1
|
Li C, Zhou L, Ma X, Zhu L, Li J, Meng L, Han M, Wang D, Shen H, Liu C. Stability assessment of housekeeping genes for qRT-PCR in Yersinia enterocolitica cultured at 22°C and 37°C. Microbiol Spectr 2024; 12:e0114624. [PMID: 39365096 PMCID: PMC11536982 DOI: 10.1128/spectrum.01146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Yersinia enterocolitica, a species within the genus Yersinia, thrives optimally at 22-25°C but can also grow at the mammalian core body temperature of 37°C. This dual temperature adaptability necessitates establishing both temperature conditions in research to examine the effects on various biological processes. In quantitative real-time PCR (qRT-PCR) assays, the selection of appropriate housekeeping genes is vital for data accuracy. Nevertheless, the lack of alternatives and information often leads to the default use of the 16S rRNA gene despite potential limitations. This investigation sourced 16 potential reference genes through a comprehensive review of the literature and transcriptome sequencing data analysis. We validated the expression stability of these genes via qRT-PCR across 12 Y. enterocolitica strains, representing the four prevalent serotypes O:3, O:5,27, O:8, and O:9, isolated from diarrheal patient stool samples. This approach aimed to minimize the impact of serotype heterogeneity. After acquiring Cq values, gene stability was evaluated using four established algorithms-ΔCq, geNorm, NormFinder, and BestKeeper-and subsequently synthesized into a consolidated ranking through the Robust Rank Aggregation (RRA) method. Our study suggests that the genes glnS, nuoB, glmS, gyrB, dnaK, and thrS maintain consistent expression across varying culture temperatures, supporting their candidacy as robust housekeeping genes. We advise against the exclusive use of 16S rRNA for this purpose. Should tradition prevail in its utilization, it must be employed with discernment, preferably alongside one or two of the housekeeping genes identified in this study as internal controls.IMPORTANCEIn our study, we focused on identifying stable reference genes for quantitative real-time PCR (qRT-PCR) experiments on Y. enterocolitica cultured at different temperatures (22°C and 37°C). After thoroughly evaluating 16 candidate genes, we identified six genes-glnS, nuoB, glmS, gyrB, dnaK, and thrS-as exhibiting stable expression across these temperature conditions, making them ideal reference genes for Y. enterocolitica studies. This discovery is crucial for ensuring the accuracy and reliability of qRT-PCR data, as the choice of appropriate reference genes is key to normalizing expression data and minimizing experimental variability. Importantly, our research extended beyond bioinformatics analysis by incorporating validation with clinical strains, bridging the gap between theoretical predictions and practical application. This approach not only underscores the robustness and reliability of our findings but also directly addresses the critical need for experimental validation in the field. By providing a set of validated, stably expressed reference genes, our work offers valuable guidance for designing experiments involving Y. enterocolitica, enhancing the reliability of research outcomes, and advancing our understanding of this significant pathogen.
Collapse
Affiliation(s)
- Chuchu Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Lu Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Xiaoxuan Ma
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Liguo Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Lingning Meng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Danwei Wang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Al Mamun AAM, Kissoon K, Li YG, Hancock E, Christie PJ. The F plasmid conjutome: the repertoire of E. coli proteins translocated through an F-encoded type IV secretion system. mSphere 2024; 9:e0035424. [PMID: 38940509 PMCID: PMC11288057 DOI: 10.1128/msphere.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Kimberley Kissoon
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Erin Hancock
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
3
|
Klee SM, Sinn JP, Held J, Vosburg C, Holmes AC, Lehman BL, Peter KA, McNellis TW. Putative transcription antiterminator RfaH contributes to Erwinia amylovora virulence. MOLECULAR PLANT PATHOLOGY 2022; 23:1686-1694. [PMID: 35929143 PMCID: PMC9562583 DOI: 10.1111/mpp.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The gram-negative bacterium Erwinia amylovora causes fire blight disease of apple and pear trees. The exopolysaccharide amylovoran and lipopolysaccharides are essential E. amylovora virulence factors. Production of amylovoran and lipopolysaccharide is specified in part by genes that are members of long operons. Here, we show that full virulence of E. amylovora in apple fruitlets and tree shoots depends on the predicted transcription antiterminator RfaH. RfaH reduces pausing in the production of long transcripts having an operon polarity suppressor regulatory element within their promoter region. In E. amylovora, only the amylovoran operon and a lipopolysaccharide operon have such regulatory elements within their promoter regions and in the correct orientation. These operons showed dramatically increased polarity in the ΔrfaH mutant compared to the wild type as determined by RNA sequencing. Amylovoran and lipopolysaccharide production in vitro was reduced in rfaH mutants compared to the wild type, which probably contributes to the rfaH mutant virulence phenotype. Furthermore, type VI secretion cluster 1, which contributes to E. amylovora virulence, showed reduced expression in ΔrfaH compared to the wild type, although without an increase in polarity. The data suggest that E. amylovora RfaH directly, specifically, and exclusively suppresses operon polarity in the amylovoran operon and a lipopolysaccharide operon.
Collapse
Affiliation(s)
- Sara M. Klee
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of MicrobiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Judith P. Sinn
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Jeremy Held
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Chad Vosburg
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Aleah C. Holmes
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Neurology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Brian L. Lehman
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePennsylvaniaUSA
| | - Kari A. Peter
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePennsylvaniaUSA
| | - Timothy W. McNellis
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
4
|
Gahlot DK, Wai SN, Erickson DL, Francis MS. Cpx-signalling facilitates Hms-dependent biofilm formation by Yersinia pseudotuberculosis. NPJ Biofilms Microbiomes 2022; 8:13. [PMID: 35351893 PMCID: PMC8964730 DOI: 10.1038/s41522-022-00281-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria often reside in sessile communities called biofilms, where they adhere to a variety of surfaces and exist as aggregates in a viscous polymeric matrix. Biofilms are resistant to antimicrobial treatments, and are a major contributor to the persistence and chronicity of many bacterial infections. Herein, we determined that the CpxA-CpxR two-component system influenced the ability of enteropathogenic Yersinia pseudotuberculosis to develop biofilms. Mutant bacteria that accumulated the active CpxR~P isoform failed to form biofilms on plastic or on the surface of the Caenorhabditis elegans nematode. A failure to form biofilms on the worm surface prompted their survival when grown on the lawns of Y. pseudotuberculosis. Exopolysaccharide production by the hms loci is the major driver of biofilms formed by Yersinia. We used a number of molecular genetic approaches to demonstrate that active CpxR~P binds directly to the promoter regulatory elements of the hms loci to activate the repressors of hms expression and to repress the activators of hms expression. Consequently, active Cpx-signalling culminated in a loss of exopolysaccharide production. Hence, the development of Y. pseudotuberculosis biofilms on multiple surfaces is controlled by the Cpx-signalling, and at least in part this occurs through repressive effects on the Hms-dependent exopolysaccharide production.
Collapse
|
5
|
Liu MA, Kidambi A, Reeves PR. The low level of O antigen in Salmonella enterica Paratyphi A is due to inefficiency of the glycosyltransferase WbaV. FEMS Microbiol Lett 2021; 368:6105216. [PMID: 33476372 DOI: 10.1093/femsle/fnab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 11/14/2022] Open
Abstract
The group A O antigen is the major surface polysaccharide of Salmonella enterica serovar Paratyphi A (SPA), and the focal point for most current vaccine development efforts. The SPA O-antigen repeat (O unit) is structurally similar to the group D1 O unit of S. enterica serovar Typhi, differing only in the presence of a terminal side-branch paratose (Par) in place of tyvelose (Tyv), both of which are attached by the glycosyltransferase WbaV. The two O-antigen gene clusters are also highly similar, but with a loss-of-function mutation in the group A tyv gene and the tandem amplification of wbaV in most SPA strains. In this study, we show that SPA strains consistently produce less O antigen than their group D1 counterparts and use an artificial group A strain (D1 Δtyv) to show this is due to inefficient Par attachment by WbaV. We also demonstrate that group A O-antigen production can be increased by overexpression of the wbaV gene in both the D1 Δtyv strain and two multi-wbaV SPA strains. These findings should be broadly applicable in ongoing vaccine development pipelines, where efficient isolation and purification of large quantities of O antigen is of critical importance.
Collapse
Affiliation(s)
- Michael A Liu
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Aditi Kidambi
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Rcs Phosphorelay Responses to Truncated Lipopolysaccharide-Induced Cell Envelope Stress in Yersinia enterocolitica. Molecules 2020; 25:molecules25235718. [PMID: 33287412 PMCID: PMC7730088 DOI: 10.3390/molecules25235718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria, and its integrity is monitored by various stress response systems. Although the Rcs system is involved in the envelope stress response and regulates genes controlling numerous bacterial cell functions of Yersinia enterocolitica, whether it can sense the truncated LPS in Y. enterocolitica remains unclear. In this study, the deletion of the Y. enterocolitica waaF gene truncated the structure of LPS and produced a deep rough LPS. The truncated LPS increased the cell surface hydrophobicity and outer membrane permeability, generating cell envelope stress. The truncated LPS also directly exposed the smooth outer membrane to the external environment and attenuated the resistance to adverse conditions, such as impaired survival under polymyxin B and sodium dodecyl sulfate (SDS) exposure. Further phenotypic experiment and gene expression analysis indicated that the truncated LPS was correlated with the activation of the Rcs phosphorelay, thereby repressing cell motility and biofilm formation. Our findings highlight the importance of LPS integrity in maintaining membrane function and broaden the understanding of Rcs phosphorelay signaling in response to cell envelope stress, thus opening new avenues to develop effective antimicrobial agents for combating Y. enterocolitica infections.
Collapse
|
7
|
Genomic Profiling Reveals Distinct Routes To Complement Resistance in Klebsiella pneumoniae. Infect Immun 2020; 88:IAI.00043-20. [PMID: 32513855 PMCID: PMC7375759 DOI: 10.1128/iai.00043-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
The serum complement system is a first line of defense against bacterial invaders. Resistance to killing by serum enhances the capacity of Klebsiella pneumoniae to cause infection, but it is an incompletely understood virulence trait. Identifying and characterizing the factors responsible for preventing activation of, and killing by, serum complement could inform new approaches to treatment of K. pneumoniae infections. Here, we used functional genomic profiling to define the genetic basis of complement resistance in four diverse serum-resistant K. pneumoniae strains (NTUH-K2044, B5055, ATCC 43816, and RH201207), and explored their recognition by key complement components. The serum complement system is a first line of defense against bacterial invaders. Resistance to killing by serum enhances the capacity of Klebsiella pneumoniae to cause infection, but it is an incompletely understood virulence trait. Identifying and characterizing the factors responsible for preventing activation of, and killing by, serum complement could inform new approaches to treatment of K. pneumoniae infections. Here, we used functional genomic profiling to define the genetic basis of complement resistance in four diverse serum-resistant K. pneumoniae strains (NTUH-K2044, B5055, ATCC 43816, and RH201207), and explored their recognition by key complement components. More than 90 genes contributed to resistance in one or more strains, but only three, rfaH, lpp, and arnD, were common to all four strains. Deletion of the antiterminator rfaH, which controls the expression of capsule and O side chains, resulted in dramatic complement resistance reductions in all strains. The murein lipoprotein gene lpp promoted capsule retention through a mechanism dependent on its C-terminal lysine residue; its deletion led to modest reductions in complement resistance. Binding experiments with the complement components C3b and C5b-9 showed that the underlying mechanism of evasion varied in the four strains: B5055 and NTUH-K2044 appeared to bypass recognition by complement entirely, while ATCC 43816 and RH201207 were able to resist killing despite being associated with substantial levels of C5b-9. All rfaH and lpp mutants bound C3b and C5b-9 in large quantities. Our findings show that, even among this small selection of isolates, K. pneumoniae adopts differing mechanisms and utilizes distinct gene sets to avoid complement attack.
Collapse
|
8
|
Heidarzadeh M, Roodbari F, Hassanpour M, Ahmadi M, Saberianpour S, Rahbarghazi R. Toll-like receptor bioactivity in endothelial progenitor cells. Cell Tissue Res 2019; 379:223-230. [PMID: 31754781 DOI: 10.1007/s00441-019-03119-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the main cause of death globally that can be mitigated by the modulation of angiogenesis. To achieve this goal, the application of endothelial progenitor cells and other stem cell types is useful. Following the onset of cardiovascular disease and pro-inflammatory conditions as seen during bacterial sepsis, endothelial progenitor cells enter systemic circulation in response to multiple cytokines and activation of various intracellular mechanisms. The critical role of Toll-like receptors has been previously identified in the dynamics of various cell types, in particular, immune cells. To our knowledge, there are a few experiments related to the role of Toll-like receptors in endothelial progenitor cell activity. Emerging data point of endothelial progenitor cells and other stem cells having the potential to express Toll-like receptors to control different activities such as multipotentiality and dynamics of growth. In this review article, we aim to collect data related to the role of Toll-like receptors in endothelial progenitor cells bioactivity and angiogenic potential.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Department of Microbiology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Roodbari
- Department of Microbiology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Saberianpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Differential impact of lipopolysaccharide defects caused by loss of RfaH in Yersinia pseudotuberculosis and Yersinia pestis. Sci Rep 2017; 7:10915. [PMID: 28883503 PMCID: PMC5589760 DOI: 10.1038/s41598-017-11334-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/22/2017] [Indexed: 01/11/2023] Open
Abstract
RfaH enhances transcription of a select group of operons controlling bacterial surface features such as lipopolysaccharide (LPS). Previous studies have suggested that rfaH may be required for Yersinia pseudotuberculosis resistance to antimicrobial chemokines and survival during mouse infections. In order to further investigate the role of RfaH in LPS synthesis, resistance to host defense peptides, and virulence of Yersinia, we constructed ΔrfaH mutants of Y. pseudotuberculosis IP32953 and Y. pestis KIM6+. Loss of rfaH affected LPS synthesis in both species, resulting in a shorter core oligosaccharide. Susceptibility to polymyxin and the antimicrobial chemokine CCL28 was increased by loss of rfaH in Y. pseudotuberculosis but not in Y. pestis. Transcription of genes in the ddhD-wzz O-antigen gene cluster, but not core oligosaccharide genes, was reduced in ΔrfaH mutants. In addition, mutants with disruptions in specific ddhD-wzz O-antigen cluster genes produced LPS that was indistinguishable from the ΔrfaH mutant. This suggests that both Y. pseudotuberculosis and Y. pestis produce an oligosaccharide core with a single O-antigen unit attached in an RfaH-dependent fashion. Despite enhanced sensitivity to host defense peptides, the Y. pseudotuberculosis ΔrfaH strain was not attenuated in mice, suggesting that rfaH is not required for acute infection.
Collapse
|
10
|
Bozcal E, Dagdeviren M, Uzel A, Skurnik M. LuxCDE-luxAB-based promoter reporter system to monitor the Yersinia enterocolitica O:3 gene expression in vivo. PLoS One 2017; 12:e0172877. [PMID: 28235077 PMCID: PMC5325538 DOI: 10.1371/journal.pone.0172877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/11/2017] [Indexed: 12/19/2022] Open
Abstract
It is crucial to understand the in vitro and in vivo regulation of the virulence factor genes of bacterial pathogens. In this study, we describe the construction of a versatile reporter system for Yersinia enterocolitica serotype O:3 (YeO3) based on the luxCDABE operon. In strain YeO3-luxCDE we integrated the luciferase substrate biosynthetic genes, luxCDE, into the genome of the bacterium so that the substrate is constitutively produced. The luxAB genes that encode the luciferase enzyme were cloned into a suicide vector to allow cloning of any promoter-containing fragment upstream the genes. When the obtained suicide-construct is mobilized into YeO3-luxCDE bacteria, it integrates into the recipient genome via homologous recombination between the cloned promoter fragment and the genomic promoter sequence and thereby generates a single-copy and stable promoter reporter. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core hexasaccharide (OC) of YeO3 are virulence factors necessary to colonization of the intestine and establishment of infection. To monitor the activities of the OC and O-ag gene cluster promoters we constructed the reporter strains YeO3-Poc::luxAB and YeO3-Pop1::luxAB, respectively. In vitro, at 37°C both promoter activities were highest during logarithmic growth and decreased when the bacteria entered stationary growth phase. At 22°C the OC gene cluster promoter activity increased during the late logarithmic phase. Both promoters were more active in late stationary phase. To monitor the promoter activities in vivo, mice were infected intragastrically and the reporter activities monitored by the IVIS technology. The mouse experiments revealed that both LPS promoters were well expressed in vivo and could be detected by IVIS, mainly from the intestinal region of orally infected mice.
Collapse
Affiliation(s)
- Elif Bozcal
- Istanbul University, Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Istanbul, Turkey
- Ege University, Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Izmir, Turkey
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Melih Dagdeviren
- Ege University, Faculty of Science, Department of Biology, General Biology Section, Izmir, Turkey
- Ege University, Center for Drug Research and Development and Pharmacokinetic Applications, Izmir, Turkey
| | - Atac Uzel
- Ege University, Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Izmir, Turkey
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
11
|
Leskinen K, Pajunen MI, Varjosalo M, Fernández-Carrasco H, Bengoechea JA, Skurnik M. Several Hfq-dependent alterations in physiology of Yersinia enterocolitica O:3 are mediated by derepression of the transcriptional regulator RovM. Mol Microbiol 2017; 103:1065-1091. [PMID: 28010054 DOI: 10.1111/mmi.13610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2016] [Indexed: 12/27/2022]
Abstract
In bacteria, the RNA chaperone Hfq enables pairing of small regulatory RNAs with their target mRNAs and therefore is a key player of post-transcriptional regulation network. As a global regulator, Hfq is engaged in the adaptation to external environment, regulation of metabolism and bacterial virulence. In this study we used RNA-sequencing and quantitative proteomics (LC-MS/MS) to elucidate the role of this chaperone in the physiology and virulence of Yersinia enterocolitica serotype O:3. This global approach revealed the profound impact of Hfq on gene and protein expression. Furthermore, the role of Hfq in the cell morphology, metabolism, cell wall integrity, resistance to external stresses and pathogenicity was evaluated. Importantly, our results revealed that several alterations typical for the hfq-negative phenotype were due to derepression of the transcriptional factor RovM. The overexpression of RovM caused by the loss of Hfq chaperone resulted in extended growth defect, alterations in the lipid A structure, motility and biofilm formation defects, as well as changes in mannitol utilization. Furthermore, in Y. enterocolitica RovM only in the presence of Hfq affected the abundance of RpoS. Finally, the impact of hfq and rovM mutations on the virulence was assessed in the mouse infection model.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki.,Biocentrum Helsinki, Finland: Finnish Institute of Molecular Medicine, Finland
| | | | - José A Bengoechea
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
12
|
Garrett SB, Garrison-Schilling KL, Cooke JT, Pettis GS. Capsular polysaccharide production and serum survival of Vibrio vulnificus are dependent on antitermination control by RfaH. FEBS Lett 2016; 590:4564-4572. [PMID: 27859050 DOI: 10.1002/1873-3468.12490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
The human pathogen Vibrio vulnificus undergoes phase variation among colonial morphotypes, including a virulent opaque form which produces capsular polysaccharide (CPS) and a translucent phenotype that produces little or no CPS and is attenuated. Here, we found that a V. vulnificus mutant defective for RfaH antitermination control showed a diminished capacity to undergo phase variation and displayed significantly reduced distal gene expression within the Group I CPS operon. Moreover, the rfaH mutant produced negligible CPS and was highly sensitive to killing by normal human serum, results which indicate that RfaH is likely essential for virulence in this bacterium.
Collapse
Affiliation(s)
- Shana B Garrett
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Jeffrey T Cooke
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Gregg S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
13
|
Green ER, Clark S, Crimmins GT, Mack M, Kumamoto CA, Mecsas J. Fis Is Essential for Yersinia pseudotuberculosis Virulence and Protects against Reactive Oxygen Species Produced by Phagocytic Cells during Infection. PLoS Pathog 2016; 12:e1005898. [PMID: 27689357 PMCID: PMC5045184 DOI: 10.1371/journal.ppat.1005898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
All three pathogenic Yersinia species share a conserved virulence plasmid that encodes a Type 3 Secretion System (T3SS) and its associated effector proteins. During mammalian infection, these effectors are injected into innate immune cells, where they block many bactericidal functions, including the production of reactive oxygen species (ROS). However, Y. pseudotuberculosis (Yptb) lacking the T3SS retains the ability to colonize host organs, demonstrating that chromosome-encoded factors are sufficient for growth within mammalian tissue sites. Previously we uncovered more than 30 chromosomal factors that contribute to growth of T3SS-deficient Yptb in livers. Here, a deep sequencing-based approach was used to validate and characterize the phenotype of 18 of these genes during infection by both WT and plasmid-deficient Yptb. Additionally, the fitness of these mutants was evaluated in immunocompromised mice to determine whether any genes contributed to defense against phagocytic cell restriction. Mutants containing deletions of the dusB-fis operon, which encodes the nucleoid associated protein Fis, were markedly attenuated in immunocompetent mice, but were restored for growth in mice lacking neutrophils and inflammatory monocytes, two of the major cell types responsible for restricting Yersinia infection. We determined that Fis was dispensable for secretion of T3SS effectors, but was essential for resisting ROS and regulated the transcription of several ROS-responsive genes. Strikingly, this protection was critical for virulence, as growth of ΔdusB-fis was restored in mice unable to produce ROS. These data support a model in which ROS generated by neutrophils and inflammatory monocytes that have not been translocated with T3SS effectors enter bacterial cells during infection, where their bactericidal effects are resisted in a Fis-dependent manner. This is the first report of the requirement for Fis during Yersinia infection and also highlights a novel mechanism by which Yptb defends against ROS in mammalian tissues. The pathogenic members of the genus Yersinia share a conserved virulence plasmid that primarily serves to encode a Type 3 Secretion System and its associated effector proteins. During mammalian infection, these effectors are targeted toward phagocytic cells, where they neutralize a multitude of functions, including oxidative burst. However, it has previously been reported that strains of Yersinia pseudotuberculosis lacking the virulence plasmid retain the ability to grow in mammalian tissue sites, suggesting that the Yersinia chromosome encodes a number of poorly appreciated factors that enable survival in mammalian tissue sites, even in the absence of a functional T3SS. Here, we further characterize a number of these factors, including the operon dusB-fis. Using a variety of in vitro and vivo approaches, we determined that Fis regulates the transcription of several genes implicated in ROS resistance and that dusB-fis is essential for preventing growth restriction by ROS produced by the NADPH complex of phagocytes, even in a T3SS-expressing strain. Combined, these data suggest a model in which, during tissue infection, Yersinia evade killing by ROS through both T3SS-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Erin R. Green
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stacie Clark
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory T. Crimmins
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthias Mack
- Universitatsklinikum Regensburg, Innere Medizin II/Nephrologie-Transplantation, Regensburg, Germany
| | - Carol A. Kumamoto
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Joan Mecsas
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents 2016; 48:583-591. [PMID: 27524102 DOI: 10.1016/j.ijantimicag.2016.06.023] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Colistin, also referred to as polymyxin E, is an effective antibiotic against most multidrug-resistant Gram-negative bacteria and is currently used as a last-line drug for treating severe bacterial infections. Colistin resistance has increased gradually for the last few years, and knowledge of its multifaceted mechanisms is expanding. This includes the newly discovered plasmid-mediated colistin resistance gene mcr-1, which has been detected in over 20 countries within 3 months of its first report. We previously reported all of the known mechanisms of polymyxin resistance in our first review in 2014, but an update seems necessary in 2016, considering the significant recent discoveries that have been made in this domain. This review provides an update about what is already known, what is new, and some unresolved questions with respect to colistin resistance.
Collapse
Affiliation(s)
- Sophie Baron
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| | - Abiola Olumuyiwa Olaitan
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
15
|
Leskinen K, Blasdel BG, Lavigne R, Skurnik M. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica. Viruses 2016; 8:111. [PMID: 27110815 PMCID: PMC4848604 DOI: 10.3390/v8040111] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 01/05/2023] Open
Abstract
Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
| | - Bob G Blasdel
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, FIN-00270 Helsinki, Finland.
| |
Collapse
|