1
|
Graf FE, Goodman RN, Gallichan S, Forrest S, Picton-Barlow E, Fraser AJ, Phan MD, Mphasa M, Hubbard ATM, Musicha P, Schembri MA, Roberts AP, Edwards T, Lewis JM, Feasey NA. Molecular mechanisms of re-emerging chloramphenicol susceptibility in extended-spectrum beta-lactamase-producing Enterobacterales. Nat Commun 2024; 15:9019. [PMID: 39424629 PMCID: PMC11489765 DOI: 10.1038/s41467-024-53391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Infections with Enterobacterales (E) are increasingly difficult to treat due to antimicrobial resistance. After ceftriaxone replaced chloramphenicol (CHL) as empiric therapy for suspected sepsis in Malawi in 2004, extended-spectrum beta-lactamase (ESBL)-E rapidly emerged. Concurrently, resistance to CHL in Escherichia coli and Klebsiella spp. decreased, raising the possibility of CHL re-introduction. However, many phenotypically susceptible isolates still carry CHL acetyltransferase (cat) genes. To understand the molecular mechanisms and stability of this re-emerging CHL susceptibility we use a combination of genomics, phenotypic susceptibility assays, experimental evolution, and functional assays for CAT activity. Here, we show that of 840 Malawian E. coli and Klebsiella spp. isolates, 31% have discordant CHL susceptibility genotype-phenotype, and we select a subset of 42 isolates for in-depth analysis. Stable degradation of cat genes by insertion sequences leads to re-emergence of CHL susceptibility. Our study suggests that CHL could be reintroduced as a reserve agent for critically ill patients with ESBL-E infections in Malawi and similar settings and highlights the ongoing challenges in inferring antimicrobial resistance from sequence data.
Collapse
Affiliation(s)
- Fabrice E Graf
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Richard N Goodman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sarah Gallichan
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sally Forrest
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Esther Picton-Barlow
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Alice J Fraser
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Alasdair T M Hubbard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Patrick Musicha
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
2
|
Heinz E, Pearse O, Zuza A, Bilima S, Msefula C, Musicha P, Siyabu P, Tewesa E, Graf FE, Lester R, Lissauer S, Cornick J, Lewis JM, Kawaza K, Thomson NR, Feasey NA. Longitudinal analysis within one hospital in sub-Saharan Africa over 20 years reveals repeated replacements of dominant clones of Klebsiella pneumoniae and stresses the importance to include temporal patterns for vaccine design considerations. Genome Med 2024; 16:67. [PMID: 38711148 PMCID: PMC11073982 DOI: 10.1186/s13073-024-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
| | - Oliver Pearse
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Allan Zuza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sithembile Bilima
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Patrick Musicha
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Edith Tewesa
- Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Fabrice E Graf
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
| | - Rebecca Lester
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Division of Infection & Immunity, University College London, London, UK
| | - Samantha Lissauer
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Kondwani Kawaza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas R Thomson
- Parasites and Microbes Program, Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
- School of Medicine, St Andrews University, St Andrews, UK.
| |
Collapse
|
3
|
Azwai SM, Lawila AF, Eshamah HL, Sherif JA, Farag SA, Naas HT, Garbaj AM, Salabi AAE, Gammoudi FT, Eldaghayes IM. Antimicrobial susceptibility profile of Klebsiella pneumoniae isolated from some dairy products in Libya as a foodborne pathogen. Vet World 2024; 17:1168-1176. [PMID: 38911073 PMCID: PMC11188881 DOI: 10.14202/vetworld.2024.1168-1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Klebsiella pneumoniae is one of the most common causes of clinical and asymptomatic mastitis in dairy cattle, as well as in milk and dairy products that affect milk quality. Mastitis caused by K. pneumoniae is even more serious due to its poor response to antibiotic therapy. The aim of this study was to detect and identify the presence of K. pneumoniae in milk and dairy products produced in Libya. Materials and Methods A total of 234 samples were randomly collected from various locations in Libya. Samples were examined for the presence of K. pneumoniae using conventional cultural techniques, including cultivation in violet red bile agar plus 4-methylumbelliferyl-ß-D-glucuronide broth and CHROM agar, followed by polymerase chain reaction identification and partial sequencing of 16S rRNA. Results Of the 234 samples of milk and dairy products collected, 16 (6.8%) isolates revealed mucoid colonies on agar media that were phenotypically suggested to be K. pneumoniae. Identification of isolates was confirmed using molecular techniques (16S rRNA). Among the examined samples, K. pneumoniae was recovered from camel's milk, raw cow's milk, raw fermented milk, Maasora cheese, Ricotta cheese, soft cheese, full cream milk powder, milk powder infant formula, cereal baby food, and growing-up formula. Antibiotic susceptibility testing was performed on 12 of the 16 K. pneumoniae isolates, and the results showed that K. pneumoniae isolates were resistant to more than eight antibiotics; interestingly, two isolates showed metallo-beta-lactamase (MBL) production. Conclusion K. pneumoniae is considered a risk to human health because many of these products do not comply with the microbiological criteria of international and/or Libyan standards. This study emphasized the relationship between K. pneumoniae and raw milk, cheese, milk powder, and infant milk retailed in Libya. There is a need to take the necessary measures to ensure effective hygiene practices during production in dairy factories, handling, and distribution on the market, in particular at a small local production scale.
Collapse
Affiliation(s)
- Salah M. Azwai
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | | - Hanan L. Eshamah
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Jihan A. Sherif
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Samira A. Farag
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Hesham T. Naas
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Aboubaker M. Garbaj
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Allaaeddin A. El Salabi
- Department of Public Health, Faculty of Medical Technology, University of Tripoli, Tripoli, Libya
| | - Fatim T. Gammoudi
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ibrahim M. Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
4
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
5
|
Lewis JM, Mphasa M, Banda R, Beale MA, Heinz E, Mallewa J, Jewell C, Faragher B, Thomson NR, Feasey NA. Colonization dynamics of extended-spectrum beta-lactamase-producing Enterobacterales in the gut of Malawian adults. Nat Microbiol 2022; 7:1593-1604. [PMID: 36065064 PMCID: PMC9519460 DOI: 10.1038/s41564-022-01216-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
Drug-resistant bacteria of the order Enterobacterales which produce extended-spectrum beta-lactamase enzymes (ESBL-Enterobacterales, ESBL-E) are global priority pathogens. Antimicrobial stewardship interventions proposed to curb their spread include shorter courses of antimicrobials to reduce selection pressure but individual-level acquisition and selection dynamics are poorly understood. We sampled stool of 425 adults (aged 16-76 years) in Blantyre, Malawi, over 6 months and used multistate modelling and whole-genome sequencing to understand colonization dynamics of ESBL-E. Models suggest a prolonged effect of antimicrobials such that truncating an antimicrobial course at 2 days has a limited effect in reducing colonization. Genomic analysis shows largely indistinguishable diversity of healthcare-associated and community-acquired isolates, hence some apparent acquisition of ESBL-E during hospitalization may instead represent selection from a patient's microbiota by antimicrobial exposure. Our approach could help guide stewardship protocols; interventions that aim to review and truncate courses of unneeded antimicrobials may be of limited use in preventing ESBL-E colonization.
Collapse
Affiliation(s)
- Joseph M Lewis
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi.
- Liverpool School of Tropical Medicine, Liverpool, UK.
- University of Liverpool, Liverpool, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | | | - Eva Heinz
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Migliorini LB, Leaden L, de Sales RO, Correa NP, Marins MM, Koga PCM, Toniolo ADR, de Menezes FG, Martino MDV, Mingorance J, Severino P. The Gastrointestinal Load of Carbapenem-Resistant Enterobacteriacea Is Associated With the Transition From Colonization to Infection by Klebsiella pneumoniae Isolates Harboring the blaKPC Gene. Front Cell Infect Microbiol 2022; 12:928578. [PMID: 35865821 PMCID: PMC9294314 DOI: 10.3389/fcimb.2022.928578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 01/15/2023] Open
Abstract
Background Healthcare-associated infections by carbapenem-resistant Klebsiella pneumoniae are difficult to control. Virulence and antibiotic resistance genes contribute to infection, but the mechanisms associated with the transition from colonization to infection remain unclear. Objective We investigated the transition from carriage to infection by K. pneumoniae isolates carrying the K. pneumoniae carbapenemase–encoding gene blaKPC (KpKPC). Methods KpKPC isolates detected within a 10-year period in a single tertiary-care hospital were characterized by pulsed-field gel electrophoresis (PFGE), multilocus sequencing typing, capsular lipopolysaccharide and polysaccharide typing, antimicrobial susceptibility profiles, and the presence of virulence genes. The gastrointestinal load of carbapenem-resistant Enterobacteriaceae and of blaKPC-carrying bacteria was estimated by relative quantification in rectal swabs. Results were evaluated as contributors to the progression from carriage to infection. Results No PGFE type; ST-, K-, or O-serotypes; antimicrobial susceptibility profiles; or the presence of virulence markers, such yersiniabactin and colibactin, were associated with carriage or infection, with ST437 and ST11 being the most prevalent clones. Admission to intensive and semi-intensive care units was a risk factor for the development of infections (OR 2.79, 95% CI 1.375 to 5.687, P=0.005), but higher intestinal loads of carbapenem-resistant Enterobacteriaceae or of blaKPC-carrying bacteria were the only factors associated with the transition from colonization to infection in this cohort (OR 8.601, 95% CI 2.44 to 30.352, P<0.001). Conclusion The presence of resistance and virulence mechanisms were not associated with progression from colonization to infection, while intestinal colonization by carbapenem-resistant Enterobacteriacea and, more specifically, the load of gastrointestinal carriage emerged as an important determinant of infection.
Collapse
Affiliation(s)
- Letícia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Laura Leaden
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Romário Oliveira de Sales
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Maryana Mara Marins
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | | | | | | | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- *Correspondence: Patricia Severino,
| |
Collapse
|
7
|
Hwang JH, Hwang JH, Lee SY, Lee J. Prostatic Abscess Caused by Klebsiella pneumoniae: A 6-Year Single-Center Study. J Clin Med 2022; 11:jcm11092521. [PMID: 35566647 PMCID: PMC9099488 DOI: 10.3390/jcm11092521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is an important strain that can cause multiple organ infections. Although hvKp infection cases are increasing, there is limited information on the prostatic abscesses caused by K. pneumoniae. Furthermore, the clinical significance of hvKp associated with K1 or K2 capsular types or virulence genes in prostatic abscesses remains unclear. Therefore, we aimed to elucidate the clinical and microbiological characteristics of prostatic abscesses caused by K. pneumoniae in relation to various virulence genes. A retrospective study was performed at a 1200-bed tertiary hospital between January 2014 and December 2019. Patients diagnosed with prostatic abscesses with K. pneumoniae isolated from blood, urine, pus, or tissue cultures were enrolled in this study. Our results demonstrate that 30.3% (10/33) of the prostatic abscesses were caused by K. pneumoniae. All strains isolated from patients with prostatic abscesses due to K. pneumoniae were the K1 capsular type, and eight patients (80.0%) carried rmpA and iutA genes that identified hvKp. These findings suggest that hvKp is an important pathogen in prostatic abscesses. Therefore, when treating patients with K. pneumoniae prostatic abscesses, attention should be paid to the characteristics of hvKp, such as bacteremia, multiorgan abscess formation, and metastatic spread.
Collapse
Affiliation(s)
- Joo-Hee Hwang
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea; (J.-H.H.); (J.-H.H.)
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Jeong-Hwan Hwang
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea; (J.-H.H.); (J.-H.H.)
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Seung Yeob Lee
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
| | - Jaehyeon Lee
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Correspondence: ; Tel.: +82-63-250-2693
| |
Collapse
|