1
|
Surdel MC, Coburn J. Leptospiral adhesins: from identification to future perspectives. Front Microbiol 2024; 15:1458655. [PMID: 39206373 PMCID: PMC11350617 DOI: 10.3389/fmicb.2024.1458655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Leptospirosis is a significant zoonosis worldwide, with disease severity ranging from a mild non-specific illness to multi-organ dysfunction and hemorrhage. The disease is caused by pathogenic bacteria of the genus Leptospira, which are classified into pathogenic and saprophytic clades. Bacterial binding to host molecules and cells, coordinated by adhesin proteins, is an important step in pathogenesis. While many leptospiral adhesins have been identified, the vast majority have not been characterized in vivo. Herein, we present an overview of the current methodologies and successes in identifying adhesins in Leptospira, including known biological roles in vivo. We will also identify and discuss potential areas for future research.
Collapse
Affiliation(s)
- Matthew C. Surdel
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Fernandes LGV, Avelar KES, Romero EC, Heinemann MB, Kirchgatter K, Nascimento ALTO. A New Recombinant Multiepitope Chimeric Protein of Leptospira interrogans Is a Promising Marker for the Serodiagnosis of Leptospirosis. Trop Med Infect Dis 2022; 7:362. [PMID: 36355904 PMCID: PMC9694704 DOI: 10.3390/tropicalmed7110362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The zoonotic disease leptospirosis is caused by pathogenic species of the genus Leptospira and was recently included in the list of Neglected Diseases by the World Health Organization. Leptospirosis burden is estimated to have over a million human cases and cause 60 thousand deaths annually, in addition to its economic impact and veterinary concern. The microscopic agglutination test (MAT), recommended by the World Health Organization, exhibits reduced sensitivity at the beginning of the disease, in addition to being technically difficult. New recombinant antigens are being pursued for rapid and specific serodiagnostic tests, especially in the initial phase of the disease, and chimeric multiepitope proteins are a strategy with a great potential to be implemented in serology. Based on previous subproteomic results, we designed a synthetic construct comprising 10 conserved leptospiral surface antigens, and the recombinant protein was purified and evaluated regarding its diagnostic potential. The protein termed rChi2 was recognized by antibodies in serum from patients both at the onset (MAT-) and in the convalescent (MAT+) phase in 75 and 82% of responders, respectively. In addition, rChi2 immunization in hamsters elicited a strong humoral response, and anti-rChi2 antibodies recognized several immobilized intact Leptospira species, validating its potential as an early, broad, and cross-reactive diagnostic test.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, Sao Paulo 05503-900, SP, Brazil
| | - Kátia E. S. Avelar
- Laboratório de Referência Nacional para Leptospirose, Instituto Oswaldo Cruz—Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, RJ, Brazil
| | - Eliete C. Romero
- Centro de Bacteriología, Instituto Adolfo Lutz, Sao Paulo 01246-902, SP, Brazil
| | - Marcos B. Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Sao Paulo 05508-270, SP, Brazil
| | - Karin Kirchgatter
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, Sao Paulo 01027-000, SP, Brazil
- Programa de Pós Graduação em Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, Sao Paulo 05503-900, SP, Brazil
| |
Collapse
|
3
|
MB T, AF T, ALTO N. The leptospiral LipL21 and LipL41 proteins exhibit a broad spectrum of interactions with host cell components. Virulence 2021; 12:2798-2813. [PMID: 34719356 PMCID: PMC8632080 DOI: 10.1080/21505594.2021.1993427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Leptospirosis is a globally prevalent zoonotic disease, and is caused by pathogenic spirochetes from the genus Leptospira. LipL21 and LipL41 are lipoproteins expressed strongly on the outer membrane of pathogenic Leptospira spp. Many studies have shown that both proteins are interesting targets for vaccines and diagnosis. However, their role in host-pathogen interactions remains underexplored. Therefore, we evaluated the capacity of LipL21 and LipL41 to bind with glycosaminoglycans (GAGs), the cell receptors and extracellular matrix, and plasma components by ELISA. Both proteins interacted with collagen IV, laminin, E-cadherin, and elastin dose-dependently. A broad-spectrum binding to plasma components was also observed. Only LipL21 interacted with all the GAG components tested, whereas LipL41 presented a concentration-dependent binding only for chondroitin 4 sulfate. Although, both proteins have the ability to interact with fibrinogen, only LipL21 inhibited fibrin clot formation partially. Both proteins exhibited a decrease in plasminogen binding in the presence of amino caproic acid (ACA), a competitive inhibitor of lysine residues, suggesting that their binding occurs via the kringle domains of plasminogen. LipL41, but not LipL21, was able to convert plasminogen to plasmin, and recruit plasminogen from normal human serum, suggesting that the interaction of this protein with plasminogen may occur in physiological conditions. This work provides the first report demonstrating the capacity of LipL21 and LipL41 to interact with a broad range of host components, highlighting their importance in host-Leptospira interactions.
Collapse
Affiliation(s)
- Takahashi MB
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Teixeira AF
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Nascimento ALTO
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
4
|
Daroz BB, Fernandes LGV, Cavenague MF, Kochi LT, Passalia FJ, Takahashi MB, Nascimento Filho EG, Teixeira AF, Nascimento ALTO. A Review on Host- Leptospira Interactions: What We Know and Future Expectations. Front Cell Infect Microbiol 2021; 11:777709. [PMID: 34900757 PMCID: PMC8657130 DOI: 10.3389/fcimb.2021.777709] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is considered a neglected infectious disease of human and veterinary concern. Our group has been investigating proteins annotated as hypothetical, predicted to be located on the leptospiral surface. Because of their location, these proteins may have the ability to interact with various host components, which could allow establishment of the infection. These proteins act as adherence factors by binding to host receptor molecules, such as the extracellular matrix (ECM) components laminin and glycosaminoglycans to help bacterial colonization. Leptospira also interacts with the host fibrinolytic system, which has been demonstrated to be a powerful tool for invasion mechanisms. The interaction with fibrinogen and thrombin has been shown to reduce fibrin clot formation. Additionally, the degradation of coagulation cascade components by secreted proteases or by acquired surface plasmin could also play a role in reducing clot formation, hence facilitating dissemination during infection. Interaction with host complement system regulators also plays a role in helping bacteria to evade the immune system, facilitating invasion. Interaction of Leptospira to cell receptors, such as cadherins, can contribute to investigate molecules that participate in virulence. To achieve a better understanding of the host-pathogen interaction, leptospiral mutagenesis tools have been developed and explored. This work presents several proteins that mediate binding to components of the ECM, plasma, components of the complement system and cells, to gather research achievements that can be helpful in better understanding the mechanisms of leptospiral-host interactions and discuss genetic manipulation for Leptospira spp. aimed at protein function validation.
Collapse
Affiliation(s)
- Brenda B. Daroz
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Luis G. V. Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
| | - Maria F. Cavenague
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Leandro T. Kochi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Felipe J. Passalia
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Maria B. Takahashi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Edson G. Nascimento Filho
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Aline F. Teixeira
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Philip N, Jani J, Azhari NN, Sekawi Z, Neela VK. In vivo and in silico Virulence Analysis of Leptospira Species Isolated From Environments and Rodents in Leptospirosis Outbreak Areas in Malaysia. Front Microbiol 2021; 12:753328. [PMID: 34803975 PMCID: PMC8602918 DOI: 10.3389/fmicb.2021.753328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
The zoonotic disease leptospirosis is caused by pathogenic species of the genus Leptospira. With the advancement of studies in leptospirosis, several new species are being reported. It has always been a query, whether Leptospira species, serovars, and strains isolated from different geographical locations contribute to the difference in the disease presentations and severity. In an epidemiological surveillance study performed in Malaysia, we isolated seven novel intermediate and saprophytic species (Leptospira semungkisensis, Leptospira fletcheri, Leptospira langatensis, Leptospira selangorensis, Leptospira jelokensis, Leptospira perdikensis, Leptospira congkakensis) from environments and three pathogenic species from rodents (Leptospira borgpetersenii strain HP364, Leptospira weilii strain SC295, Leptospira interrogans strain HP358) trapped in human leptospirosis outbreak premises. To evaluate the pathogenic potential of these isolates, we performed an in vivo and in silico virulence analysis. Environmental isolates and strain HP364 did not induce any clinical manifestations in hamsters. Strain SC295 caused inactivity and weight loss with histopathological changes in kidneys, however, all hamsters survived until the end of the experiment. Strain HP358 showed a high virulent phenotype as all infected hamsters died or were moribund within 7 days postinfection. Lungs, liver, and kidneys showed pathological changes with hemorrhage as the main presentation. In silico analysis elucidated the genome size of strain HP358 to be larger than strains HP364 and SC295 and containing virulence genes reported in Leptospira species and a high number of specific putative virulence factors. In conclusion, L. interrogans strain HP358 was highly pathogenic with fatal outcome. The constituent of Leptospira genomes may determine the level of disease severity and that needs further investigations.
Collapse
Affiliation(s)
- Noraini Philip
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jaeyres Jani
- Borneo Medical and Health Research Center, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Nurul Natasya Azhari
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
6
|
Kochi LT, Fernandes LGV, Souza GO, Vasconcellos SA, Heinemann MB, Romero EC, Kirchgatter K, Nascimento ALTO. The interaction of two novel putative proteins of Leptospira interrogans with E-cadherin, plasminogen and complement components with potential role in bacterial infection. Virulence 2020; 10:734-753. [PMID: 31422744 PMCID: PMC6735628 DOI: 10.1080/21505594.2019.1650613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic species of Leptospira. Leptospires are able to adhere to exposed extracellular matrix in injured tissues and, once in the bloodstream, can survive the attack of the immune system and spread to colonize target organs. In this work, we report that two novel putative proteins, coded by the genes LIC11711 and LIC12587 of L. interrogans serovar Copenhageni are conserved among pathogenic strains, and probably exposed in the bacterial surface. Soluble recombinant proteins were expressed in Escherichia coli, purified and characterized. Both recombinant proteins bound to laminin and E-cadherin, suggesting an initial adhesion function in host epithelial cells. The recombinant protein LIC11711 (rLIC11711) was able to capture plasminogen (PLG) from normal human serum and convert to enzymatically active plasmin (PLA), in the presence of PLG activator. rLIC12587 (recombinant protein LIC12587) displayed a dose dependent and saturable interaction with components C7, C8, and C9 of the complement system, reducing the bactericidal effect of the complement. Binding to C9 may have consequences such as C9 polymerization inhibition, interfering with the membrane attack complex formation. Blocking LIC11711 and LIC12587 on bacterial cells by the respective antiserum reduced leptospiral cell viability when exposed to normal human serum (NHS). Both recombinant proteins could be recognized by serum samples of confirmed leptospirosis, but not of unrelated diseases, suggesting that the native proteins are immunogenic and expressed during leptospirosis. Taken together, our data suggest that these proteins may have a role in leptospiral pathogenesis, participating in immune evasion strategies.
Collapse
Affiliation(s)
- Leandro T Kochi
- a Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan , São Paulo , Brazil.,b Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas , São Paulo , Brazil
| | - Luis G V Fernandes
- a Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan , São Paulo , Brazil
| | - Gisele O Souza
- c Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia , São Paulo , Brazil
| | - Silvio A Vasconcellos
- c Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia , São Paulo , Brazil
| | - Marcos B Heinemann
- c Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia , São Paulo , Brazil
| | - Eliete C Romero
- d Centro de Bacteriologia, Instituto Adolfo Lutz , Sao Paulo , Brazil
| | - Karin Kirchgatter
- e Núcleo de Estudos em Malária, Superintendência de Controle de Endemias -SUCEN/IMT-SP, USP , Sao Paulo , Brazil
| | - Ana L T O Nascimento
- a Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan , São Paulo , Brazil
| |
Collapse
|
7
|
Heterologous Expression of the Pathogen-Specific LIC11711 Gene in the Saprophyte L. biflexa Increases Bacterial Binding to Laminin and Plasminogen. Pathogens 2020; 9:pathogens9080599. [PMID: 32707797 PMCID: PMC7460275 DOI: 10.3390/pathogens9080599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Leptospirosis is a febrile disease and the etiological agents are pathogenic bacteria of the genus Leptospira. The leptospiral virulence mechanisms are not fully understood and the application of genetic tools is still limited, despite advances in molecular biology techniques. The leptospiral recombinant protein LIC11711 has shown interaction with several host components, indicating a potential function in virulence. This study describes a system for heterologous expression of the L. interrogans gene lic11711 using the saprophyte L. biflexa serovar Patoc as a surrogate, aiming to investigate its possible activity in bacterial virulence. Heterologous expression of LIC11711 was performed using the pMaOri vector under regulation of the lipL32 promoter. The protein was found mainly on the leptospiral outer surface, confirming its location. The lipL32 promoter enhanced the expression of LIC11711 in L. biflexa compared to the pathogenic strain, indicating that this strategy may be used to overexpress low-copy proteins. The presence of LIC11711 enhanced the capacity of L. biflexa to adhere to laminin (Lam) and plasminogen (Plg)/plasmin (Pla) in vitro, suggesting the involvement of this protein in bacterial pathogenesis. We show for the first time that the expression of LIC11711 protein of L. interrogans confers a virulence-associated phenotype on L. biflexa, pointing out possible mechanisms used by pathogenic leptospires.
Collapse
|
8
|
Passalia FJ, Carvalho E, Heinemann MB, Vieira ML, Nascimento ALTO. The Leptospira interrogans LIC10774 is a multifunctional surface protein that binds calcium and interacts with host components. Microbiol Res 2020; 235:126470. [PMID: 32247916 DOI: 10.1016/j.micres.2020.126470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
Leptospirosis is a global re-emerging zoonosis, caused by pathogenic bacteria of the genus Leptospira. Humans are infected mainly through contact with contaminated water or soil. The understanding of the molecular mechanisms of leptospirosis through the characterization of unknown outer membrane proteins may contribute to the development of new treatments, diagnostic methods and vaccines. We have identified using bioinformatics analysis a protein that is encoded by the gene LIC10774, predicted to be localized at the leptospiral outer membrane and exhibit beta-roll folding. Surface exposure was confirmed by flow cytometry, ELISA and immunofluorescence-based confocal microscopy. Through circular dichroism spectroscopy and hydrophobic dye binding we have shown that rLIC10774 binds calcium ions, which imposes changes to secondary and tertiary structures. The recombinant protein was capable of binding to several host extracellular matrix and serum components. Therefore, we describe LIC10774 as a calcium-binding protein exposed in the outer surface of pathogenic leptospires with possible multifunctional roles in adhesion to host tissues, evasion of the immune system and participation in dissemination processes during leptospirosis. In addition, we hypothesize that the calcium binding is important for temperature-dependent functional roles during leptospirosis.
Collapse
Affiliation(s)
- Felipe José Passalia
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, 05503-900, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Brazil
| | - Mônica Larucci Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | - Ana Lucia T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
9
|
Sun AH, Liu XX, Yan J. Leptospirosis is an invasive infectious and systemic inflammatory disease. Biomed J 2020; 43:24-31. [PMID: 32200953 PMCID: PMC7090314 DOI: 10.1016/j.bj.2019.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Pathogenic Leptospira species are the causative agents of leptospirosis, a world-spreading zoonotic infectious disease. The pathogens possess a powerful invasiveness by invading human body through mucosal/skin barriers, rapid entry into bloodstream to cause septicemia, diffusion from bloodstream into internal organs and tissues to cause aggravation of disease, and discharge from urine through renal tubules to form natural infectious sources. Leptospirosis patients present severe inflammatory symptoms such as high fever, myalgia and lymphadenectasis. Hemorrhage and jaundice are the pathological features of this disease. Previous studies revealed that some outer membrane proteins of Leptospira interrogans, the most important pathogenic Leptospira species, acted as adherence factors to binding to receptor molecules (fibronectin, laminin and collagens) in extracellular matrix of host cells. Collagenase, metallopeptidases and endoflagellum contributed to the invasiveness of L. interrogans. Except for lipopolysaccharide, multiple hemolysins of L. interrogans displayed a powerful ability to induce pro-inflammatory cytokines and hepatocyte apoptosis. vWA and platelet activating factor acetylhydrolase-like proteins from L. interrogans could induce severe pulmonary hemorrhage in mice. L. interrogans utilized cellular endocytic recycling and vesicular transport systems for intracellular migration and transcellular transport. All the research achievements are helpful for further understanding the virulence of pathogenic Leptospira species and pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Xiao-Xiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
10
|
Ghazaei C. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence. Open Vet J 2018; 8:13-24. [PMID: 29445617 PMCID: PMC5806663 DOI: 10.4314/ovj.v8i1.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species.
Collapse
Affiliation(s)
- Ciamak Ghazaei
- Department of Microbiology, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
11
|
Binding of human plasminogen by the lipoprotein LipL46 of Leptospira interrogans. Mol Cell Probes 2017; 37:12-21. [PMID: 29108931 DOI: 10.1016/j.mcp.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira. Bacteria disseminate via the bloodstream and colonize the renal tubules of reservoir hosts. Leptospiral surface-exposed proteins are important targets, because due to their location they can elicit immune response and mediate adhesion and invasion processes. LipL46 has been previously reported to be located at the leptospiral outer membrane and recognized by antibodies present in serum of infected hamsters. In this study, we have confirmed the cellular location of this protein by immunofluorescence and FACS. We have cloned and expressed the recombinant protein LipL46 in its soluble form. LipL46 was recognized by confirmed leptospirosis human serum, suggesting its expression during infection. Binding screening of LipL46 with extracellular matrix (ECM) and plasma components showed that this protein interacts with plasminogen. The binding is dose-dependent on protein concentration, but saturation was not reached with the range of protein concentration used. Kringle domains of plasminogen and lysine residues of the recombinant protein are involved in the binding because the lysine analog, amino caproic acid (ACA) almost totally inhibited the reaction. The interaction of LipL46 with plasminogen generates plasmin in the presence of plasminogen activator uPA. Because plasmin generated at the leptospiral surface can degrade ECM molecules and decrease opsonophagocytosis, we tentatively infer that Lip46 has a role in helping the invasion process of pathogenic Leptospira.
Collapse
|
12
|
Figueredo JM, Siqueira GH, de Souza GO, Heinemann MB, Vasconcellos SA, Chapola EGB, Nascimento ALTO. Characterization of two new putative adhesins of Leptospira interrogans. MICROBIOLOGY-SGM 2017; 163:37-51. [PMID: 28198346 DOI: 10.1099/mic.0.000411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We here report the characterization of two novel proteins encoded by the genes LIC11122 and LIC12287, identified in the genome sequences of Leptospira interrogans, annotated, respectively, as a putative sigma factor and a hypothetical protein. The CDSs LIC11122 and LIC12287 have signal peptide SPII and SPI and are predicted to be located mainly at the cytoplasmic membrane of the bacteria. The genes were cloned and the proteins expressed using Escherichia coli. Proteinase K digestion showed that both proteins are surface exposed. Evaluation of interaction of recombinant proteins with extracellular matrix components revealed that they are laminin binding and they were called Lsa19 (LIC11122) and Lsa14 (LIC12287), for Leptospiral-surface adhesin of 19 and 14 kDa, respectively. The bindings were dose-dependent on protein concentration, reaching saturation, fulfilling the ligand-binding criteria. Reactivity of the recombinant proteins with leptospirosis human sera has shown that Lsa19 and, to a lesser extent, Lsa14, are recognized by antibodies, suggesting that, most probably, Lsa19 is expressed during infection. The proteins interact with plasminogen and generate plasmin in the presence of urokinase-type plasminogen activator. Plasmin generation in Leptospira has been associated with tissue penetration and immune evasion strategies. The presence of a sigma factor on the cell surface playing a secondary role, probably mediating host -pathogen interaction, suggests that LIC11122 is a moonlighting protein candidate. Although the biological significance of these putative adhesins will require the generation of mutants, our data suggest that Lsa19 is a potential candidate for future evaluation of its role in adhesion/colonization activities during L. interrogans infection.
Collapse
Affiliation(s)
- Jupciana M Figueredo
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, São Paulo, SP 05508-900, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| | - Gabriela H Siqueira
- Present address: Laboratorios de Investigação Medica, Hospital das Clínicas da FMUSP, Avenida Doutor Arnaldo, 455, São Paulo, SP 01246-903, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Erica G B Chapola
- Centro de Controle de Zoonoses, R. Santa Eulália, 86 Santana, São Paulo, SP 02031-020, Brazil
| | - Ana L T O Nascimento
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, São Paulo, SP 05508-900, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| |
Collapse
|
13
|
Patel S. Every member of the kingdom Animalia is a potential vector of human pathogens. Microb Pathog 2017; 109:1-3. [PMID: 28487229 DOI: 10.1016/j.micpath.2017.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Zoonotic diseases are a subset of infectious diseases, which account for enormous morbidity and mortality. Pathologies like malaria, rabies, Lyme disease, leptospirosis, avian flu etc. are microbe- and parasite-caused ailments, where the etiological agents are introduced into or on the human body via ticks, mosquitoes, birds, rodents, bats, and deer, among other members of kingdom Animalia. While some of the zoonotic diseases are well-investigated and caution taken against, a lot many are yet to be recognized. This ignorance costs health, and lives, especially in developing countries. To promote awareness regarding the risks of immunogenicity and pathogen dissemination by hitherto unknown non-plant organisms, the members of kingdom Animalia, this letter has been compiled. The vector exploitation mechanisms of the pathogens, and in silico evidences of conserved protein domains across the potential pathogen reservoirs have been mentioned to underline the importance of this topic.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| |
Collapse
|
14
|
Grassmann AA, Souza JD, McBride AJA. A Universal Vaccine against Leptospirosis: Are We Going in the Right Direction? Front Immunol 2017; 8:256. [PMID: 28337203 PMCID: PMC5343615 DOI: 10.3389/fimmu.2017.00256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is the most widespread zoonosis in the world and a neglected tropical disease estimated to cause severe infection in more than one million people worldwide every year that can be combated by effective immunization. However, no significant progress has been made on the leptospirosis vaccine since the advent of bacterins over 100 years. Although protective against lethal infection, particularly in animals, bacterin-induced immunity is considered short term, serovar restricted, and the vaccine can cause serious side effects. The urgent need for a new vaccine has motivated several research groups to evaluate the protective immune response induced by recombinant vaccines. Significant protection has been reported with several promising outer membrane proteins, including LipL32 and the leptospiral immunoglobulin-like proteins. However, efficacy was variable and failed to induce a cross-protective response or sterile immunity among vaccinated animals. As hundreds of draft genomes of all known Leptospira species are now available, this should aid novel target discovery through reverse vaccinology (RV) and pangenomic studies. The identification of surface-exposed vaccine candidates that are highly conserved among infectious Leptospira spp. is a requirement for the development of a cross-protective universal vaccine. However, the lack of immune correlates is a major drawback to the application of RV to Leptospira genomes. In addition, as the protective immune response against leptospirosis is not fully understood, the rational use of adjuvants tends to be a process of trial and error. In this perspective, we discuss current advances, the pitfalls, and possible solutions for the development of a universal leptospirosis vaccine.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Brazil
| |
Collapse
|
15
|
Fraga TR, Isaac L, Barbosa AS. Complement Evasion by Pathogenic Leptospira. Front Immunol 2016; 7:623. [PMID: 28066433 PMCID: PMC5174078 DOI: 10.3389/fimmu.2016.00623] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.
Collapse
Affiliation(s)
- Tatiana Rodrigues Fraga
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Silva LP, Fernandes LGV, Vieira ML, de Souza GO, Heinemann MB, Vasconcellos SA, Romero EC, Nascimento ALTO. Evaluation of two novel leptospiral proteins for their interaction with human host components. Pathog Dis 2016; 74:ftw040. [PMID: 27129366 DOI: 10.1093/femspd/ftw040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 11/12/2022] Open
Abstract
Pathogenic species of the genus Leptospira are the etiological agents of leptospirosis, the most widespread zoonosis. Mechanisms involved in leptospiral pathogenesis are not well understood. By data mining the genome sequences of Leptospira interrogans we have identified two proteins predicted to be surface exposed, LIC10821 and LIC10064. Immunofluorescence and proteinase K assays confirmed that the proteins are exposed. Reactivity of the recombinant proteins with human sera has shown that rLIC10821, but not rLIC10064, is recognized by antibodies in confirmed leptospirosis serum samples, suggesting its expression during infection. The rLIC10821 was able to bind laminin, in a dose-dependent fashion, and was called Lsa37 (leptospiral surface adhesin of 37 kDa). Studies with human plasma components demonstrated that rLIC10821 interacts with plasminogen (PLG) and fibrinogen (Fg). The binding of Lsa37 with PLG generates plasmin when PLG activator was added. Fibrin clotting reduction was observed in a thrombin-catalyzed reaction, when Fg was incubated with Lsa37, suggesting that this protein may interfere in the coagulation cascade during the disease. Although LIC10064 protein is more abundant than the corresponding Lsa37, binding activity with all the components tested was not detected. Thus, Lsa37 is a novel versatile adhesin that may mediate Leptospira-host interactions.
Collapse
Affiliation(s)
- Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Luis G V Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Eliete C Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 355, CEP 01246-902, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang YF, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento ALT, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA, Yang XF, Zhang JJ, Vinetz JM. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl Trop Dis 2016; 10:e0004403. [PMID: 26890609 PMCID: PMC4758666 DOI: 10.1371/journal.pntd.0004403] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Collapse
Affiliation(s)
- Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Australia
| | - Luciane Amorim-Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Douglas E. Berg
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
- Institut Pasteur, Department of Structural Biology and Chemistry, Paris, France
| | - Yung-Fu Chang
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Renee L. Galloway
- Centers for Disease Control and Prevention (DHHS, CDC, OID, NCEZID, DHCPP, BSPB), Atlanta, Georgia, United States of America
| | - David A. Haake
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Daniel H. Haft
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rudy Hartskeerl
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Paul N. Levett
- Government of Saskatchewan, Disease Control Laboratory Regina, Canada
| | - James Matsunaga
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ariel E. Mechaly
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Ana L. T. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| | - Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
18
|
Fernandes LG, Siqueira GH, Teixeira ARF, Silva LP, Figueredo JM, Cosate MR, Vieira ML, Nascimento ALTO. Leptospira spp.: Novel insights into host-pathogen interactions. Vet Immunol Immunopathol 2015; 176:50-7. [PMID: 26727033 DOI: 10.1016/j.vetimm.2015.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023]
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is an important infectious disease that affects humans and animals. The disease causes economic losses as it affects livestock, with decreased milk production and death. Our group is investigating the genome sequences of L. interrogans targeting surface-exposed proteins because, due to their location, these proteins are capable to interact with several host components that could allow establishment of the infection. These interactions may involve adhesion of the bacteria to extracellular matrix (ECM) components and, hence, help bacterial colonization. The bacteria could also react with the host fibrinolytic system and/or with the coagulation cascade components, such as, plasminogen (PLG) and fibrinogen (Fg), respectively. The binding with the first system generates plasmin (PLA), increasing the proteolytic power of the bacteria, while the second interferes with clotting in a thrombin-catalyzed reaction, which may promote hemorrhage foci and increase bacterial dissemination. Interaction with the complement system negative regulators may help bacteria to evade the host immune system, facilitating the invasion. This work compiles the main described leptospiral proteins that could act as adhesins, as PLG and fibrinogen receptors and as complement regulator binding proteins. We present models in which we suggest possible mechanisms of how leptospires might colonize and invade host tissues, causing the disease. Understanding leptospiral pathogenesis will help to identify antigen candidates that would contribute to the development of more effective vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Aline R F Teixeira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Jupciana M Figueredo
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Maria R Cosate
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Eshghi A, Pappalardo E, Hester S, Thomas B, Pretre G, Picardeau M. Pathogenic Leptospira interrogans exoproteins are primarily involved in heterotrophic processes. Infect Immun 2015; 83:3061-73. [PMID: 25987703 PMCID: PMC4496612 DOI: 10.1128/iai.00427-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Leptospirosis is a life-threatening and emerging zoonotic disease with a worldwide annual occurrence of more than 1 million cases. Leptospirosis is caused by spirochetes belonging to the genus Leptospira. The mechanisms of disease manifestation in the host remain elusive, and the roles of leptospiral exoproteins in these processes have yet to be determined. Our aim in this study was to assess the composition and quantity of exoproteins of pathogenic Leptospira interrogans and to construe how these proteins contribute to disease pathogenesis. Label-free quantitative mass spectrometry of proteins obtained from Leptospira spirochetes cultured in vitro under conditions mimicking infection identified 325 exoproteins. The majority of these proteins are conserved in the nonpathogenic species Leptospira biflexa, and proteins involved in metabolism and energy-generating functions were overrepresented and displayed the highest relative abundance in culture supernatants. Conversely, proteins of unknown function, which represent the majority of pathogen-specific proteins (presumably involved in virulence mechanisms), were underrepresented. Characterization of various L. interrogans exoprotein mutants in the animal infection model revealed host mortality rates similar to those of hosts infected with wild-type L. interrogans. Collectively, these results indicate that pathogenic Leptospira exoproteins primarily function in heterotrophic processes (the processes by which organisms utilize organic substances as nutrient sources) to maintain the saprophytic lifestyle rather than the virulence of the bacteria. The underrepresentation of proteins homologous to known virulence factors, such as toxins and effectors in the exoproteome, also suggests that disease manifesting from Leptospira infection is likely caused by a combination of the primary and potentially moonlight functioning of exoproteins.
Collapse
Affiliation(s)
- Azad Eshghi
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | - Elisa Pappalardo
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Svenja Hester
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Benjamin Thomas
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Gabriela Pretre
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | | |
Collapse
|
20
|
Raymond BBA, Djordjevic S. Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance. Vet Microbiol 2015; 178:1-13. [PMID: 25937317 DOI: 10.1016/j.vetmic.2015.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/31/2023]
Abstract
The plasminogen (Plg) system plays an important homeostatic role in the degradation of fibrin clots, extracellular matrices and tissue barriers important for cellular migration, as well as the promotion of neurotransmitter release. Plg circulates in plasma at physiologically high concentrations (150-200μg ml(-1)) as an inactive proenzyme. Proteins enriched in lysine and other positively charged residues (histidine and arginine) as well as glycosaminoglycans and gangliosides bind Plg. The binding interaction initiates a structural adjustment to the bound Plg that facilitates cleavage by proteases (plasminogen activators tPA and uPA) that activate Plg to the active serine protease plasmin. Both pathogenic and commensal bacteria capture Plg onto their cell surface and promote its conversion to plasmin. Many microbial Plg-binding proteins have been described underpinning the importance this process plays in how bacteria interact with their hosts. Bacteria exploit the proteolytic capabilities of plasmin by (i) targeting the mammalian fibrinolytic system and degrading fibrin clots, (ii) remodeling the extracellular matrix and generating bioactive cleavage fragments of the ECM that influence signaling pathways, (iii) activating matrix metalloproteinases that assist in the destruction of tissue barriers and promote microbial metastasis and (iv) destroying immune effector molecules. There has been little focus on the exploitation of the fibrinolytic system by veterinary pathogens. Here we describe several pathogens of veterinary significance that possess adhesins that bind plasmin(ogen) onto their cell surface and promote its activation to plasmin. Cumulative data suggests that these attributes provide pathogenic and commensal bacteria with a means to colonize and persist within the host environment.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven Djordjevic
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
21
|
Teixeira AF, de Morais ZM, Kirchgatter K, Romero EC, Vasconcellos SA, Nascimento ALTO. Features of two new proteins with OmpA-like domains identified in the genome sequences of Leptospira interrogans. PLoS One 2015; 10:e0122762. [PMID: 25849456 PMCID: PMC4388678 DOI: 10.1371/journal.pone.0122762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.
Collapse
Affiliation(s)
- Aline F. Teixeira
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karin Kirchgatter
- Nucleo de Estudos em Malária, Superintendência de Controle de Endemias - Instituto de Medicina Tropical, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Lucia T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|