1
|
Faheem I, Nagaraja V. Multifunctional Mycobacterial Topoisomerases with Distinctive Features. ACS Infect Dis 2025; 11:366-385. [PMID: 39825760 DOI: 10.1021/acsinfecdis.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, Mycobacterium tuberculosis retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task. DNA topoisomerases make up a unique class of ubiquitous enzymes that ensure steady-state level supercoiling and solve topological problems occurring during DNA transactions in cells. They continue to be attractive targets for the discovery of novel classes of antibacterials and to develop better molecules from existing drugs by virtue of their reaction mechanism. The limited repertoire of topoisomerases in M. tuberculosis, key differences in their properties compared to topoisomerases from other bacteria, their essentiality for the pathogen's survival, and validation as candidates for drug discovery provide an opportunity to exploit them in drug discovery efforts. The present review provides insights into their organization, structure, function, and regulation to further efforts in targeting them for new inhibitor discovery. First, the structure and biochemical properties of DNA gyrase and Topoisomerase I (TopoI) of mycobacteria are described compared to the well-studied counterparts from other bacteria. Next, we provide an overview of known inhibitors of DNA gyrase and emerging novel bacterial topoisomerase inhibitors (NBTIs). We also provide an update on TopoI-specific compounds, highlighting mycobacteria-specific inhibitors.
Collapse
Affiliation(s)
- Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
2
|
Tan K, Tse-Dinh YC. Variation of Structure and Cellular Functions of Type IA Topoisomerases across the Tree of Life. Cells 2024; 13:553. [PMID: 38534397 PMCID: PMC10969213 DOI: 10.3390/cells13060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Topoisomerases regulate the topological state of cellular genomes to prevent impediments to vital cellular processes, including replication and transcription from suboptimal supercoiling of double-stranded DNA, and to untangle topological barriers generated as replication or recombination intermediates. The subfamily of type IA topoisomerases are the only topoisomerases that can alter the interlinking of both DNA and RNA. In this article, we provide a review of the mechanisms by which four highly conserved N-terminal protein domains fold into a toroidal structure, enabling cleavage and religation of a single strand of DNA or RNA. We also explore how these conserved domains can be combined with numerous non-conserved protein sequences located in the C-terminal domains to form a diverse range of type IA topoisomerases in Archaea, Bacteria, and Eukarya. There is at least one type IA topoisomerase present in nearly every free-living organism. The variation in C-terminal domain sequences and interacting partners such as helicases enable type IA topoisomerases to conduct important cellular functions that require the passage of nucleic acids through the break of a single-strand DNA or RNA that is held by the conserved N-terminal toroidal domains. In addition, this review will exam a range of human genetic disorders that have been linked to the malfunction of type IA topoisomerase.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
García-López M, Megias D, Ferrándiz MJ, de la Campa AG. The balance between gyrase and topoisomerase I activities determines levels of supercoiling, nucleoid compaction, and viability in bacteria. Front Microbiol 2023; 13:1094692. [PMID: 36713152 PMCID: PMC9875019 DOI: 10.3389/fmicb.2022.1094692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Two enzymes are responsible for maintaining supercoiling in the human pathogen Streptococcus pneumoniae, gyrase (GyrA2GyrB2) and topoisomerase I. To attain diverse levels of topoisomerase I (TopoI, encoded by topA), two isogenic strains derived from wild-type strain R6 were constructed: PZn topA, carrying an ectopic topA copy under the control of the ZnSO4-regulated PZn promoter and its derivative ΔtopAPZn topA, which carries a topA deletion at its native chromosomal location. We estimated the number of TopoI and GyrA molecules per cell by using Western-blot and CFUs counting, and correlated these values with supercoiling levels. Supercoiling was estimated in two ways. We used classical 2D-agarose gel electrophoresis of plasmid topoisomers to determine supercoiling density (σ) and we measured compaction of nucleoids using for the first time super-resolution confocal microscopy. Notably, we observed a good correlation between both supercoiling calculations. In R6, with σ = -0.057, the average number of GyrA molecules per cell (2,184) was higher than that of TopoI (1,432), being the GyrA:TopoI proportion of 1:0.65. In ΔtopAPZn topA, the number of TopoI molecules depended, as expected, on ZnSO4 concentration in the culture media, being the proportions of GyrA:TopoI molecules in 75, 150, and 300 μM ZnSO4 of 1:0.43, 1:0.47, and 1:0.63, respectively, which allowed normal supercoiling and growth. However, in the absence of ZnSO4, a higher GyrA:TopoI ratio (1:0.09) caused hyper-supercoiling (σ = -0.086) and lethality. Likewise, growth of ΔtopAPZn topA in the absence of ZnSO4 was restored when gyrase was inhibited with novobiocin, coincidentally with the resolution of hyper-supercoiling (σ change from -0.080 to -0.068). Given that TopoI is a monomer and two molecules of GyrA are present in the gyrase heterotetramer, the gyrase:TopoI enzymes proportion would be 1:1.30 (wild type R6) or of 1:1.26-0.86 (ΔtopAPZn topA under viable conditions). Higher proportions, such as 1:0.18 observed in ΔtopAPZn topA in the absence of ZnSO4 yielded to hyper-supercoiling and lethality. These results support a role of the equilibrium between gyrase and TopoI activities in supercoiling maintenance, nucleoid compaction, and viability. Our results shed new light on the mechanism of action of topoisomerase-targeting antibiotics, paving the way for the use of combination therapies.
Collapse
Affiliation(s)
- Míriam García-López
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Diego Megias
- Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain,*Correspondence: María-José Ferrándiz, ✉
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain,Adela G. de la Campa, ✉
| |
Collapse
|
4
|
Lee S, Chen J. Identification of the genetic elements involved in biofilm formation by Salmonella enterica serovar Tennessee using mini-Tn10 mutagenesis and DNA sequencing. Food Microbiol 2022; 106:104043. [DOI: 10.1016/j.fm.2022.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
|
5
|
Rani P, Kalladi SM, Bansia H, Rao S, Jha RK, Jain P, Bhaduri T, Nagaraja V. A Type IA DNA/RNA Topoisomerase with RNA Hydrolysis Activity Participates in Ribosomal RNA Processing. J Mol Biol 2020; 432:5614-5631. [DOI: 10.1016/j.jmb.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
|
6
|
Sinha D, Kiianitsa K, Sherman DR, Maizels N. Rapid, direct detection of bacterial topoisomerase 1-DNA adducts by RADAR/ELISA. Anal Biochem 2020; 608:113827. [PMID: 32738213 DOI: 10.1016/j.ab.2020.113827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
Abstract
Topoisomerases are proven drug targets, but antibiotics that poison bacterial Topoisomerase 1 (Top1) have yet to be discovered. We have developed a rapid and direct assay for quantification of Top1-DNA adducts that is suitable for high throughput assays. Adducts are recovered by "RADAR fractionation", a quick, convenient approach in which cells are lysed in chaotropic salts and detergent and nucleic acids and covalently bound adducts then precipitated with alcohol. Here we show that RADAR fractionation followed by ELISA immunodetection can quantify adducts formed by wild-type and mutant Top1 derivatives encoded by two different bacterial pathogens, Y. pestis and M. tuberculosis, expressed in E. coli or M. smegmatis, respectively. For both enzymes, quantification of adducts by RADAR/ELISA produces results comparable to the more cumbersome classical approach of CsCl density gradient fractionation. The experiments reported here establish that RADAR/ELISA assay offers a simple way to characterize Top1 mutants and analyze kinetics of adduct formation and repair. They also provide a foundation for discovery and optimization of drugs that poison bacterial Top1 using standard high-throughput approaches.
Collapse
Affiliation(s)
- Devapriya Sinha
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Kostantin Kiianitsa
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA.
| | - David R Sherman
- Department of Microbiology, University of Washington, 815 Republican St., Seattle, WA, 98102, USA
| | - Nancy Maizels
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA; Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Rani P, Nagaraja V. Genome-wide mapping of Topoisomerase I activity sites reveal its role in chromosome segregation. Nucleic Acids Res 2019; 47:1416-1427. [PMID: 30566665 PMCID: PMC6379724 DOI: 10.1093/nar/gky1271] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
DNA Topoisomerase I (TopoI) in eubacteria is the principle DNA relaxase, belonging to Type 1A group. The enzyme from Mycobacterium smegmatis is essential for cell survival and distinct from other eubacteria in having several unusual characteristics. To understand genome-wide TopoI engagements in vivo, functional sites were mapped by employing a poisonous variant of the enzyme and a newly discovered inhibitor, both of which arrest the enzyme activity after the first transestrification reaction, thereby leading to the accumulation of protein-DNA covalent complexes. The cleavage sites are subsets of TopoI binding sites, implying that TopoI recruitment does not necessarily lead to DNA cleavage in vivo. The cleavage protection conferred by nucleoid associated proteins in vitro suggest a similar possibility in vivo. Co-localization of binding and cleavage sites of the enzyme on transcription units, implying that both TopoI recruitment and function are associated with active transcription. Attenuation of the cleavage upon Rifampicin treatment confirms the close connection between transcription and TopoI action. Notably, TopoI is inactive upstream of the Transcription start site (TSS) and activated following transcription initiation. The binding of TopoI at the Ter region, and the DNA cleavage at the Ter indicates TopoI involvement in chromosome segregation, substantiated by its catenation and decatenation activities.
Collapse
Affiliation(s)
- Phoolwanti Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
8
|
Regulatory Effect of DNA Topoisomerase I on T3SS Activity, Antibiotic Susceptibility and Quorum- Sensing-Independent Pyocyanin Synthesis in Pseudomonas aeruginosa. Int J Mol Sci 2019; 20:ijms20051116. [PMID: 30841529 PMCID: PMC6429228 DOI: 10.3390/ijms20051116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 02/04/2023] Open
Abstract
Topoisomerases are required for alleviating supercoiling of DNA during transcription and replication. Recent evidence suggests that supercoiling of bacterial DNA can affect bacterial pathogenicity. To understand the potential regulatory role of a topoisomerase I (TopA) in Pseudomonas aeruginosa, we investigated a previously isolated topA mutation using genetic approaches. We here report the effects of the altered topoisomerase in P. aeruginosa on type III secretion system, antibiotic susceptibility, biofilm initiation, and pyocyanin production. We found that topA was essential in P. aeruginosa, but a transposon mutant lacking the 13 amino acid residues at the C-terminal of the TopA and a mutant, named topA-RM, in which topA was split into three fragments were viable. The reduced T3SS expression in topA-RM seemed to be directly related to TopA functionality, but not to DNA supercoiling. The drastically increased pyocyanin production in the mutant was a result of up-regulation of the pyocyanin related genes, and the regulation was mediated through the transcriptional regulator PrtN, which is known to regulate bacteriocin. The well-established regulatory pathway, quorum sensing, was unexpectedly not involved in the increased pyocyanin synthesis. Our results demonstrated the unique roles of TopA in T3SS activity, antibiotic susceptibility, initial biofilm formation, and secondary metabolite production, and revealed previously unknown regulatory pathways.
Collapse
|
9
|
Garcia PK, Annamalai T, Wang W, Bell RS, Le D, Martin Pancorbo P, Sikandar S, Seddek A, Yu X, Sun D, Uhlemann AC, Tiwari PB, Leng F, Tse-Dinh YC. Mechanism and resistance for antimycobacterial activity of a fluoroquinophenoxazine compound. PLoS One 2019; 14:e0207733. [PMID: 30794538 PMCID: PMC6386362 DOI: 10.1371/journal.pone.0207733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
We have previously reported the inhibition of bacterial topoisomerase I activity by a fluoroquinophenoxazine compound (FP-11g) with a 6-bipiperidinyl lipophilic side chain that exhibited promising antituberculosis activity (MIC = 2.5 μM against Mycobacterium tuberculosis, SI = 9.8). Here, we found that the compound is bactericidal towards Mycobacterium smegmatis, resulting in greater than 5 Log10 reduction in colony-forming units [cfu]/mL following a 10 h incubation at 1.25 μM (4X MIC) concentration. Growth inhibition (MIC = 50 μM) and reduction in cfu could also be observed against a clinical isolate of Mycobacterium abscessus. Stepwise isolation of resistant mutants of M. smegmatis was conducted to explore the mechanism of resistance. Mutations in the resistant isolates were identified by direct comparison of whole-genome sequencing data from mutant and wild-type isolates. These include mutations in genes likely to affect the entry and retention of the compound. FP-11g inhibits Mtb topoisomerase I and Mtb gyrase with IC50 of 0.24 and 27 μM, respectively. Biophysical analysis showed that FP-11g binds DNA as an intercalator but the IC50 for inhibition of Mtb topoisomerase I activity is >10 fold lower than the compound concentrations required for producing negatively supercoiled DNA during ligation of nicked circular DNA. Thus, the DNA-binding property of FP-11g may contribute to its antimycobacterial mechanism, but that alone cannot account for the observed inhibition of Mtb topoisomerase I.
Collapse
Affiliation(s)
- Pamela K. Garcia
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Biochemistry PhD Program, Florida International University, Miami, Florida, United States of America
| | - Thirunavukkarasu Annamalai
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Wenjie Wang
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Raven S. Bell
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Duc Le
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Paula Martin Pancorbo
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Sabah Sikandar
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Ahmed Seddek
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Xufen Yu
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York, United States of America
| | - Purushottam B. Tiwari
- Department of Oncology, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, United States of America
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
10
|
Guha S, Udupa S, Ahmed W, Nagaraja V. Rewired Downregulation of DNA Gyrase Impacts Cell Division, Expression of Topology Modulators, and Transcription in Mycobacterium smegmatis. J Mol Biol 2018; 430:4986-5001. [PMID: 30316784 DOI: 10.1016/j.jmb.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/22/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
DNA gyrase, essential for DNA replication and transcription, has traditionally been studied in vivo by treatments that inhibit the enzyme activity. Due to its indispensable function, gyrA and gyrB deletions cannot be generated. The coumarin inhibitors of gyrase induce the supercoiling-sensitive gyrase promoter by a mechanism termed relaxation-stimulated transcription. Hence, to study the effect of sustained reduction in gyrase levels, a conditional-knockdown strain was generated in Mycobacterium smegmatis such that gyrase expression was controlled by a supercoiling non-responsive regulatory circuit. Decreasing intracellular gyrase protein levels beyond 50% affected cell growth. Reduced gyrase levels in the reprogrammed gyr operon caused chromosome relaxation, diffuse nucleoid structure, cell elongation, and altered gene expression. The key cell division protein, ftsZ, was severely reduced in the elongated cells, indicating a link between gyrase and cell division. Low levels of gyrase resulted in low compensatory expression of topoisomerase I and elevated expression of topology modulators hupB and lsr2. Altered supercoiling due to gyrase depletion caused corresponding changes in the RNA polymerase density on transcription units leading to their altered transcription. The enhanced susceptibility of the knockdown strain to anti-tubercular drugs suggests its utility for screening new molecules that may act synergistically with gyrase inhibitors.
Collapse
Affiliation(s)
- Sarmistha Guha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shubha Udupa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
11
|
García MT, Carreño D, Tirado-Vélez JM, Ferrándiz MJ, Rodrigues L, Gracia B, Amblar M, Ainsa JA, de la Campa AG. Boldine-Derived Alkaloids Inhibit the Activity of DNA Topoisomerase I and Growth of Mycobacterium tuberculosis. Front Microbiol 2018; 9:1659. [PMID: 30087665 PMCID: PMC6066988 DOI: 10.3389/fmicb.2018.01659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
The spread of multidrug-resistant isolates of Mycobacterium tuberculosis requires the discovery of new drugs directed to new targets. In this study, we investigated the activity of two boldine-derived alkaloids, seconeolitsine (SCN) and N-methyl-seconeolitsine (N-SCN), against M. tuberculosis. These compounds have been shown to target DNA topoisomerase I enzyme and inhibit growth of Streptococcus pneumoniae. Both SCN and N-SCN inhibited M. tuberculosis growth at 1.95-15.6 μM, depending on the strain. In M. smegmatis this inhibitory effect correlated with the amount of topoisomerase I in the cell, hence demonstrating that this enzyme is the target for these alkaloids in mycobacteria. The gene coding for topoisomerase I of strain H37Rv (MtbTopoI) was cloned into pQE1 plasmid of Escherichia coli. MtbTopoI was overexpressed with an N-terminal 6-His-tag and purified by affinity chromatography. In vitro inhibition of MtbTopoI activity by SCN and N-SCN was tested using a plasmid relaxation assay. Both SCN and N-SCN inhibited 50% of the enzymatic activity at 5.6 and 8.4 μM, respectively. Cleavage of single-stranded DNA was also inhibited with SCN. The effects on DNA supercoiling were also evaluated in vivo in plasmid-containing cultures of M. tuberculosis. Plasmid supercoiling densities were -0.060 in cells untreated or treated with boldine, and -0.072 in 1 × MIC N-SCN treated cells, respectively, indicating that the plasmid became hypernegatively supercoiled in the presence of N-SCN. Altogether, these results demonstrate that the M. tuberculosis topoisomerase I enzyme is an attractive drug target, and that SCN and N-SCN are promising lead compounds for drug development.
Collapse
Affiliation(s)
- María T. García
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - David Carreño
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Tirado-Vélez
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María J. Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - Begoña Gracia
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Mónica Amblar
- Unidad de Patología Molecular de Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Ainsa
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
12
|
Evidence for Inhibition of Topoisomerase 1A by Gold(III) Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:AAC.01696-17. [PMID: 29483110 DOI: 10.1128/aac.01696-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/08/2018] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium tuberculosis and the fast-growing species Mycobacterium abscessus are two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistant M. tuberculosis strains and the high level of intrinsic resistance of M. abscessus call for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), against M. abscessus and M. tuberculosis We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicating in vitro conditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverse M. tuberculosis and M. abscessus clinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target the M. tuberculosis gyrase. In vitro enzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity against M. tuberculosis and M. abscessus that act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.
Collapse
|
13
|
Strzalka A, Szafran MJ, Strick T, Jakimowicz D. C-terminal lysine repeats in Streptomyces topoisomerase I stabilize the enzyme-DNA complex and confer high enzyme processivity. Nucleic Acids Res 2017; 45:11908-11924. [PMID: 28981718 PMCID: PMC5714199 DOI: 10.1093/nar/gkx827] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
Streptomyces topoisomerase I (TopA) exhibits exceptionally high processivity. The enzyme, as other actinobacterial topoisomerases I, differs from its bacterial homologs in its C-terminal domain (CTD). Here, bioinformatics analyses established that the presence of lysine repeats is a characteristic feature of actinobacterial TopA CTDs. Streptomyces TopA contains the longest stretch of lysine repeats, which terminate with acidic amino acids. DNA-binding studies revealed that the lysine repeats stabilized the TopA–DNA complex, while single-molecule experiments showed that their elimination impaired enzyme processivity. Streptomyces coelicolor TopA processivity could not be restored by fusion of its N-terminal domain (NTD) with the Escherichia coli TopA CTD. The hybrid protein could not re-establish the distribution of multiple chromosomal copies in Streptomyces hyphae impaired by TopA depletion. We expected that the highest TopA processivity would be required during the growth of multigenomic sporogenic hyphae, and indeed, the elimination of lysine repeats from TopA disturbed sporulation. We speculate that the interaction of the lysine repeats with DNA allows the stabilization of the enzyme–DNA complex, which is additionally enhanced by acidic C-terminal amino acids. The complex stabilization, which may be particularly important for GC-rich chromosomes, enables high enzyme processivity. The high processivity of TopA allows rapid topological changes in multiple chromosomal copies during Streptomyces sporulation.
Collapse
Affiliation(s)
- Agnieszka Strzalka
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Marcin J Szafran
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Terence Strick
- Institut Jacques Monod, CNRS UMR 7592, University Paris Diderot, Sorbonne Paris Cite, F-75205 Paris, France
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland
| |
Collapse
|
14
|
Banda S, Cao N, Tse-Dinh YC. Distinct Mechanism Evolved for Mycobacterial RNA Polymerase and Topoisomerase I Protein-Protein Interaction. J Mol Biol 2017; 429:2931-2942. [PMID: 28843989 DOI: 10.1016/j.jmb.2017.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/01/2023]
Abstract
We report here a distinct mechanism of interaction between topoisomerase I and RNA polymerase in Mycobacterium tuberculosis and Mycobacterium smegmatis that has evolved independently from the previously characterized interaction between bacterial topoisomerase I and RNA polymerase. Bacterial DNA topoisomerase I is responsible for preventing the hyper-negative supercoiling of genomic DNA. The association of topoisomerase I with RNA polymerase during transcription elongation could efficiently relieve transcription-driven negative supercoiling. Our results demonstrate a direct physical interaction between the C-terminal domains of topoisomerase I (TopoI-CTDs) and the β' subunit of RNA polymerase of M. smegmatis in the absence of DNA. The TopoI-CTDs in mycobacteria are evolutionarily unrelated in amino acid sequence and three-dimensional structure to the TopoI-CTD found in the majority of bacterial species outside Actinobacteria, including Escherichia coli. The functional interaction between topoisomerase I and RNA polymerase has evolved independently in mycobacteria and E. coli, with distinctively different structural elements of TopoI-CTD utilized for this protein-protein interaction. Zinc ribbon motifs in E. coli TopoI-CTD are involved in the interaction with RNA polymerase. For M. smegmatis TopoI-CTD, a 27-amino-acid tail that is rich in basic residues at the C-terminal end is responsible for the interaction with RNA polymerase. Overexpression of recombinant TopoI-CTD in M. smegmatis competed with the endogenous topoisomerase I for protein-protein interactions with RNA polymerase. The TopoI-CTD overexpression resulted in decreased survival following treatment with antibiotics and hydrogen peroxide, supporting the importance of the protein-protein interaction between topoisomerase I and RNA polymerase during stress response of mycobacteria.
Collapse
Affiliation(s)
- Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Nan Cao
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
15
|
Ekins S, Godbole AA, Kéri G, Orfi L, Pato J, Bhat RS, Verma R, Bradley EK, Nagaraja V. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I. Tuberculosis (Edinb) 2017; 103:52-60. [PMID: 28237034 DOI: 10.1016/j.tube.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
There is a shortage of compounds that are directed towards new targets apart from those targeted by the FDA approved drugs used against Mycobacterium tuberculosis. Topoisomerase I (Mttopo I) is an essential mycobacterial enzyme and a promising target in this regard. However, it suffers from a shortage of known inhibitors. We have previously used computational approaches such as homology modeling and docking to propose 38 FDA approved drugs for testing and identified several active molecules. To follow on from this, we now describe the in vitro testing of a library of 639 compounds. These data were used to create machine learning models for Mttopo I which were further validated. The combined Mttopo I Bayesian model had a 5 fold cross validation receiver operator characteristic of 0.74 and sensitivity, specificity and concordance values above 0.76 and was used to select commercially available compounds for testing in vitro. The recently described crystal structure of Mttopo I was also compared with the previously described homology model and then used to dock the Mttopo I actives norclomipramine and imipramine. In summary, we describe our efforts to identify small molecule inhibitors of Mttopo I using a combination of machine learning modeling and docking studies in conjunction with screening of the selected molecules for enzyme inhibition. We demonstrate the experimental inhibition of Mttopo I by small molecule inhibitors and show that the enzyme can be readily targeted for lead molecule development.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| | - Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - György Kéri
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary; Semmelweis Univ, Dept Med Chem, MTA SE Pathobiochem Res Grp, H-1092, Budapest, Hungary
| | - Lászlo Orfi
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary; Semmelweis Univ, Dept Med Chem, MTA SE Pathobiochem Res Grp, H-1092, Budapest, Hungary
| | - János Pato
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Rajeshwari Subray Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Rinkee Verma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
16
|
The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor. J Bacteriol 2016; 198:3016-3028. [PMID: 27551021 PMCID: PMC5055605 DOI: 10.1128/jb.00530-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyrase are key players in the regulation of bacterial chromosomal topology through their respective abilities to relax and compact DNA. Soil bacteria such as Streptomyces species, which grow as branched, multigenomic hyphae, are subject to environmental stresses that are associated with changes in chromosomal topology. The topological fluctuations modulate the transcriptional activity of a large number of genes and in Streptomyces are related to the production of antibiotics. To better understand the regulation of topological homeostasis in Streptomyces coelicolor, we investigated the interplay between the activities of the topoisomerase-encoding genes topA and gyrBA. We show that the expression of both genes is supercoiling sensitive. Remarkably, increased chromosomal supercoiling induces the topA promoter but only slightly influences gyrBA transcription, while DNA relaxation affects the topA promoter only marginally but strongly activates the gyrBA operon. Moreover, we showed that exposure to elevated temperatures induces rapid relaxation, which results in changes in the levels of both topoisomerases. We therefore propose a unique mechanism of S. coelicolor chromosomal topology maintenance based on the supercoiling-dependent stimulation, rather than repression, of the transcription of both topoisomerase genes. These findings provide important insight into the maintenance of topological homeostasis in an industrially important antibiotic producer. IMPORTANCE We describe the unique regulation of genes encoding two topoisomerases, topoisomerase I (TopA) and gyrase, in a model Streptomyces species. Our studies demonstrate the coordination of topoisomerase gene regulation, which is crucial for maintenance of topological homeostasis. Streptomyces species are producers of a plethora of biologically active secondary metabolites, including antibiotics, antitumor agents, and immunosuppressants. The significant regulatory factor controlling the secondary metabolism is the global chromosomal topology. Thus, the investigation of chromosomal topology homeostasis in Streptomyces strains is crucial for their use in industrial applications as producers of secondary metabolites.
Collapse
|
17
|
Targeting Mycobacterium tuberculosis topoisomerase I by small-molecule inhibitors. Antimicrob Agents Chemother 2014; 59:1549-57. [PMID: 25534741 DOI: 10.1128/aac.04516-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules.
Collapse
|