1
|
Pla-Díaz M, Akgül G, Molak M, du Plessis L, Panagiotopoulou H, Doan K, Bogdanowicz W, Dąbrowski P, Oziembłowski M, Kwiatkowska B, Szczurowski J, Grzelak J, Arora N, Majander K, González-Candelas F, Schuenemann VJ. Insights into Treponema pallidum genomics from modern and ancient genomes using a novel mapping strategy. BMC Biol 2025; 23:7. [PMID: 39780098 PMCID: PMC11716147 DOI: 10.1186/s12915-024-02108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Treponemal diseases are a significant global health risk, presenting challenges to public health and severe consequences to individuals if left untreated. Despite numerous genomic studies on Treponema pallidum and the known possible biases introduced by the choice of the reference genome used for mapping, few investigations have addressed how these biases affect phylogenetic and evolutionary analysis of these bacteria. In this study, we ascertain the importance of selecting an appropriate genomic reference on phylogenetic and evolutionary analyses of T. pallidum. RESULTS We designed a multiple-reference-based (MRB) mapping strategy using four different reference genomes and compared it to traditional single-reference mapping. To conduct this comparison, we created a genomic dataset comprising 77 modern and ancient genomes from the three subspecies of T. pallidum, including a newly sequenced seventeenth century genome (35X mean coverage) of a syphilis-causing strain (designated as W86). Our findings show that recombination detection was consistent across different references, but the choice of reference significantly affected ancient genome reconstruction and phylogenetic inferences. The high-coverage W86 genome introduced in this study also provided a new calibration point for Bayesian molecular clock dating, improving the reconstruction of the evolutionary history of treponemal diseases. Additionally, we identified novel recombination events, positive selection targets, and refined dating estimates for key events in the species' history. CONCLUSIONS This study highlights the importance of considering methodological implications and reference genome bias in high-throughput sequencing-based whole-genome analysis of T. pallidum, especially of ancient or low-coverage samples, contributing to a deeper understanding of the treponemal pathogen and its subspecies.
Collapse
Affiliation(s)
- Marta Pla-Díaz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Unidad Mixta Infección y Salud Pública FISABIO, Universidad de Valencia-I2SysBio, Valencia, Spain
- CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Martyna Molak
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Karolina Doan
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Paweł Dąbrowski
- Department of Anatomy, Wrocław Medical University, Wrocław, Poland
| | - Maciej Oziembłowski
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Kwiatkowska
- Department of Anthropology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Szczurowski
- Department of Anthropology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Grzelak
- Department of Anatomy, Wrocław Medical University, Wrocław, Poland
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Kerttu Majander
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO, Universidad de Valencia-I2SysBio, Valencia, Spain.
- CIBER in Epidemiology and Public Health, Valencia, Spain.
| | - Verena J Schuenemann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Esposito G, Bergagna S, Colussi S, Shahin K, Rosa R, Volpatti D, Faggio C, Mossotto C, Gabetti A, Maganza A, Bozzetta E, Prearo M, Pastorino P. Changes in blood serum parameters in farmed rainbow trout (Oncorhynchus mykiss) during a piscine lactococcosis outbreak. JOURNAL OF FISH DISEASES 2024; 47:e13994. [PMID: 38953153 DOI: 10.1111/jfd.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
The aquaculture sector plays a vital role in global food security, yet it grapples with significant challenges posed by infectious diseases. Piscine lactococcosis is one of the significant threats in rainbow trout aquaculture due to its potential to cause severe economic losses through mortalities, reduced growth rates, and increased susceptibility to other pathogens. It poses challenges in disease management strategies, impacting the sustainability and profitability of rainbow trout farming. The current study focuses on the variations in serum blood parameters of farmed rainbow trout Oncorhynchus mykiss during a lactococcosis outbreak caused by Lactococcus garvieae. Blood samples were collected for biochemical analysis, fish were examined for parasites and bacteria, and DNA from bacterial colonies was PCR-amplified and sequenced for identification. Overall, 13 biochemical parameters, including proteins, enzymes, lipids, chemicals, and minerals, were measured in serum blood samples from both diseased and healthy fish. The results indicate significant alterations in the levels of these parameters during the outbreak, highlighting the impact of infections on the blood profile of farmed rainbow trout. Urea levels were significantly higher in diseased fish compared to controls, and creatinine, phosphorus, and magnesium also showed similar trends. Alanine aminotransferase and total protein levels were higher in control fish. Chloride levels differed significantly between groups. Iron levels were higher in controls and lower in diseased fish. No significant differences were found in other parameters. This study reveals significant changes in serum blood parameters of rainbow trout during a lactococcosis outbreak caused by L. garvieae. These changes highlight the potential of these parameters as tools for monitoring health status, stress, and aquaculture management. Continuous monitoring can provide valuable insights into disease severity and overall fish health, aiding in the development of improved management practices. The presented data contribute to understanding the pathophysiology of piscine lactococcosis and developing effective mitigation strategies for farmed rainbow trout.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Stefania Bergagna
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Silvia Colussi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Khalid Shahin
- Aquatic Animal Diseases Laboratory, Aquaculture Department, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - Roberta Rosa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Donatella Volpatti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Caterina Faggio
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, Messina, Italy
- Dipartimento di Biotecnologie Marine Ecosostenibili, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Camilla Mossotto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Alice Gabetti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Alessandra Maganza
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
3
|
Chan YX, Cao H, Jiang S, Li X, Fung KK, Lee CH, Sridhar S, Chen JHK, Ho PL. Genomic investigation of Lactococcus formosensis, Lactococcus garvieae, and Lactococcus petauri reveals differences in species distribution by human and animal sources. Microbiol Spectr 2024; 12:e0054124. [PMID: 38687062 PMCID: PMC11237765 DOI: 10.1128/spectrum.00541-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Lactococcus garvieae is a fish pathogen that can cause diseases in humans and cows. Two genetically related species, Lactococcus formosensis and Lactococcus petauri, may be misidentified as L. garvieae. It is unclear if these species differ in host specificity and virulence genes. This study analyzed the genomes of 120 L. petauri, 53 L. formosensis, and 39 L. garvieae isolates from various sources. The genetic diversity and virulence gene content of these isolates were compared. The results showed that 77 isolates previously reported as L. garvieae were actually L. formosensis or L. petauri. The distribution of the three species varied across different collection sources, with L. petauri being predominant in human infections, human fecal sources, and rainbow trout, while L. formosensis was more common in bovine isolates. The genetic diversity of isolates within each species was high and similar. Using a genomic clustering method, L. petauri, L. formosensis, and L. garvieae were divided into 45, 22, and 13 clusters, respectively. Most rainbow trout and human isolates of L. petauri belonged to different clusters, while L. formosensis isolates from bovine and human sources were also segregated into separate clusters. In L. garvieae, most human isolates were grouped into three clusters that also included isolates from food or other sources. Non-metric multidimensional scaling ordination revealed the differential association of 15 virulence genes, including 14 adherence genes and a bile salt hydrolase gene, with bacterial species and certain collection sources. In conclusion, this work provides evidence of host specificity among the three species. IMPORTANCE Lactococcus formosensis and Lactococcus petauri are two newly discovered bacteria, which are closely related to Lactococcus garvieae, a pathogen that affects farmed rainbow trout, as well as causes cow mastitis and human infections. It is unclear whether the three bacteria differ in their host preference and the presence of genes that contribute to the development of disease. This study shows that L. formosensis and L. petauri were commonly misidentified as L. garvieae. The three bacteria showed different distribution patterns across various sources. L. petauri was predominantly found in human infections and rainbow trout, while L. formosensis was more commonly detected in cow mastitis. Fifteen genes displayed a differential distribution among the three bacteria from certain sources, indicating a genetic basis for the observed host preference. This work indicates the importance of differentiating the three bacteria in diagnostic laboratories for surveillance and outbreak investigation purposes.
Collapse
Affiliation(s)
- You-Xiang Chan
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Huiluo Cao
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Shuo Jiang
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Xin Li
- Department of Microbiology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong, China
| | - Ka-Kin Fung
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Chung-Ho Lee
- Department of Clinical Pathology, Kwong Wah Hospital, Hospital Authority, Hong Kong, China
| | - Siddharth Sridhar
- Department of Microbiology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong, China
| | | | - Pak-Leung Ho
- Department of Microbiology, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong, China
| |
Collapse
|
4
|
Caldeira LA, Valente GLC, Barbosa CD, Braga DE, Monção FP, Fonseca LM, Souza MR, Gloria MBA. Profile of lactic acid bacteria (MALDI-TOF-MS) and physico-chemical and microbiological characteristics of the raw milk and fresh artisanal cheese from Serra Geral, Minas Gerais, Brazil. Food Res Int 2024; 176:113831. [PMID: 38163729 DOI: 10.1016/j.foodres.2023.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Artisanal cheese from Serra Geral, Minas Gerais, Brazil, stands out for its cultural asset and socio-economic relevance. However, standards of identity and quality and the peculiar terroir associated with the edaphoclimatic conditions have not been established. Therefore, the production flow diagram and the physico-chemical and microbiological quality of the raw milk, pingo (natural starter culture), production benches, water and fresh cheese were investigated for the first time. In addition, lactic acid bacteria (LAB) from cheese and its production environment were identified by MALDI-TOF. For that, 12 cheese making facilities were selected. The raw milk and pingo showed adequate physico-chemical characteristics for cheesemaking; however, high microbial counts were found. In the water, total and thermotolerant coliforms were also identified. The fresh cheeses were classified as 'high moisture and fat' and 'soft mass'. Most physico-chemical parameters were satisfactory; however, there were high counts of total coliforms, Staphylococcus spp. and coagulase-positive staphylococci. There were high counts of LAB in the raw milk, pingo, bench surface and fresh cheese. A total of 84 microbial biotypes from MRS agar were isolated. Lactococcus lactis was the predominant LAB, followed by Lactococcus garvieae. Leuconostoc mesenteroides (benches), Leuconostoc pseudomesenteroides (fresh cheese), and Enterococcus faecium (pingo) were identified sporadically. These results indicate the risks to public health associated with the consumption of the fresh cheese, and measures to improve its safety are needed.
Collapse
Affiliation(s)
- Luciana A Caldeira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil; Departamento de Ciências Agrárias, Universidade Estadual de Montes Claros, Janaúba, Minas Gerais, 39.448-524, Brasil.
| | - Gustavo L C Valente
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Cosme D Barbosa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Douglas E Braga
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Flavio P Monção
- Departamento de Ciências Agrárias, Universidade Estadual de Montes Claros, Janaúba, Minas Gerais, 39.448-524, Brasil
| | - Leorges M Fonseca
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Marcelo R Souza
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Maria Beatriz A Gloria
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil; Laboratórios de Controle de Qualidade - LCQ, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31.270-901, Brasil.
| |
Collapse
|
5
|
Lin Y, Han J, Barkema HW, Wang Y, Gao J, Kastelic JP, Han B, Qin S, Deng Z. Comparative Genomic Analyses of Lactococcus garvieae Isolated from Bovine Mastitis in China. Microbiol Spectr 2023; 11:e0299522. [PMID: 37154706 PMCID: PMC10269658 DOI: 10.1128/spectrum.02995-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Lactococcus garvieae is an emerging zoonotic pathogen, but there are few reports regarding bovine mastitis. The prevalence of L. garvieae represents an increasing disease threat and global public health risk. Thirty-nine L. garvieae isolates were obtained from 2,899 bovine clinical mastitis milk samples in 6 provinces of China from 2017 to 2021. Five clonal complexes were determined from 32 multilocus sequence types (MLSTs) of L. garvieae: sequence type 46 (ST46) was the predominant sequence type, and 13 novel MLSTs were identified. All isolates were resistant to chloramphenicol and clindamycin, but susceptible to penicillin, ampicillin, amoxicillin-clavulanic acid, imipenem, ceftiofur, enrofloxacin, and marbofloxacin. Based on genomic analyses, L. garvieae had 6,310 genes, including 1,015 core, 3,641 accessory, and 1,654 unique genes. All isolates had virulence genes coding for collagenase, fibronectin-binding protein, glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase, and NADH oxidase. Most isolates had lsaD and mdtA antimicrobial resistance (AMR) genes. Based on COG (Clusters of Orthologous Genes database) results, the functions of defense, transcription and replication, and recombination and repair were enhanced in unique genes, whereas functions of translation, ribosomal structure, and biogenesis were enhanced in core genes. The KEGG functional categories enriched in unique genes included human disease and membrane transport, whereas COG functional categories enriched in core genes included energy metabolism, nucleotide metabolism, and translation. No gene was significantly associated with host specificity. In addition, analysis of core genome single nucleotide polymorphisms (SNPs) implied potential host adaptation of some isolates in several sequence types. In conclusion, this study characterized L. garvieae isolated from mastitis and detected potential adaptations of L. garvieae to various hosts. IMPORTANCE This study provides important genomic insights into a bovine mastitis pathogen, Lactococcus garvieae. Comprehensive genomic analyses of L. garvieae from dairy farms have not been reported. This study is a detailed and comprehensive report of novel features of isolates of L. garvieae, an important but poorly characterized bacterium, recovered in the past 5 years in 6 Chinese provinces. We documented diverse genetic features, including predominant sequence type ST46 and 13 novel MLSTs. Lactococcus garvieae had 6,310 genes, including 1,015 core, 3,641 accessory, and 1,654 unique genes. All isolates had virulence genes coding for collagenase, fibronectin-binding protein, glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase, and NADH oxidase and resistance to chloramphenicol and clindamycin. Most isolates had lsaD and mdtA antimicrobial resistance genes. However, no gene was significantly associated with host specificity. This is the first report that characterized L. garvieae isolates from bovine mastitis and revealed potential host adaptations of L. garvieae to various hosts.
Collapse
Affiliation(s)
- Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jinge Han
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Shunyi Qin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada. Int J Mol Sci 2022; 23:ijms23094685. [PMID: 35563074 PMCID: PMC9101539 DOI: 10.3390/ijms23094685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Lactococcus garvieae causes infectious diseases in animals and is considered an emerging zoonotic pathogen involved in human clinical conditions. In silico analysis of plasmid pLG50 of L. garvieae Lg-Granada, an isolate from a patient with endocarditis, revealed the presence of two gene clusters (orf46–47 and orf48–49), each one encoding a novel putative bacteriocin, i.e., garvicin AG1 (GarAG1; orf46) and garvicin AG2 (GarAG2; orf48), and their corresponding immunity proteins (orf47 and orf49). The chemically synthesised bacteriocins GarAG1 and GarAG2 presented inhibitory activity against pathogenic L. garvieae strains, with AG2 also being active against Listeria monocytogenes, Listeria ivanovii and Enterococcus faecalis. Genetic organisation, amino acid sequences and antimicrobial activities of GarAG1 and GarAG2 indicate that they belong to linear non-pediocin-like one-peptide class IId bacteriocins. Gram-positive bacteria that were sensitive to GarAG2 were also able to ferment mannose, suggesting that this bacteriocin could use the mannose phosphotransferase transport system (Man-PTS) involved in mannose uptake as a receptor in sensitive strains. Intriguingly, GarAG1 and GarAG2 were highly active against their own host, L. garvieae Lg-Granada, which could be envisaged as a new strategy to combat pathogens via their own weapons.
Collapse
|