Grottes, France;
| | - Lysiane Hauben
- BioMérieux, Applied Maths NV, 9830 Sint-Martens-Latem, Belgium; (L.H.); (K.D.B.)
| | | | | | - Katrien De Bruyne
- BioMérieux, Applied Maths NV, 9830 Sint-Martens-Latem, Belgium; (L.H.); (K.D.B.)
| | - Alex van Belkum
- BioMérieux, Open Innovation and Partnerships, 3 Route du Port Michaud, 38390 La Balme Les Grottes, France;
- Correspondence: ; Tel.: +33-609-487-905
| | - Richard Goering
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA;
| |
Collapse
|
22
|
Zhou Z, Charlesworth J, Achtman M. Accurate reconstruction of bacterial pan- and core genomes with PEPPAN. Genome Res 2020; 30:1667-1679. [PMID: 33055096 PMCID: PMC7605250 DOI: 10.1101/gr.260828.120] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
Bacterial genomes can contain traces of a complex evolutionary history, including extensive homologous recombination, gene loss, gene duplications, and horizontal gene transfer. To reconstruct the phylogenetic and population history of a set of multiple bacteria, it is necessary to examine their pangenome, the composite of all the genes in the set. Here we introduce PEPPAN, a novel pipeline that can reliably construct pangenomes from thousands of genetically diverse bacterial genomes that represent the diversity of an entire genus. PEPPAN outperforms existing pangenome methods by providing consistent gene and pseudogene annotations extended by similarity-based gene predictions, and identifying and excluding paralogs by combining tree- and synteny-based approaches. The PEPPAN package additionally includes PEPPAN_parser, which implements additional downstream analyses, including the calculation of trees based on accessory gene content or allelic differences between core genes. To test the accuracy of PEPPAN, we implemented SimPan, a novel pipeline for simulating the evolution of bacterial pangenomes. We compared the accuracy and speed of PEPPAN with four state-of-the-art pangenome pipelines using both empirical and simulated data sets. PEPPAN was more accurate and more specific than any of the other pipelines and was almost as fast as any of them. As a case study, we used PEPPAN to construct a pangenome of approximately 40,000 genes from 3052 representative genomes spanning at least 80 species of Streptococcus The resulting gene and allelic trees provide an unprecedented overview of the genomic diversity of the entire Streptococcus genus.
Collapse
Affiliation(s)
- Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jane Charlesworth
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|