1
|
Grist LF, Brown A, Fitzpatrick N, Mariano G, La Ragione RM, Van Vliet AHM, Mehat JW. Global phylogenomic analysis of Staphylococcus pseudintermedius reveals genomic and prophage diversity in multidrug-resistant lineages. Microb Genom 2025; 11:001369. [PMID: 40042988 PMCID: PMC11883136 DOI: 10.1099/mgen.0.001369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025] Open
Abstract
Staphylococcus pseudintermedius is the foremost cause of opportunistic canine skin and mucosal infections worldwide. Multidrug-resistant (MDR) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) lineages have disseminated globally in the last decade and present significant treatment challenges. However, little is known regarding the factors that contribute to the success of MDR lineages. In this study, we compared the genome sequence of 110 UK isolates of S. pseudintermedius with 2166 genomes of S. pseudintermedius populations from different continents. A novel core genome multi-locus typing scheme was generated to allow large-scale, rapid and detailed analysis of S. pseudintermedius phylogenies and was used to show that the S. pseudintermedius population structure is broadly segregated into an MDR population and a non-MDR population. MRSP lineages are predicted to encode certain resistance genes either chromosomally or on plasmids, and this is associated with their MLST sequence type. A comparison of lineages most frequently implicated in disease, ST-45 and ST-71, with the phylogenetically related ST-496 lineage that has a comparatively low disease rate, revealed that ST-45 and ST-71 genomes encode distinct combinations of phage-defence systems and concurrently encode a high number of intact prophages. In contrast, ST-496 genomes encode a wider array of phage defence systems and lack intact and complete prophages. These findings indicate that MRSP lineages have significant structural genomic differences and that prophage integration and differential antiviral systems correlate with the emergence of successful genotypes.
Collapse
Affiliation(s)
- Lucy F. Grist
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7A, UK
| | - Alice Brown
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Noel Fitzpatrick
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Giuseppina Mariano
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Discipline of Microbes, Infection and Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Roberto M. La Ragione
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7A, UK
- Discipline of Microbes, Infection and Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Arnoud H. M. Van Vliet
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7A, UK
| | - Jai W. Mehat
- Discipline of Microbes, Infection and Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
2
|
Garcias B, Monteith W, Vidal A, Aguirre L, Pascoe B, Kobras CM, Hitchings MD, Sheppard SK, Martin M, Darwich L. Characterization of antibiotic determinants and heavy metal resistance genes in Escherichia coli from pigs in Catalonia. Microb Genom 2025; 11:001371. [PMID: 40131333 PMCID: PMC11937225 DOI: 10.1099/mgen.0.001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 03/26/2025] Open
Abstract
More antibiotics are administered to livestock animals than to treat human infections. Industrialization, large animal densities and early weaning mean pigs are exposed to more antibiotics than any other livestock animal. Consequently, antimicrobial resistance (AMR) is common among commensal and pathogenic bacteria. Heavy metals (HMs) are also often used as feed additives for growth promotion and infection prevention alongside antimicrobials, and increased exposure to copper, zinc and cadmium can further encourage AMR through co-selection. In this study, we sequenced an archived collection of 112 Escherichia coli isolates from pigs in Catalonia using short- and long-read sequencing methods to detect AMR and HM tolerance genes. The most common AMR genes were mdfA (84.8%), aph(3″)-Ib (52.7%), bla TEM-1B (45.6%) and aph(6)-Id (45.6%). Genes relevant to public health, such as the extended-spectrum β-lactamases (15.4%), bla CTX-M type or bla SHV, or mobile colistin resistance (mcr) genes (13.4%), such as mcr-1, were also found. HM tolerance genes were present in almost every genome but were rarely located in plasmids, and, in most cases, AMR and HM tolerance genes were not located on the same plasmids. Of the genes predicted to increase tolerance to HMs, only those with activity to mercury were co-located on plasmids alongside other AMR determinants. However, mercury is rarely used in pig farming and does not support a scenario where AMR and HM genes are co-selected. Finally, we identified the exclusive association between mcr-4 and ColE10 plasmid, which may help target interventions to curtail its spread among pig Escherichia coli.
Collapse
Affiliation(s)
- Biel Garcias
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - William Monteith
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Vidal
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Laia Aguirre
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Carolin M. Kobras
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Marga Martin
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Laila Darwich
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| |
Collapse
|
3
|
Jehanne Q, Bénéjat L, Ducournau A, Aptel J, Pivard M, Gillet L, Jauvain M, Lehours P. Increasing rates of erm(B) and erm(N) in human Campylobacter coli and Campylobacter jejuni erythromycin-resistant isolates between 2018 and 2023 in France. Antimicrob Agents Chemother 2025; 69:e0166824. [PMID: 39745413 PMCID: PMC11823653 DOI: 10.1128/aac.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/15/2024] [Indexed: 02/14/2025] Open
Abstract
Macrolides are the first-line compounds used for the treatment of campylobacteriosis. Macrolide resistance remains low in France, with mutations in 23S rDNA being the main associated resistance mechanism. However, two erythromycin methyltransferases have also been identified: erm(B), which is mainly described in animal reservoirs, and erm(N), which is strictly described in humans. In France, between 2018 and 2023, erythromycin-resistant Campylobacter species strains were systematically sequenced and analyzed via an in-house bioinformatics pipeline, leading to the identification of the resistomes, MLST and cgMLST, as well as the characterization of the source of contamination. In this study, the genomes of 280 erythromycin-resistant strains were sequenced over a 6-year period. The identification of erythromycin-associated resistance markers revealed a predominance of 23S rDNA mutations, in 90% of cases, but also erm-type methyltransferases in 10% of cases: 75% for erm(N) and 25% for erm(B). Over this period, an important increase in the rate of erm-positive isolates was observed: 2% in 2018 compared with 13% in 2023, with 10% for erm(N) and 3% for erm(B). erm(N) has been found exclusively within a CRISPR-Cas9 operon, whereas erm(B) has been found within diverse types of resistance genomic islands. Each erm(N)- or erm(B)-positive isolate had at least two other resistance markers (mostly ciprofloxacin, tetracycline, or ampicillin) and often carried aminoglycoside-associated resistance genes. The majority of the erm-positive isolates were obtained from chicken. The increasing rates of erm-positive and multiresistant isolates make the monitoring of erythromycin-resistant Campylobacter strains, specifically within the chicken meat production, a topic of serious importance.
Collapse
Affiliation(s)
- Quentin Jehanne
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Astrid Ducournau
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Johanna Aptel
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Marie Pivard
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Léo Gillet
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Marine Jauvain
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, Nouvelle-Aquitaine, France
| | - Philippe Lehours
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, Nouvelle-Aquitaine, France
| |
Collapse
|
4
|
Mane A, Sanderson H, White AP, Zaheer R, Beiko R, Chauve C. Plaseval: a framework for comparing and evaluating plasmid detection tools. BMC Bioinformatics 2024; 25:365. [PMID: 39592962 PMCID: PMC11590284 DOI: 10.1186/s12859-024-05941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Plasmids play a major role in the transfer of antimicrobial resistance (AMR) genes among bacteria via horizontal gene transfer. The identification of plasmids in short-read assemblies is a challenging problem and a very active research area. Plasmid binning aims at detecting, in a draft genome assembly, groups (bins) of contigs likely to originate from the same plasmid. Several methods for plasmid binning have been developed recently, such as PlasBin-flow, HyAsP, gplas, MOB-suite, and plasmidSPAdes. This motivates the problem of evaluating the performances of plasmid binning methods, either against a given ground truth or between them. RESULTS We describe PlasEval, a novel method aimed at comparing the results of plasmid binning tools. PlasEval computes a dissimilarity measure between two sets of plasmid bins, that can originate either from two plasmid binning tools, or from a plasmid binning tool and a ground truth set of plasmid bins. The PlasEval dissimilarity accounts for the contig content of plasmid bins, the length of contigs and is repeat-aware. Moreover, the dissimilarity score computed by PlasEval is broken down into several parts, that allows to understand qualitative differences between the compared sets of plasmid bins. We illustrate the use of PlasEval by benchmarking four recently developed plasmid binning tools-PlasBin-flow, HyAsP, gplas, and MOB-recon-on a data set of 53 E. coli bacterial genomes. CONCLUSION Analysis of the results of plasmid binning methods using PlasEval shows that their behaviour varies significantly. PlasEval can be used to decide which specific plasmid binning method should be used for a specific dataset. The disagreement between different methods also suggests that the problem of plasmid binning on short-read contigs requires further research. We believe that PlasEval can prove to be an effective tool in this regard. PlasEval is publicly available at https://github.com/acme92/PlasEval.
Collapse
Affiliation(s)
- Aniket Mane
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Haley Sanderson
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Aaron P White
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Robert Beiko
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Halifax, Nova Scotia, Canada
| | - Cédric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
5
|
Song L, Nielsen LJD, Xu X, Mohite OS, Nuhamunada M, Xu Z, Murphy R, Bodawatta K, Poulsen M, Abdulla MH, Sonnenschein EC, Weber T, Kovács ÁT. Expanding the genome information on Bacillales for biosynthetic gene cluster discovery. Sci Data 2024; 11:1267. [PMID: 39572589 PMCID: PMC11582795 DOI: 10.1038/s41597-024-04118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
This study showcases 121 new genomes of spore-forming Bacillales from strains collected globally from a variety of habitats, assembled using Oxford Nanopore long-read and MGI short-read sequences. Bacilli are renowned for their capacity to produce diverse secondary metabolites with use in agriculture, biotechnology, and medicine. These secondary metabolites are encoded within biosynthetic gene clusters (smBGCs). smBGCs have significant research interest due to their potential as sources of new bioactivate compounds. Our dataset includes 62 complete genomes, 2 at chromosome level, and 57 at contig level, covering a genomic size range from 3.50 Mb to 7.15 Mb. Phylotaxonomic analysis revealed that these genomes span 16 genera, with 69 of them belonging to Bacillus. A total of 1,176 predicted BGCs were identified by in silico genome mining. We anticipate that the open-access data presented here will expand the reported genomic information of spore-forming Bacillales and facilitate a deeper understanding of the genetic basis of Bacillales' potential for secondary metabolite production.
Collapse
Affiliation(s)
- Lijie Song
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | | | - Xinming Xu
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
- Institute of Biology, Leiden University, 2333BE, Leiden, Netherlands
| | - Omkar Satyavan Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Matin Nuhamunada
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Zhihui Xu
- Key laboratory of organic-based fertilizers of China and Jiangsu Provincial Key Laboratory for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Rob Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Kasun Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, 2100, Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mohamed Hatha Abdulla
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kerala, 682 016, India
| | - Eva C Sonnenschein
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
- Institute of Biology, Leiden University, 2333BE, Leiden, Netherlands.
| |
Collapse
|
6
|
Jehanne Q, Bénéjat L, Azzi Martin L, Korolik V, Ducournau A, Aptel J, Ménard A, Jauvain M, Aguilera C, Doreille A, Mesnard L, Eckert C, Lehours P. First isolation of Campylobacter vicugnae sp. nov. in humans suffering from gastroenteritis. Microbiol Spectr 2024; 12:e0152324. [PMID: 39365090 PMCID: PMC11537083 DOI: 10.1128/spectrum.01523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
The present study describes the first isolation of a recently described Campylobacter species, Campylobacter vicugnae, in humans. The isolates were recovered by two independent French laboratories in 2020 and 2022 from a man and a woman suffering from gastroenteritis. Biochemical and growth characteristics, and electron microscopy for these two strains indicated that they belong to Campylobacter genus. 16S rDNA and GyrA-based phylogeny, as well as average nucleotide identity and in silico DNA-DNA Hybridization analyses revealed that both strains belong to the Campylobacter vicugnae species. Both isolates possess a complete cytolethal distending toxin (CDT) locus with cdtA, cdtB, and cdtC, and features of CDT activity were demonstrated in vitro with Caco-2 intestinal epithelial cells. Our data suggest that these two isolates of C. vicugnae were associated with gastroenteritis in humans and induced major cytopathogenic effects in vitro. C. vicugnae is likely to be a novel human pathogen, with a source of foodborne infection that needs to be determined.IMPORTANCECampylobacter species that display toxicity features are a worldwide public health issue. In clinical contexts, it is crucial to identify which isolate could be an urgent threat to a patient. Actual and widely used laboratory methods such as mass spectrometry or PCR may be flawed in the field of species identification. In contrast, the present study shows that next-generation sequencing allows to precisely identify isolates to species level that may have been omitted otherwise. Moreover, it helps to identify emerging species before they become a threat to human health. Recovery of a new Campylobacter species in human sample, such as the new species "Campylobacter vicugnae," is an important step for the identification of emerging pathogens posing threat to global health.
Collapse
Affiliation(s)
- Quentin Jehanne
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Lamia Azzi Martin
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Astrid Ducournau
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Johanna Aptel
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Armelle Ménard
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | - Marine Jauvain
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | | | - Alice Doreille
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- AP-HP, Soins Intensifs Néphrologique et Rein Aigu, Hôpital Tenon, Paris, France
| | - Laurent Mesnard
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- AP-HP, Soins Intensifs Néphrologique et Rein Aigu, Hôpital Tenon, Paris, France
| | - Catherine Eckert
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- Département de Bactériologie, AP-HP, Sorbonne-Université, Hôpital Saint-Antoine, Paris, France
| | - Philippe Lehours
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| |
Collapse
|
7
|
Tantry M, Shaw T, Rao S, Mukhopadhyay C, Tellapragada C, Kalwaje Eshwara V. Heterogeneity and Genomic Plasticity of Acinetobacter baumannii and Acinetobacter nosocomialis Isolates Recovered from Clinical Samples in India. Curr Microbiol 2024; 81:415. [PMID: 39425793 DOI: 10.1007/s00284-024-03942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Acinetobacter baumannii and Acinetobacter nosocomialis are the imperious pathogens in the intensive care units. We aimed to explore the genomic features of these pathogens to understand the factors influencing their plasticity. Using next-generation sequencing, two carbapenem-resistant A. baumannii (AbaBS-3, AbaETR-4) isolates and a pan-susceptible A. nosocomialis (AbaAS-5) isolate were characterised. All genomes exhibited 94% similarity with a degree of heterogeneity. AbaBS-3 and AbaETR-4 harboured antibiotic resistance gene (ARG) repertoire to most antibiotic classes. Carbapenem resistance was due to blaOXA-23 and blaOXA-66 besides the antibiotic efflux pumps. Diverse mobile genetic elements (MGE), insertion sequences (IS), prophages and virulence determinants with a plethora of stress response genes were identified in all three genomes. Class-1 integron in AbaETR-4, encoded genes that confer resistance to aminoglycosides, phenicol, sulfonamides and disinfectants. Substitutions in LpxACD and PmrCAB of AbaETR-4 confirmed the colistin resistance in vitro. Novel mutations in piuA, responsible for transporting cefiderocol, were found in AbaBS-3 and AbaETR-4. Plasmids carrying toxin-antitoxin systems, ARGs and ISs were present in these genomes. All three genomes harboured diverse protein secretion systems, virulence determinants related to immune evasion, adherence, biofilm formation and iron acquisition systems. AbaAS-5 exclusively harboured serine protease pkf, and CpaA substrate of type-II secretion system but lacked the acinetobactin-iron acquisition system. Our work delivers a holistic genome characterization of A. baumannii, coupled with a trailblazing attempt to study A. nosocomialis from India. The presence of ARGs and potential virulence factors interspersed with MGE is a cause for concern, depicting the dynamic adaptability mediated by genetic recombination.
Collapse
Affiliation(s)
- Manasa Tantry
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tushar Shaw
- Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore, 560054, India
| | - Shwethapriya Rao
- Department of Critical Care, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 14183, Stockholm, Sweden
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Contarin R, Drapeau A, François P, Madec JY, Haenni M, Dordet-Frisoni E. The interplay between mobilome and resistome in Staphylococcus aureus. mBio 2024; 15:e0242824. [PMID: 39287446 PMCID: PMC11481524 DOI: 10.1128/mbio.02428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Antibiotic resistance genes (ARGs) in Staphylococcus aureus can disseminate vertically through successful clones, but also horizontally through the transfer of genes conveyed by mobile genetic elements (MGEs). Even though underexplored, MGE/ARG associations in S. aureus favor the emergence of multidrug-resistant clones, which are challenging therapeutic success in both human and animal health. This study investigated the interplay between the mobilome and the resistome of more than 10,000 S. aureus genomes from human and animal origin. The analysis revealed a remarkable diversity of MGEs and ARGs, with plasmids and transposons being the main carriers of ARGs. Numerous MGE/ARG associations were identified, suggesting that MGEs play a critical role in the dissemination of resistance. A high degree of similarity was observed in MGE/ARG associations between human and animal isolates, highlighting the potential for unrestricted spread of ARGs between hosts. Our results showed that in parallel to clonal expansion, MGEs and their associated ARGs can spread across different strain types sequence types (STs), favoring the evolution of these clones and their adaptation in selective environments. The high variability of MGE/ARG associations within individual STs and their spread across several STs highlight the crucial role of MGEs in shaping the S. aureus resistome. Overall, this study provides valuable insights into the complex interplay between MGEs and ARGs in S. aureus, emphasizing the need to elucidate the mechanisms governing the epidemic success of MGEs, particularly those implicated in ARG transfer.IMPORTANCEThe research presented in this article highlights the importance of understanding the interactions between mobile genetic elements (MGEs) and antibiotic resistance genes (ARGs) carried by Staphylococcus aureus, a versatile bacterium that can be both a harmless commensal and a dangerous pathogen for humans and animals. S. aureus has a great capacity to acquire and disseminate ARGs, enabling efficient adaption to various environmental or clinical conditions. By analyzing a large data set of S. aureus genomes, we highlighted the substantial role of MGEs, particularly plasmids and transposons, in disseminating ARGs within and between S. aureus populations, bypassing host barriers. Given that multidrug-resistant S. aureus strains are classified as a high-priority pathogen by global health organizations, this knowledge is crucial for understanding the complex dynamics of transmission of antibiotic resistance in this species.
Collapse
Affiliation(s)
- Rachel Contarin
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Antoine Drapeau
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | |
Collapse
|
9
|
Pena-Fernández N, van der Graaf-van Bloois L, Duim B, Zomer A, Wagenaar JA, Ocejo M, Lavín JL, Collantes-Fernández E, Hurtado A, Aduriz G. Campylobacter fetus Plasmid Diversity: Comparative Analysis of Fully Sequenced Plasmids and Proposed Classification Scheme. Genome Biol Evol 2024; 16:evae203. [PMID: 39392238 PMCID: PMC11467750 DOI: 10.1093/gbe/evae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Campylobacter fetus is an animal pathogen that contains 2 mammal-associated subspecies: Campylobacter fetus subsp. fetus (Cff) and Campylobacter fetus subsp. venerealis (Cfv) including its biovar intermedius that exhibit different biochemical traits and differences in pathogenicity. Although plasmids are important in the horizontal transfer of antimicrobial resistance genes and virulence factors, C. fetus plasmids are understudied. Here, the closed sequences of 12 plasmids from Spanish C. fetus isolates were compared with the publicly available DNA sequences of C. fetus plasmids and other members of the Campylobacterales order. Sizes of C. fetus plasmids from Spanish isolates ranged between 4 and 50 kb and most of them (10/12) were potentially conjugative. Comparative analysis of the plasmids' gene content revealed a close genetic relationship between the plasmids of C. fetus isolated in Spain and those from other geographical regions, while being clearly distinct from plasmids of other Campylobacter species. Furthermore, C. fetus plasmids were grouped into two main clusters regardless of their geographic location or lineage. The distribution pattern of relaxase, replicase, and single-stranded DNA binding SSB protein encoding genes showed a clustering comparable to that resulting from plasmid whole gene content analysis, suggesting its potential use for the classification of C. fetus plasmids. Most of the larger plasmids harbored mobile genetic elements. These results can help to better understand the evolutionary dynamics and pathogenic implications of C. fetus plasmids.
Collapse
Affiliation(s)
- Nerea Pena-Fernández
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Departamento de Sistemas de Producción Animal, 33300 Villaviciosa, Spain
- Animal Health Department, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160 Derio, Spain
| | - Linda van der Graaf-van Bloois
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Birgitta Duim
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aldert Zomer
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Medelin Ocejo
- Animal Health Department, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160 Derio, Spain
| | - Jose Luís Lavín
- Department of Applied Mathematics, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160 Derio, Spain
| | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ana Hurtado
- Animal Health Department, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160 Derio, Spain
| | - Gorka Aduriz
- Animal Health Department, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160 Derio, Spain
| |
Collapse
|
10
|
Wang W, Chen X, Ma J, Li W, Long Y. Activity of Streptomyces globosus OPF-9 against the important pathogen Alternaria longipes and biocontrol mechanisms revealed by multi-omic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106094. [PMID: 39277405 DOI: 10.1016/j.pestbp.2024.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Plant diseases caused by fungal pathogens represent main threats to the yield and quality of agricultural products, and Alternaria longipes is one of the most important pathogens in agricultural systems. Biological control is becoming increasingly prevalent in the management of plant diseases due to its environmental compatibility and sustainability. In the present study, a bacterial strain, designated as OPF-9, was shown to effectively inhibit the pathogen A. longipes, which was identified as Streptomyces globosus. The culture conditions for OPF-9 were optimized through a stepwise approach and the fermentation broth acquired displayed an excellent inhibitory activity against A. longipes in vitro and in vivo. Further investigations suggested that the fermentation broth exhibited strong stability under a range of adverse environmental conditions. To reveal the molecular bases of OPF-9 in inhibiting pathogens, the whole-genome sequencing and assembly were conducted on this strain. It showed that the genome size of OPF-9 was 7.668 Mb, containing a chromosome and two plasmids. Multiple clusters of secondary metabolite synthesis genes were identified by genome annotation analysis. In addition, the fermentation broth of strain OPF-9 was analyzed by LC-MS/MS non-target metabolomic assay and the activity of potential antifungal substances was determined. Among the five compounds evaluated, pyrogallol displayed the most pronounced inhibitory activity against A. longipes, which was found to effectively inhibit the mycelial growth of this pathogen. Overall, this study reported, for the first time, a strain of S. globosus that effectively inhibits A. longipes and revealed the underlying biocontrol mechanisms by genomic and metabolomic analyses.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xuetang Chen
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiling Ma
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Wenzhi Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
11
|
Mahmoud FM, Pritsch K, Siani R, Benning S, Radl V, Kublik S, Bunk B, Spröer C, Schloter M. Comparative genomic analysis of strain Priestia megaterium B1 reveals conserved potential for adaptation to endophytism and plant growth promotion. Microbiol Spectr 2024; 12:e0042224. [PMID: 38916310 PMCID: PMC11302069 DOI: 10.1128/spectrum.00422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
In our study, we aimed to explore the genomic and phenotypic traits of Priestia megaterium strain B1, which was isolated from root material of healthy apple plants, to adapt to the endophytic lifestyle and promote plant growth. We identified putative genes encoding proteins involved in chemotaxis, flagella biosynthesis, biofilm formation, secretory systems, detoxification, transporters, and transcription regulation. Furthermore, B1 exhibited both swarming and swimming motilities, along with biofilm formation. Both genomic and physiological analyses revealed the potential of B1 to promote plant growth through the production of indole-3-acetic acid and siderophores, as well as the solubilization of phosphate and zinc. To deduce potential genomic features associated with endophytism across members of P. megaterium strains, we conducted a comparative genomic analysis involving 27 and 31 genomes of strains recovered from plant and soil habitats, respectively, in addition to our strain B1. Our results indicated a closed pan genome and comparable genome size of strains from both habitats, suggesting a facultative host association and adaptive lifestyle to both habitats. Additionally, we performed a sparse Partial Least Squares Discriminant Analysis to infer the most discriminative functional features of the two habitats based on Pfam annotation. Despite the distinctive clustering of both groups, functional enrichment analysis revealed no significant enrichment of any Pfam domain in both habitats. Furthermore, when assessing genetic elements related to adaptation to endophytism in each individual strain, we observed their widespread presence among strains from both habitats. Moreover, all members displayed potential genetic elements for promoting plant growth.IMPORTANCEBoth genomic and phenotypic analyses yielded valuable insights into the capacity of P. megaterium B1 to adapt to the plant niche and enhance its growth. The comparative genomic analysis revealed that P. megaterium members, whether derived from soil or plant sources, possess the essential genetic machinery for interacting with plants and enhancing their growth. The conservation of these traits across various strains of this species extends its potential application as a bio-stimulant in diverse environments. This significance also applies to strain B1, particularly regarding its application to enhance the growth of plants facing apple replant disease conditions.
Collapse
Affiliation(s)
- Fatma M. Mahmoud
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Karin Pritsch
- Research Unit for Environmental Simulations, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Roberto Siani
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sarah Benning
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Environmental Microbiology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Zhang J, Zhao L, Wang W, Zhang Q, Wang XT, Xing DF, Ren NQ, Lee DJ, Chen C. Large language model for horizontal transfer of resistance gene: From resistance gene prevalence detection to plasmid conjugation rate evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172466. [PMID: 38626826 DOI: 10.1016/j.scitotenv.2024.172466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.
Collapse
Affiliation(s)
- Jiabin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
13
|
Song T, Gupta S, Sorokin Y, Frenkel O, Cytryn E, Friedman J. A Burkholderia cenocepacia-like environmental isolate strongly inhibits the plant fungal pathogen Zymoseptoria tritici. Appl Environ Microbiol 2024; 90:e0222223. [PMID: 38624199 PMCID: PMC11107150 DOI: 10.1128/aem.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.
Collapse
Affiliation(s)
- Tingting Song
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Suyash Gupta
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Yael Sorokin
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Omer Frenkel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Jonathan Friedman
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Hu R, Ren M, Liang S, Zou S, Li D. Effects of antibiotic resistance genes on health risks of rivers in habitat of wild animals under human disturbance - based on analysis of antibiotic resistance genes and virulence factors in microbes of river sediments. Ecol Evol 2024; 14:e11435. [PMID: 38799388 PMCID: PMC11126646 DOI: 10.1002/ece3.11435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Studying the ecological risk of antibiotic resistance genes (ARGs) to wild animals from human disturbance (HD) is an important aspect of "One Health". The highest risk level of ARGs is reflected in pathogenic antibiotic-resistant bacteria (PARBs). Metagenomics was used to analyze the characteristics of PARBs in river sediments. Then, the total contribution of ARGs and virulence factors (VFs) were assessed to determine the health risk of PARBs to the rivers. Results showed that HD increased the diversity and total relative abundance of ARG groups, as well as increased the kinds of PARBs, their total relative abundance, and their gene numbers of ARGs and VFs. The total health risks of PARBs in wild habitat group (CK group), agriculture group (WA group), grazing group (WG group), and domestic sewage group (WS group) were 0.067 × 10-3, -1.55 × 10-3, 87.93 × 10-3, and 153.53 × 10-3, respectively. Grazing and domestic sewage increased the health risk of PARBs. However, agriculture did not increase the total health risk of the rivers, but agriculture also introduced new pathogenic mechanisms and increased the range of drug resistance. More serious was the increased transfer risk of ARGs in the PARBs from the rivers to wild animals under agriculture and grazing. If the ARGs in the PARBs are transferred from the rivers under HD to wild animals, then wild animals may face severe challenges of acquiring new pathogenic mechanisms and developing resistance to antibiotics. Further analysis showed that the total phosphorus (TP) and dissolved organic nitrogen (DON) were related to the risk of ARGs. Therefore, controlling human emissions of TP and DON could reduce the health risk of rivers.
Collapse
Affiliation(s)
- Rongpan Hu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Minxing Ren
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Sumei Liang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Shuzhen Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus Roxellana at China West Normal University of Sichuan ProvinceChina West Normal UniversityNanchongChina
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus Roxellana at China West Normal University of Sichuan ProvinceChina West Normal UniversityNanchongChina
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan ProvinceScience and Technology Department of Sichuan ProvinceChengduChina
| |
Collapse
|
15
|
Paganini JA, Kerkvliet JJ, Vader L, Plantinga NL, Meneses R, Corander J, Willems RJL, Arredondo-Alonso S, Schürch AC. PlasmidEC and gplas2: an optimized short-read approach to predict and reconstruct antibiotic resistance plasmids in Escherichia coli. Microb Genom 2024; 10:001193. [PMID: 38376388 PMCID: PMC10926690 DOI: 10.1099/mgen.0.001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Accurate reconstruction of Escherichia coli antibiotic resistance gene (ARG) plasmids from Illumina sequencing data has proven to be a challenge with current bioinformatic tools. In this work, we present an improved method to reconstruct E. coli plasmids using short reads. We developed plasmidEC, an ensemble classifier that identifies plasmid-derived contigs by combining the output of three different binary classification tools. We showed that plasmidEC is especially suited to classify contigs derived from ARG plasmids with a high recall of 0.941. Additionally, we optimized gplas, a graph-based tool that bins plasmid-predicted contigs into distinct plasmid predictions. Gplas2 is more effective at recovering plasmids with large sequencing coverage variations and can be combined with the output of any binary classifier. The combination of plasmidEC with gplas2 showed a high completeness (median=0.818) and F1-Score (median=0.812) when reconstructing ARG plasmids and exceeded the binning capacity of the reference-based method MOB-suite. In the absence of long-read data, our method offers an excellent alternative to reconstruct ARG plasmids in E. coli.
Collapse
Affiliation(s)
- Julian A. Paganini
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jesse J. Kerkvliet
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisa Vader
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nienke L. Plantinga
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rodrigo Meneses
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Arredondo-Alonso
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Anita C. Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Sielemann J, Sielemann K, Brejová B, Vinař T, Chauve C. plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph. Front Microbiol 2023; 14:1267695. [PMID: 37869681 PMCID: PMC10587606 DOI: 10.3389/fmicb.2023.1267695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Identification of plasmids from sequencing data is an important and challenging problem related to antimicrobial resistance spread and other One-Health issues. We provide a new architecture for identifying plasmid contigs in fragmented genome assemblies built from short-read data. We employ graph neural networks (GNNs) and the assembly graph to propagate the information from nearby nodes, which leads to more accurate classification, especially for short contigs that are difficult to classify based on sequence features or database searches alone. We trained plASgraph2 on a data set of samples from the ESKAPEE group of pathogens. plASgraph2 either outperforms or performs on par with a wide range of state-of-the-art methods on testing sets of independent ESKAPEE samples and samples from related pathogens. On one hand, our study provides a new accurate and easy to use tool for contig classification in bacterial isolates; on the other hand, it serves as a proof-of-concept for the use of GNNs in genomics. Our software is available at https://github.com/cchauve/plasgraph2 and the training and testing data sets are available at https://github.com/fmfi-compbio/plasgraph2-datasets.
Collapse
Affiliation(s)
- Janik Sielemann
- Computational Biology, Faculty of Biology, Center for Biotechnology & Graduate School Digital Infrastructures for the Life Sciences (DILS), Bielefeld Institute for Bioinformatics Infrastructure, Bielefeld University, Bielefeld, Germany
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology & Graduate School Digital Infrastructures for the Life Sciences (DILS), Bielefeld Institute for Bioinformatics Infrastructure, Bielefeld University, Bielefeld, Germany
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
17
|
Escudero-Agudelo J, Martínez-Villalobos J, Arocha-Garza H, Galán-Wong LJ, Avilés-Arnaut H, De la Torre-Zavala S. Systematic bioprospection for cellulolytic actinomycetes in the Chihuahuan Desert: isolation and enzymatic profiling. PeerJ 2023; 11:e16119. [PMID: 37790635 PMCID: PMC10542393 DOI: 10.7717/peerj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/27/2023] [Indexed: 10/05/2023] Open
Abstract
The quest for microbial cellulases has intensified as a response to global challenges in biofuel production. The efficient deconstruction of lignocellulosic biomass holds promise for generating valuable products in various industries such as food, textile, and detergents. This article presents a systematic bioprospection aimed at isolating actinomycetes with exceptional cellulose deconstruction capabilities. Our methodology explored the biodiverse oligotrophic region of Cuatro Cienegas, Coahuila, within the Chihuahuan Desert. Among the evaluated actinomycetes collection, 78% exhibited cellulolytic activity. Through a meticulous screening process based on enzymatic index evaluation, we identified a highly cellulolytic Streptomyces strain for further investigation. Submerged fermentation of this strain revealed an endoglucanase enzymatic activity of 149 U/mg. Genomic analysis of strain Streptomyces sp. STCH565-A revealed unique configurations of carbohydrate-active enzyme (CAZyme) genes, underscoring its potential for lignocellulosic bioconversion applications. These findings not only highlight the significance of the Chihuahuan Desert as a rich source of cellulolytic microorganisms but also offer insights into the systematic exploration and selection of high-performing cellulolytic microorganisms for application in diverse environmental contexts. In conclusion, our bioprospecting study lays a foundation for harnessing the cellulolytic potential of actinomycetes from the Chihuahuan Desert, with implications for advancing cellulose deconstruction processes in various industries. The findings can serve as a blueprint for future bioprospecting efforts in different regions, facilitating the targeted discovery of microorganisms with exceptional cellulosic deconstruction capabilities.
Collapse
Affiliation(s)
- Janneth Escudero-Agudelo
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Juan Martínez-Villalobos
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Hector Arocha-Garza
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Luis Jesús Galán-Wong
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Hamlet Avilés-Arnaut
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
18
|
Yang JT, Zhang LJ, Lu Y, Zhang RM, Jiang HX. Genomic Insights into Global blaCTX-M-55-Positive Escherichia coli Epidemiology and Transmission Characteristics. Microbiol Spectr 2023; 11:e0108923. [PMID: 37358409 PMCID: PMC10434037 DOI: 10.1128/spectrum.01089-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/27/2023] Open
Abstract
In recent years, blaCTX-M-55-positive Escherichia coli has been widely reported in multiple locations with an increasing trend in prevalence, yet few studies have comprehensively analyzed the transmission characteristics and epidemiological patterns of blaCTX-M-55-positive E. coli. Here, we constructed a blaCTX-M-55-positive E. coli global genomic data set as completely as possible and explored the epidemiology and potential impact of blaCTX-M-55-positive E. coli on a global scale by high-resolution bioinformatics methods. The results show that blaCTX-M-55-positive E. coli has spread widely worldwide, especially in Asia, with the rich sequence typing (ST) diversity and high proportion of auxiliary genome occupancy indicating a high degree of openness. The phylogenetic tree suggests that blaCTX-M-55-positive E. coli is frequently clonally transmitted between the three human-animal environments and often cotransmitted with fosA, mcr, blaNDM, and tet(X). The stable presence of InclI1 and InclI2 in different hosts from different sources suggests that this part of the plasmid drives the widespread transmission of blaCTX-M-55-positive E. coli. We inductively clustered all blaCTX-M-55 flanking environmental gene structures and obtained five types. Notably, "ISEcp1-blaCTX-M-55-orf477-(Tn2)" and "IS26(IS15DI)-hp-hp-blaCTX-M-55-orf477-hp-blaTEM-IS26-hp-IS26-Tn2" are dominant in "humans" and in "animals and related foods," respectively. Overall, our findings highlight the importance of whole-genome sequencing-based surveillance in exploring the transmission and evolution of blaCTX-M-55-positive E. coli in the context of "One Health," and they serve as a reminder to strengthen the surveillance of blaCTX-M-55-positive E. coli in order to address the potential risk of future large outbreaks. IMPORTANCE CTX-M-55 was first discovered in Thailand in 2004, and today, this enzyme is the most common CTX-M subtype in E. coli of animal origin in China. Thus, blaCTX-M-55-positive E. coli getting widely spread is a growing public health problem. Although prevalence surveys of blaCTX-M-55-positive E. coli in different hosts have been widely reported in recent years, they remain insufficient in "One Health" context and from a global comprehensive perspective. Here, we constructed a genomic database of 2144 blaCTX-M-55-positive E. coli and used bioinformatics methods to resolve the spread and evolution of blaCTX-M-55-positive E. coli. The results suggest a potential risk of rapid transmission of blaCTX-M-55-positive E. coli and that long-term continuous surveillance of blaCTX-M-55-positive E. coli should be emphasized.
Collapse
Affiliation(s)
- Jin-Tao Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li-Juan Zhang
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong-Min Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hong-Xia Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Jati AP, Sola-Campoy PJ, Bosch T, Schouls LM, Hendrickx APA, Bautista V, Lara N, Raangs E, Aracil B, Rossen JWA, Friedrich AW, Navarro Riaza AM, Cañada-García JE, Ramírez de Arellano E, Oteo-Iglesias J, Pérez-Vázquez M, García-Cobos S. Widespread Detection of Yersiniabactin Gene Cluster and Its Encoding Integrative Conjugative Elements (ICE Kp) among Nonoutbreak OXA-48-Producing Klebsiella pneumoniae Clinical Isolates from Spain and the Netherlands. Microbiol Spectr 2023; 11:e0471622. [PMID: 37310221 PMCID: PMC10434048 DOI: 10.1128/spectrum.04716-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
In this study, we determined the presence of virulence factors in nonoutbreak, high-risk clones and other isolates belonging to less common sequence types associated with the spread of OXA-48-producing Klebsiella pneumoniae clinical isolates from The Netherlands (n = 61) and Spain (n = 53). Most isolates shared a chromosomally encoded core of virulence factors, including the enterobactin gene cluster, fimbrial fim and mrk gene clusters, and urea metabolism genes (ureAD). We observed a high diversity of K-Locus and K/O loci combinations, KL17 and KL24 (both 16%), and the O1/O2v1 locus (51%) being the most prevalent in our study. The most prevalent accessory virulence factor was the yersiniabactin gene cluster (66.7%). We found seven yersiniabactin lineages-ybt 9, ybt 10, ybt 13, ybt 14, ybt 16, ybt 17, and ybt 27-which were chromosomally embedded in seven integrative conjugative elements (ICEKp): ICEKp3, ICEKp4, ICEKp2, ICEKp5, ICEKp12, ICEKp10, and ICEKp22, respectively. Multidrug-resistant lineages-ST11, ST101, and ST405-were associated with ybt 10/ICEKp4, ybt 9/ICEKp3, and ybt 27/ICEKp22, respectively. The fimbrial adhesin kpi operon (kpiABCDEFG) was predominant among ST14, ST15, and ST405 isolates, as well as the ferric uptake system kfuABC, which was also predominant among ST101 isolates. No convergence of hypervirulence and resistance was observed in this collection of OXA-48-producing K. pneumoniae clinical isolates. Nevertheless, two isolates, ST133 and ST792, were positive for the genotoxin colibactin gene cluster (ICEKp10). In this study, the integrative conjugative element, ICEKp, was the major vehicle for yersiniabactin and colibactin gene clusters spreading. IMPORTANCE Convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae isolates has been reported mostly related to sporadic cases or small outbreaks. Nevertheless, little is known about the real prevalence of carbapenem-resistant hypervirulent K. pneumoniae since these two phenomena are often separately studied. In this study, we gathered information on the virulent content of nonoutbreak, high-risk clones (i.e., ST11, ST15, and ST405) and other less common STs associated with the spread of OXA-48-producing K. pneumoniae clinical isolates. The study of virulence content in nonoutbreak isolates can help us to expand information on the genomic landscape of virulence factors in K. pneumoniae population by identifying virulence markers and their mechanisms of spread. Surveillance should focus not only on antimicrobial resistance but also on virulence characteristics to avoid the spread of multidrug and (hyper)virulent K. pneumoniae that may cause untreatable and more severe infections.
Collapse
Affiliation(s)
- Afif P. Jati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
| | - Pedro J. Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Thijs Bosch
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo M. Schouls
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Antoni P. A. Hendrickx
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - John W. A. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alex W. Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| | - Ana M. Navarro Riaza
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - The Dutch and Spanish Collaborative Working Groups on Surveillance on Carbapenemase-Producing Enterobacterales
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| |
Collapse
|
20
|
Woldeyohannis NN, Desta AF. Fate of antimicrobial resistance genes (ARG) and ARG carriers in struvite production process from human urine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:783-792. [PMID: 37469114 DOI: 10.1080/10934529.2023.2235246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
Struvite, a human urine-derived fertilizer types, is characterized by its low water solubility that renders it a slow-releasing eco-friendly fertilizer. Knowing the fate of antibiotic resistance genes in struvite is important since human urine carries microorganisms, viruses and mobilomes. In this study, urine samples were collected and struvite production was done using MgCl2. From the fresh, stored urine and struvite, DNA was extracted and metagenomic sequencing was done using Illumina HiSeqX. Metagenome-derived genome sequence analysis revealed the dominance of phages of Streptococcus, Bacillus and Escherichia, with nearly 50% abundance of streptococcus phage in fresh urine. Increased antibiotic resistance genes were found in the stored urine than in fresh and struvite samples. The top five resistance genes in all the three samples were to aminoglycosides, carbapenem, chloramphenicol, erythromycin and efflux pump, with key carrying pathogens including Acinetobacter, Aeromonas and Enterococcus. The identified families for carbapenem, aminoglycoside resistance and efflux pump were shown persistent in struvite with a shift in gene families. The detection of resistance-gene-laden mobilomes, including the last-resort antibiotics in the struvite sample, requires due attention before the implementation of struvite as fertilizer. Further optimization of the struvite production process with regard to the minimization of mobilomes is recommended.
Collapse
Affiliation(s)
- Nebiyat N Woldeyohannis
- Microbial, Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adey F Desta
- Microbial, Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
21
|
Mane A, Faizrahnemoon M, Vinař T, Brejová B, Chauve C. PlasBin-flow: a flow-based MILP algorithm for plasmid contigs binning. Bioinformatics 2023; 39:i288-i296. [PMID: 37387134 DOI: 10.1093/bioinformatics/btad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION The analysis of bacterial isolates to detect plasmids is important due to their role in the propagation of antimicrobial resistance. In short-read sequence assemblies, both plasmids and bacterial chromosomes are typically split into several contigs of various lengths, making identification of plasmids a challenging problem. In plasmid contig binning, the goal is to distinguish short-read assembly contigs based on their origin into plasmid and chromosomal contigs and subsequently sort plasmid contigs into bins, each bin corresponding to a single plasmid. Previous works on this problem consist of de novo approaches and reference-based approaches. De novo methods rely on contig features such as length, circularity, read coverage, or GC content. Reference-based approaches compare contigs to databases of known plasmids or plasmid markers from finished bacterial genomes. RESULTS Recent developments suggest that leveraging information contained in the assembly graph improves the accuracy of plasmid binning. We present PlasBin-flow, a hybrid method that defines contig bins as subgraphs of the assembly graph. PlasBin-flow identifies such plasmid subgraphs through a mixed integer linear programming model that relies on the concept of network flow to account for sequencing coverage, while also accounting for the presence of plasmid genes and the GC content that often distinguishes plasmids from chromosomes. We demonstrate the performance of PlasBin-flow on a real dataset of bacterial samples. AVAILABILITY AND IMPLEMENTATION https://github.com/cchauve/PlasBin-flow.
Collapse
Affiliation(s)
- Aniket Mane
- Department of Mathematics, Simon Fraser University, Burnaby V5A 1S6, Canada
| | | | - Tomáš Vinař
- Department of Applied Informatics, Comenius University, Bratislava 84248, Slovakia
| | - Broňa Brejová
- Department of Computer Science, Comenius University, Bratislava 84248, Slovakia
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby V5A 1S6, Canada
| |
Collapse
|
22
|
Zhu Q, Gao S, Xiao B, He Z, Hu S. Plasmer: an Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-mers and Genomic Features. Microbiol Spectr 2023; 11:e0464522. [PMID: 37191574 PMCID: PMC10269668 DOI: 10.1128/spectrum.04645-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Identification of plasmids in bacterial genomes is critical for many factors, including horizontal gene transfer, antibiotic resistance genes, host-microbe interactions, cloning vectors, and industrial production. There are several in silico methods to predict plasmid sequences in assembled genomes. However, existing methods have evident shortcomings, such as unbalance in sensitivity and specificity, dependency on species-specific models, and performance reduction in sequences shorter than 10 kb, which has limited their scope of applicability. In this work, we proposed Plasmer, a novel plasmid predictor based on machine-learning of shared k-mers and genomic features. Unlike existing k-mer or genomic-feature based methods, Plasmer employs the random forest algorithm to make predictions using the percent of shared k-mers with plasmid and chromosome databases combined with other genomic features, including alignment E value and replicon distribution scores (RDS). Plasmer can predict on multiple species and has achieved an average the area under the curve (AUC) of 0.996 with accuracy of 98.4%. Compared to existing methods, tests of both sliding sequences and simulated and de novo assemblies have consistently shown that Plasmer has outperforming accuracy and stable performance across long and short contigs above 500 bp, demonstrating its applicability for fragmented assemblies. Plasmer also has excellent and balanced performance on both sensitivity and specificity (both >0.95 above 500 bp) with the highest F1-score, which has eliminated the bias on sensitivity or specificity that was common in existing methods. Plasmer also provides taxonomy classification to help identify the origin of plasmids. IMPORTANCE In this study, we proposed a novel plasmid prediction tool named Plasmer. Technically, unlike existing k-mer or genomic features-based methods, Plasmer is the first tool to combine the advantages of the percent of shared k-mers and the alignment score of genomic features. This has given Plasmer (i) evident improvement in performance compared to other methods, with the best F1-score and accuracy on sliding sequences, simulated contigs, and de novo assemblies; (ii) applicability for contigs above 500 bp with highest accuracy, enabling plasmid prediction in fragmented short-read assemblies; (iii) excellent and balanced performance between sensitivity and specificity (both >0.95 above 500 bp) with the highest F1-score, which eliminated the bias on sensitivity or specificity that commonly existed in other methods; and (iv) no dependency of species-specific training models. We believe that Plasmer provides a more reliable alternative for plasmid prediction in bacterial genome assemblies.
Collapse
Affiliation(s)
- Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Binghan Xiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Ramos MS, Furlan JPR, Dos Santos LDR, Rosa RDS, Savazzi EA, Stehling EG. Patterns of antimicrobial resistance and metal tolerance in environmental Pseudomonas aeruginosa isolates and the genomic characterization of the rare O6/ST900 clone. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:713. [PMID: 37221353 DOI: 10.1007/s10661-023-11344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Pseudomonas aeruginosa can harbor several virulence and antimicrobial resistance genes (ARGs). In this regard, virulent and multidrug-resistant (MDR) P. aeruginosa strains are closely related to severe infections. In addition, this species can also carry metal tolerance genes, selecting mainly antimicrobial-resistant strains. The action of several pollutants on the environment may favor the occurrence of antimicrobial-resistant and metal-tolerant strains. Therefore, the aim of this study was to characterize potentially pathogenic, antimicrobial-resistant, and/or metal-tolerant P. aeruginosa isolates from different environmental samples (waters, soils, sediments, or sands) and to perform a whole-genome sequence-based analysis of a rare clone from residual water. Environmental isolates carried virulence genes related to adherence, invasion, and toxin production, and 79% of the isolates harbored at least five virulence genes. In addition, the isolates were resistant to different antimicrobials, including important antipseudomonal agents, and 51% of them were classified as MDR, but only ARGs associated with aminoglycoside resistance were found. Furthermore, some isolates were tolerant mainly to copper, cadmium, and zinc, and presented metal tolerance genes related to these compounds. Whole-genome characterization of an isolate with unique phenotype with simultaneous resistance to antimicrobials and metals showed nonsynonymous mutations in different antimicrobial resistance determinants and revealed a classification of O6/ST900 clone as rare, potentially pathogenic, and predisposed to acquire multidrug resistance genes. Therefore, these results draw attention to the dissemination of potentially pathogenic, antimicrobial-resistant, and metal-tolerant P. aeruginosa isolates in environmental niches, alerting to a potential risk mainly to human health.
Collapse
Affiliation(s)
- Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
24
|
Xiao D, Tong C, Yang T, Huo Z, Li Y, Zeng Z, Xiong W. First insights into antimicrobial resistance, toxigenic profiles, and genetic diversity in Bacillus cereus isolated from Chinese sausages. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
25
|
van der Graaf-van Bloois L, Duim B, Looft T, Veldman KT, Zomer AL, Wagenaar JA. Antimicrobial resistance in Campylobacter fetus: emergence and genomic evolution. Microb Genom 2023; 9. [PMID: 36862577 PMCID: PMC10132061 DOI: 10.1099/mgen.0.000934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Campylobacter fetus is a pathogen, which is primarily associated with fertility problems in sheep and cattle. In humans, it can cause severe infections that require antimicrobial treatment. However, knowledge on the development of antimicrobial resistance in C. fetus is limited. Moreover, the lack of epidemiological cut-off values (ECOFFs) and clinical breakpoints for C. fetus hinders consistent reporting about wild-type and non-wild-type susceptibility. The aim of this study was to determine the phenotypic susceptibility pattern of C. fetus and to determine the C. fetus resistome [the collection of all antimicrobial resistance genes (ARGs) and their precursors] to describe the genomic basis of antimicrobial resistance in C. fetus isolates over time. Whole-genome sequences of 295 C. fetus isolates, including isolates that were isolated in the period 1939 till the mid 1940s, before the usage of non-synthetic antimicrobials, were analysed for the presence of resistance markers, and phenotypic antimicrobial susceptibility was obtained for a selection of 47 isolates. C. fetus subspecies fetus (Cff) isolates showed multiple phenotypic antimicrobial resistances compared to C. fetus subspecies venerealis (Cfv) isolates that were only intrinsic resistant to nalidixic acid and trimethoprim. Cff isolates showed elevated minimal inhibitory concentrations for cefotaxime and cefquinome that were observed in isolates from 1943 onwards, and Cff isolates contained gyrA substitutions, which conferred resistance to ciprofloxacin. Resistances to aminoglycosides, tetracycline and phenicols were linked to acquired ARGs on mobile genetic elements. A plasmid-derived tet(O) gene in a bovine Cff isolate in 1999 was the first mobile genetic element observed, followed by detection of mobile elements containing tet(O)-aph(3')-III and tet(44)-ant(6)-Ib genes, and a plasmid from a single human isolate in 2003, carrying aph(3')-III-ant(6)-Ib and a chloramphenicol resistance gene (cat). The presence of ARGs in multiple mobile elements distributed among different Cff lineages highlights the risk for spread and further emergence of AMR in C. fetus. Surveillance for these resistances requires the establishment of ECOFFs for C. fetus.
Collapse
Affiliation(s)
- Linda van der Graaf-van Bloois
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective / WOAH Reference Laboratory for Campylobacteriosis, Utrecht/Lelystad, Netherlands
| | - Birgitta Duim
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective / WOAH Reference Laboratory for Campylobacteriosis, Utrecht/Lelystad, Netherlands
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Kees T Veldman
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Aldert L Zomer
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective / WOAH Reference Laboratory for Campylobacteriosis, Utrecht/Lelystad, Netherlands
| | - Jaap A Wagenaar
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective / WOAH Reference Laboratory for Campylobacteriosis, Utrecht/Lelystad, Netherlands.,Wageningen Bioveterinary Research, Lelystad, Netherlands
| |
Collapse
|
26
|
Salgueiro V, Manageiro V, Bandarra NM, Ferreira E, Clemente L, Caniça M. First comparative genomic characterization of the MSSA ST398 lineage detected in aquaculture and other reservoirs. Front Microbiol 2023; 14:1035547. [PMID: 36970692 PMCID: PMC10030524 DOI: 10.3389/fmicb.2023.1035547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Staphylococcus aureus ST398 can cause diseases in several different animals. In this study we analyzed ten S. aureus ST398 previously collected in three different reservoirs in Portugal (humans, gilthead seabream from aquaculture and dolphin from a zoo). Strains tested against sixteen antibiotics, by disk diffusion or minimum inhibitory concentration, showed decreased susceptibility to benzylpenicillin (all strains from gilthead seabream and dolphin) and to erythromycin with an iMLSB phenotype (nine strains), and susceptibility to cefoxitin (methicillin-susceptible S. aureus, MSSA). All strains from aquaculture belonged to the same spa type, t2383, whereas strains from the dolphin and humans belonged to spa type t571. A more detailed analysis using single nucleotide polymorphisms (SNPs)-based tree and a heat map, showed that all strains from aquaculture origin were highly related with each other and the strains from dolphin and humans were more distinct, although they were very similar in ARG, VF and MGE content. Mutations F3I and A100V in glpT gene and D278E and E291D in murA gene were identified in nine fosfomycin susceptible strains. The blaZ gene was also detected in six of the seven animal strains. The study of the genetic environment of erm(T)-type (found in nine S. aureus strains) allowed the identification of MGE (rep13-type plasmids and IS431R-type), presumably involved in the mobilization of this gene. All strains showed genes encoding efflux pumps from major facilitator superfamily (e.g., arlR, lmrS-type and norA/B-type), ATP-binding cassettes (ABC; mgrA) and multidrug and toxic compound extrusion (MATE; mepA/R-type) families, all associated to decreased susceptibility to antibiotics/disinfectants. Moreover, genes related with tolerance to heavy metals (cadD), and several VF (e.g., scn, aur, hlgA/B/C and hlb) were also identified. Insertion sequences, prophages, and plasmids made up the mobilome, some of them associated with ARG, VF and genes related with tolerance to heavy metals. This study highlights that S. aureus ST398 can be a reservoir of several ARG, heavy metals resistance genes and VF, which are essential in the adaption and survival of the bacterium in the different environments and an active agent in its dissemination. It makes an important contribution to understanding the extent of the spread of antimicrobial resistance, as well as the virulome, mobilome and resistome of this dangerous lineage.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Lurdes Clemente
- INIAV–Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- *Correspondence: Manuela Caniça,
| |
Collapse
|
27
|
Zamudio R, Boerlin P, Beyrouthy R, Madec JY, Schwarz S, Mulvey MR, Zhanel GG, Cormier A, Chalmers G, Bonnet R, Haenni M, Eichhorn I, Kaspar H, Garcia-Fierro R, Wood JLN, Mather AE. Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America. Nat Commun 2022; 13:7490. [PMID: 36509735 PMCID: PMC9744880 DOI: 10.1038/s41467-022-34970-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Extended-spectrum cephalosporins (ESCs) are critically important antimicrobial agents for human and veterinary medicine. ESC resistance (ESC-R) genes have spread worldwide through plasmids and clonal expansion, yet the distribution and dynamics of ESC-R genes in different ecological compartments are poorly understood. Here we use whole genome sequence data of Enterobacterales isolates of human and animal origin from Europe and North America and identify contrasting temporal dynamics. AmpC β-lactamases were initially more dominant in North America in humans and farm animals, only later emerging in Europe. In contrast, specific extended-spectrum β-lactamases (ESBLs) were initially common in animals from Europe and later emerged in North America. This study identifies differences in the relative importance of plasmids and clonal expansion across different compartments for the spread of different ESC-R genes. Understanding the mechanisms of transmission will be critical in the design of interventions to reduce the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Roxana Zamudio
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Racha Beyrouthy
- Microbes Intestin Inflammation et Susceptibilité de l'Hôte (M2ISH), Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, 63001, France.,Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, 63000, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Ashley Cormier
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Richard Bonnet
- Microbes Intestin Inflammation et Susceptibilité de l'Hôte (M2ISH), Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, 63001, France.,Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, 63000, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Heike Kaspar
- Department Method Standardisation, Resistance to Antibiotics Unit Monitoring of Resistance to Antibiotics, Federal Office of Consumer Protection and Food Safety, Berlin, 12277, Germany
| | - Raquel Garcia-Fierro
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK. .,University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
28
|
Li Z, Pang B, Lu X, Kan B, Kan B. The Establishment and Application of a Kraken Classifier for Salmonella Plasmid Sequence Prediction. China CDC Wkly 2022; 4:1110-1116. [PMID: 36751662 PMCID: PMC9889229 DOI: 10.46234/ccdcw2022.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Salmonella is a key intestinal pathogen of foodborne disease, and the plasmids in Salmonella are related to many biological characteristics, including virulence and drug resistance. A large number of plasmid contigs have been sequenced in bacterial draft genomes, however, these are often difficult to distinguish from chromosomal contigs. Methods In this study, three different customized Kraken databases were used to build three different Kraken classifiers. Complete genome benchmark datasets and simulated draft genome benchmark datasets were constructed. Five-fold cross-validation was used to evaluate the performance of the three different Kraken classifiers by two benchmark datasets. Results The predictive performance of the classifier based on all National Center for Biotechnology Information plasmids and Salmonella complete genomes was optimal. This optimal Kraken classifier was performed with Salmonella isolated in China. The plasmid carrying rate of Salmonella in China is 91.01%, and it was found that the Kraken classifier could find more plasmid contigs and antibiotic resistance genes (ARGs) than results derived from a plasmid replicon-based method (PlasmidFinder). Moreover, it was found that in the strains carrying ARGs, plasmids carried more ARGs [three, 95% confidence interval (CI): 1-14] than chromosomes (one, 95% CI: 1-7). Discussion We found building a high-quality customized database as a Kraken classifier to be ideal for the prediction of Salmonella plasmid sequences from bacterial draft genomes. In the future, the Kraken classifier established in this study will play a significant role in ARG monitoring.
Collapse
Affiliation(s)
- Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing Municipality, China
| | - Bo Pang
- State Key Laboratory of Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing Municipality, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing Municipality, China,Xin Lu,
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing Municipality, China,School of Public Health, Shandong University, Jinan City, China,Biao Kan,
| | | | | |
Collapse
|
29
|
Jesus HNR, Rocha DJPG, Ramos RTJ, Silva A, Brenig B, Góes-Neto A, Costa MM, Soares SC, Azevedo V, Aguiar ERGR, Martínez-Martínez L, Ocampo A, Alibi S, Dorta A, Pacheco LGC, Navas J. Pan-genomic analysis of Corynebacterium amycolatum gives insights into molecular mechanisms underpinning the transition to a pathogenic phenotype. Front Microbiol 2022; 13:1011578. [DOI: 10.3389/fmicb.2022.1011578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Corynebacterium amycolatum is a nonlipophilic coryneform which is increasingly being recognized as a relevant human and animal pathogen showing multidrug resistance to commonly used antibiotics. However, little is known about the molecular mechanisms involved in transition from colonization to the MDR invasive phenotype in clinical isolates. In this study, we performed a comprehensive pan-genomic analysis of C. amycolatum, including 26 isolates from different countries. We obtained the novel genome sequences of 8 of them, which are multidrug resistant clinical isolates from Spain and Tunisia. They were analyzed together with other 18 complete or draft C. amycolatum genomes retrieved from GenBank. The species C. amycolatum presented an open pan-genome (α = 0.854905), with 3,280 gene families, being 1,690 (51.52%) in the core genome, 1,121 related to accessory genes (34.17%), and 469 related to unique genes (14.29%). Although some classic corynebacterial virulence factors are absent in the species C. amycolatum, we did identify genes associated with immune evasion, toxin, and antiphagocytosis among the predicted putative virulence factors. Additionally, we found genomic evidence for extensive acquisition of antimicrobial resistance genes through genomic islands.
Collapse
|
30
|
Pot M, Reynaud Y, Couvin D, Dereeper A, Ferdinand S, Bastian S, Foucan T, Pommier JD, Valette M, Talarmin A, Guyomard-Rabenirina S, Breurec S. Emergence of a Novel Lineage and Wide Spread of a blaCTX-M-15/IncHI2/ST1 Plasmid among Nosocomial Enterobacter in Guadeloupe. Antibiotics (Basel) 2022; 11:1443. [PMID: 36290101 PMCID: PMC9598596 DOI: 10.3390/antibiotics11101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 04/04/2024] Open
Abstract
Between April 2018 and August 2019, a total of 135 strains of Enterobacter cloacae complex (ECC) were randomly collected at the University Hospital Center of Guadeloupe to investigate the structure and diversity of the local bacterial population. These nosocomial isolates were initially identified genetically by the hsp60 typing method, which revealed the clinical relevance of E. xiangfangensis (n = 69). Overall, 57/94 of the third cephalosporin-resistant strains were characterized as extended-spectrum-β-lactamase (ESBL) producers, and their whole-genome was sequenced using Illumina technology to determine the clonal relatedness and diffusion of resistance genes. We found limited genetic diversity among sequence types (STs). ST114 (n = 13), ST1503 (n = 9), ST53 (n = 5) and ST113 (n = 4), which belong to three different Enterobacter species, were the most prevalent among the 57 ESBL producers. The blaCTXM-15 gene was the most prevalent ESBL determinant (56/57) and was in most cases associated with IncHI2/ST1 plasmid replicon carriage (36/57). To fully characterize this predominant blaCTXM-15/IncHI2/ST1 plasmid, four isolates from different lineages were also sequenced using Oxford Nanopore sequencing technology to generate long-reads. Hybrid sequence analyses confirmed the circulation of a well-conserved plasmid among ECC members. In addition, the novel ST1503 and its associated species (ECC taxon 4) were analyzed, in view of its high prevalence in nosocomial infections. These genetic observations confirmed the overall incidence of nosocomial ESBL Enterobacteriaceae infections acquired in this hospital during the study period, which was clearly higher in Guadeloupe (1.59/1000 hospitalization days) than in mainland France (0.52/1,000 hospitalization days). This project revealed issues and future challenges for the management and surveillance of nosocomial and multidrug-resistant Enterobacter in the Caribbean.
Collapse
Affiliation(s)
- Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Yann Reynaud
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Alexis Dereeper
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Sylvaine Bastian
- Laboratory of Clinical Microbiology, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Tania Foucan
- Operational Hygiene Team, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Jean-David Pommier
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Marc Valette
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | | | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
- Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, 97157 Pointe-à-Pitre, France
- INSERM, Center for Clinical Investigation 1424, 97139 Les Abymes, France
| |
Collapse
|
31
|
Wegener A, Duim B, van der Graaf-van Bloois L, Zomer AL, Visser CE, Spaninks M, Timmerman AJ, Wagenaar JA, Broens EM. Within-Household Transmission and Bacterial Diversity of Staphylococcus pseudintermedius. Pathogens 2022; 11:pathogens11080850. [PMID: 36014971 PMCID: PMC9415945 DOI: 10.3390/pathogens11080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus pseudintermedius can be transmitted between dogs and their owners and can cause opportunistic infections in humans. Whole genome sequencing was applied to identify the relatedness between isolates from human infections and isolates from dogs in the same households. Genome SNP diversity and distribution of plasmids and antimicrobial resistance genes identified related and unrelated isolates in both households. Our study shows that within-host bacterial diversity is present in S. pseudintermedius, demonstrating that multiple isolates from each host should preferably be sequenced to study transmission dynamics.
Collapse
Affiliation(s)
- Alice Wegener
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.W.); (L.v.d.G.-v.B.); (A.L.Z.); (A.J.T.); (J.A.W.); (E.M.B.)
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.W.); (L.v.d.G.-v.B.); (A.L.Z.); (A.J.T.); (J.A.W.); (E.M.B.)
- Correspondence:
| | - Linda van der Graaf-van Bloois
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.W.); (L.v.d.G.-v.B.); (A.L.Z.); (A.J.T.); (J.A.W.); (E.M.B.)
| | - Aldert L. Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.W.); (L.v.d.G.-v.B.); (A.L.Z.); (A.J.T.); (J.A.W.); (E.M.B.)
| | - Caroline E. Visser
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Mirlin Spaninks
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Arjen J. Timmerman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.W.); (L.v.d.G.-v.B.); (A.L.Z.); (A.J.T.); (J.A.W.); (E.M.B.)
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.W.); (L.v.d.G.-v.B.); (A.L.Z.); (A.J.T.); (J.A.W.); (E.M.B.)
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| | - Els M. Broens
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.W.); (L.v.d.G.-v.B.); (A.L.Z.); (A.J.T.); (J.A.W.); (E.M.B.)
| |
Collapse
|
32
|
Hull DM, Harrell E, Harden L, Thakur S. Multidrug resistance and virulence genes carried by mobile genomic elements in Salmonella enterica isolated from live food animals, processed, and retail meat in North Carolina, 2018–2019. Int J Food Microbiol 2022; 378:109821. [DOI: 10.1016/j.ijfoodmicro.2022.109821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
|
33
|
Bloomfield S, Duong VT, Tuyen HT, Campbell JI, Thomson NR, Parkhill J, Le Phuc H, Chau TTH, Maskell DJ, Perron GG, Ngoc NM, Vi LL, Adriaenssens EM, Baker S, Mather AE. Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal Salmonella from animals and humans in Vietnam. Microb Genom 2022; 8. [PMID: 35511231 PMCID: PMC9465066 DOI: 10.1099/mgen.0.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of bacterial enterocolitis globally but also causes invasive bloodstream infections. Antimicrobial resistance (AMR) hampers the treatment of these infections and understanding how AMR spreads between NTS may help in developing effective strategies. We investigated NTS isolates associated with invasive disease, diarrhoeal disease and asymptomatic carriage in animals and humans from Vietnam. Isolates included multiple serovars and both common and rare phenotypic AMR profiles; long- and short-read sequencing was used to investigate the genetic mechanisms and genomic backgrounds associated with phenotypic AMR profiles. We demonstrate concordance between most AMR genotypes and phenotypes but identified large genotypic diversity in clinically relevant phenotypes and the high mobility potential of AMR genes (ARGs) in this setting. We found that 84 % of ARGs identified were located on plasmids, most commonly those containing IncHI1A_1 and IncHI1B(R27)_1_R27 replicons (33%), and those containing IncHI2_1 and IncHI2A_1 replicons (31%). The vast majority (95%) of ARGS were found within 10 kbp of IS6/IS26 elements, which provide plasmids with a mechanism to exchange ARGs between plasmids and other parts of the genome. Whole genome sequencing with targeted long-read sequencing applied in a One Health context identified a comparatively limited number of insertion sequences and plasmid replicons associated with AMR. Therefore, in the context of NTS from Vietnam and likely for other settings as well, the mechanisms by which ARGs move contribute to a more successful AMR profile than the specific ARGs, facilitating the adaptation of bacteria to different environments or selection pressures.
Collapse
Affiliation(s)
| | | | - Ha Thanh Tuyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - James I Campbell
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tran Thi Hong Chau
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-on-Hudson, New York, USA
| | | | - Lu Lan Vi
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
34
|
Wentz TG, Tremblay BJM, Bradshaw M, Doxey AC, Sharma SK, Sauer JD, Pellett S. Endogenous CRISPR-Cas Systems in Group I Clostridium botulinum and Clostridium sporogenes Do Not Directly Target the Botulinum Neurotoxin Gene Cluster. Front Microbiol 2022; 12:787726. [PMID: 35222299 PMCID: PMC8865420 DOI: 10.3389/fmicb.2021.787726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Most strains of proteolytic group I Clostridium botulinum (G1 C. botulinum) and some strains of Clostridium sporogenes possess genes encoding botulinum neurotoxin (BoNT), a potent neuroparalytic agent. Within G1 C. botulinum, conserved bont gene clusters of three major toxin serotypes (bont/A/B/F) can be found on conjugative plasmids and/or within chromosomal pathogenicity islands. CRISPR-Cas systems enable site-specific targeting of previously encountered mobile genetic elements (MGE) such as plasmids and bacteriophage through the creation of a spacer library complementary to protospacers within the MGEs. To examine whether endogenous CRISPR-Cas systems restrict the transfer of bont gene clusters across strains we conducted a bioinformatic analysis profiling endogenous CRISPR-Cas systems from 241 G1 C. botulinum and C. sporogenes strains. Approximately 6,200 CRISPR spacers were identified across the strains and Type I-B, III-A/B/D cas genes and CRISPR array features were identified in 83% of the strains. Mapping the predicted spacers against the masked strain and RefSeq plasmid dataset identified 56,000 spacer-protospacer matches. While spacers mapped heavily to targets within bont(+) plasmids, no protospacers were identified within the bont gene clusters. These results indicate the toxin is not a direct target of CRISPR-Cas but the plasmids predominantly responsible for its mobilization are. Finally, while the presence of a CRISPR-Cas system did not reliably indicate the presence or absence of a bont gene cluster, comparative genomics across strains indicates they often occupy the same hypervariable loci common to both species, potentially suggesting similar mechanisms are involved in the acquisition and curation of both genomic features.
Collapse
Affiliation(s)
- Travis G. Wentz
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, United States,Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States,Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States,*Correspondence: Sabine Pellett,
| |
Collapse
|
35
|
Naing SY, Hordijk J, Duim B, Broens EM, van der Graaf-van Bloois L, Rossen JW, Robben JH, Leendertse M, Wagenaar JA, Zomer AL. Genomic Investigation of Two Acinetobacter baumannii Outbreaks in a Veterinary Intensive Care Unit in The Netherlands. Pathogens 2022; 11:pathogens11020123. [PMID: 35215067 PMCID: PMC8875366 DOI: 10.3390/pathogens11020123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics.
Collapse
Affiliation(s)
- Soe Yu Naing
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Joost Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Els M. Broens
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Linda van der Graaf-van Bloois
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - John W. Rossen
- Department of Medical Microbiology, University Medical Center, University of Groningen, 9700 AB Groningen, The Netherlands;
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joris H. Robben
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Masja Leendertse
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Aldert L. Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
- Correspondence:
| |
Collapse
|
36
|
Ramnarine SDBJ, Jayaraman J, Ramsubhag A. Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles. PeerJ 2022; 9:e12632. [PMID: 35036136 PMCID: PMC8734464 DOI: 10.7717/peerj.12632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Black-rot disease caused by the phytopathogen Xanthomonas campestris pv. campestris (Xcc) continues to have considerable impacts on the productivity of cruciferous crops in Trinidad and Tobago and the wider Caribbean region. While the widespread occurrence of resistance of Xcc against bactericidal agrochemicals can contribute to the high disease burdens, the role of virulence and pathogenicity features of local strains on disease prevalence and severity has not been investigated yet. In the present study, a comparative genomic analysis was performed on 6 pathogenic Xcc and 4 co-isolated non-pathogenic Xanthomonas melonis (Xmel) strains from diseased crucifer plants grown in fields with heavy chemical use in Trinidad. Native isolates were grouped into two known and four newly assigned ribosomal sequence types (rST). Mobile genetic elements were identified which belonged to the IS3, IS5 family, Tn3 transposon, resolvases, and tra T4SS gene clusters. Additionally, exogenous plasmid derived sequences with origins from other bacterial species were characterised. Although several instances of genomic rearrangements were observed, native Xcc and Xmel isolates shared a significant level of structural homology with reference genomes, Xcc ATCC 33913 and Xmel CFBP4644, respectively. Complete T1SS hlyDB, T2SS, T4SS vir and T5SS xadA, yapH and estA gene clusters were identified in both species. Only Xmel strains contained a complete T6SS but no T3SS. Both species contained a complex repertoire of extracellular cell wall degrading enzymes. Native Xcc strains contained 37 T3SS and effector genes but a variable and unique profile of 8 avr, 4 xop and 1 hpa genes. Interestingly, Xmel strains contained several T3SS effectors with low similarity to references including avrXccA1 (~89%), hrpG (~73%), hrpX (~90%) and xopAZ (~87%). Furthermore, only Xmel genomes contained a CRISPR-Cas I-F array, but no lipopolysaccharide wxc gene cluster. Xmel strains were confirmed to be non-pathogenic by pathogenicity assays. The results of this study will be useful to guide future research into virulence mechanisms, agrochemical resistance, pathogenomics and the potential role of the co-isolated non-pathogenic Xanthomonas strains on Xcc infections.
Collapse
Affiliation(s)
- Stephen D B Jr Ramnarine
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Jayaraj Jayaraman
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
37
|
Bloomfield SJ, Midwinter AC, Biggs PJ, French NP, Marshall JC, Hayman DTS, Carter PE, Mather AE, Fayaz A, Thornley C, Kelly DJ, Benschop J. Genomic adaptations of Campylobacter jejuni to long-term human colonization. Gut Pathog 2021; 13:72. [PMID: 34893079 PMCID: PMC8665580 DOI: 10.1186/s13099-021-00469-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Campylobacter is a genus of bacteria that has been isolated from the gastrointestinal tract of humans and animals, and the environments they inhabit around the world. Campylobacter adapt to new environments by changes in their gene content and expression, but little is known about how they adapt to long-term human colonization. In this study, the genomes of 31 isolates from a New Zealand patient and 22 isolates from a United Kingdom patient belonging to Campylobacter jejuni sequence type 45 (ST45) were compared with 209 ST45 genomes from other sources to identify the mechanisms by which Campylobacter adapts to long-term human colonization. In addition, the New Zealand patient had their microbiota investigated using 16S rRNA metabarcoding, and their level of inflammation and immunosuppression analyzed using biochemical tests, to determine how Campylobacter adapts to a changing gastrointestinal tract. RESULTS There was some evidence that long-term colonization led to genome degradation, but more evidence that Campylobacter adapted through the accumulation of non-synonymous single nucleotide polymorphisms (SNPs) and frameshifts in genes involved in cell motility, signal transduction and the major outer membrane protein (MOMP). The New Zealand patient also displayed considerable variation in their microbiome, inflammation and immunosuppression over five months, and the Campylobacter collected from this patient could be divided into two subpopulations, the proportion of which correlated with the amount of gastrointestinal inflammation. CONCLUSIONS This study demonstrates how genomics, phylogenetics, 16S rRNA metabarcoding and biochemical markers can provide insight into how Campylobacter adapts to changing environments within human hosts. This study also demonstrates that long-term human colonization selects for changes in Campylobacter genes involved in cell motility, signal transduction and the MOMP; and that genetically distinct subpopulations of Campylobacter evolve to adapt to the changing gastrointestinal environment.
Collapse
Affiliation(s)
| | - Anne C Midwinter
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Patrick J Biggs
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- School of Fundamental Science, Massey University, Palmerston North, 4410, New Zealand
| | - Nigel P French
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- New Zealand Food Safety Science and Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Jonathan C Marshall
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- School of Fundamental Science, Massey University, Palmerston North, 4410, New Zealand
| | - David T S Hayman
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Centre of Research Excellence for Complex Systems, Te Pūnaha Matatini, Auckland, New Zealand
| | - Philip E Carter
- Institute of Environmental Science of Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- University of East Anglia, Norwich, Norfolk, UK
| | - Ahmed Fayaz
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Craig Thornley
- Regional Public Health, Hutt Hospital, Lower Hutt, 5040, New Zealand
| | - David J Kelly
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, UK
| | - Jackie Benschop
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|