1
|
Cheng M, Li S, Wang J, Yang X, Duan D, Shao Z. Genome-Wide Mining of Chitinase Diversity in the Marine Diatom Thalassiosira weissflogii and Functional Characterization of a Novel GH19 Enzyme. Mar Drugs 2025; 23:144. [PMID: 40278265 PMCID: PMC12028343 DOI: 10.3390/md23040144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Chitin represents a globally abundant marine polymer with significant ecological and biotechnological value. β-chitin is an important carbon fixation product of diatoms and has a greater range of applications than α- and γ-chitin. However, there has been a paucity of research on the characterization of chitin-related enzymes from β-chitin producers. In this study, we performed a genome-wide identification of 38 putative chitinase genes in Thalassiosira weissflogii, a key producer of β-chitin. Through comprehensive analyses of phylogenetic relationships, conserved motifs, structural domains, and subcellular localization predictions, we revealed that T. weissflogii possesses evolutionarily distinct GH18 and GH19 chitinase families exhibiting unique motif and domain configurations. Subcellular localization predictions showed that most TwChis were presumed to be located in the chloroplast, with a few being present in the nucleus and extracellular. The enzymatic activity of TwChi2, a GH19 chitinase, showed that TwChi2 was a member of exochitinase (EC 3.2.1.201) with strong thermal stability (40 °C) and broad substrate adaptability of hydrolyzing bipolymer, 1% and 5% colloidal chitin, α-chitin and β-chitin. Altogether, we analyzed the chitinase gene family and characterized a highly active exochitinase from T. weissflogii, which can catalyze the degradation of both chitin polymers and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of high-value chitin oligosaccharides.
Collapse
Affiliation(s)
- Mengzhen Cheng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiaoqi Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Delin Duan
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhanru Shao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Piombo E, Tzelepis G, Ruus AG, Rafiei V, Jensen DF, Karlsson M, Dubey M. Sterol regulatory element-binding proteins mediate intrinsic fungicide tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea IK726. Microbiol Res 2024; 289:127922. [PMID: 39368255 DOI: 10.1016/j.micres.2024.127922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are transcription factors governing various biological processes in fungi, including virulence and fungicide tolerance, by regulating ergosterol biosynthesis and homeostasis. While studied in model fungal species, their role in fungal species used for biocontrol remains elusive. This study delves into the biological and regulatory function of SREBPs in the fungal biocontrol agent (BCA) Clonostachys rosea IK726, with a specific focus on fungicide tolerance and antagonism. Clonostachys rosea genome contains two SREBP coding genes (sre1 and sre2) with distinct characteristics. Deletion of sre1 resulted in mutant strains with pleiotropic phenotypes, including reduced C. rosea growth on medium supplemented with prothioconazole and boscalid fungicides, hypoxia mimicking agent CoCl2 and cell wall stressor SDS, and altered antagonistic abilities against Botrytis cinerea and Rhizoctonia solani. However, Δsre2 strains showed no significant effect. Consistent with the gene deletion results, overexpression of sre1 in Saccharomyces cerevisiae enhanced tolerance to prothioconazole. The functional differentiation between SRE1 and SRE2 was elucidated by the yeast-two-hybridization assay, which showed an interaction between SREBP cleavage-activating protein (SCAP) and SRE1 but not between SRE2 and SCAP. Transcriptome analysis of the Δsre1 strain unveiled SRE1-mediated expression regulation of genes involved in lipid metabolism, respiration, and xenobiotic tolerance. Notably, genes coding for antimicrobial compounds chitinases and polyketide synthases were downregulated, aligning with the altered antagonism phenotype. This study uncovers the role of SREBPs in fungal BCAs, providing insights for C. rosea IK726 application into integrated pest management strategies.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alma Gustavsson Ruus
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Vahideh Rafiei
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
3
|
Piombo E, Vetukuri RR, Konakalla NC, Kalyandurg PB, Sundararajan P, Jensen DF, Karlsson M, Dubey M. RNA silencing is a key regulatory mechanism in the biocontrol fungus Clonostachys rosea-wheat interactions. BMC Biol 2024; 22:219. [PMID: 39343898 PMCID: PMC11441109 DOI: 10.1186/s12915-024-02014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Small RNA (sRNAs)- mediated RNA silencing is emerging as a key player in host-microbe interactions. However, its role in fungus-plant interactions relevant to biocontrol of plant diseases is yet to be explored. This study aimed to investigate Dicer (DCL)-mediated endogenous and cross-kingdom gene expression regulation in the biocontrol fungus Clonostachys rosea and wheat roots during interactions. RESULTS C. rosea Δdcl2 strain exhibited significantly higher root colonization than the WT, whereas no significant differences were observed for Δdcl1 strains. Dual RNA-seq revealed the upregulation of CAZymes, membrane transporters, and effector coding genes in C. rosea, whereas wheat roots responded with the upregulation of stress-related genes and the downregulation of growth-related genes. The expression of many of these genes was downregulated in wheat during the interaction with DCL deletion strains, underscoring the influence of fungal DCL genes on wheat defense response. sRNA sequencing identified 18 wheat miRNAs responsive to C. rosea, and three were predicted to target the C. rosea polyketide synthase gene pks29. Two of these miRNAs (mir_17532_x1 and mir_12061_x13) were observed to enter C. rosea from wheat roots with fluorescence analyses and to downregulate the expression of pks29, showing plausible cross-kingdom RNA silencing of the C. rosea gene by wheat miRNAs. CONCLUSIONS We provide insights into the mechanisms underlying the interaction between biocontrol fungi and plant roots. Moreover, the study sheds light on the role of sRNA-mediated gene expression regulation in C. rosea-wheat interactions and provides preliminary evidence of cross-kingdom RNA silencing between plants and biocontrol fungi.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Naga Charan Konakalla
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Pruthvi B Kalyandurg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Poorva Sundararajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
4
|
Kudjordjie EN, Santos SS, Topalović O, Vestergård M. Distinct changes in tomato-associated multi-kingdom microbiomes during Meloidogyne incognita parasitism. ENVIRONMENTAL MICROBIOME 2024; 19:53. [PMID: 39068487 DOI: 10.1186/s40793-024-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The interplay between root-knot nematode (RKN) parasitism and the complex web of host-associated microbiota has been recognized as pivotal for effective management of the pest. However, studies assessing this relationship have focussed on the bacterial and fungal communities, neglecting the unicellular eukaryotic members. Here, we employed amplicon sequencing analysis of the bacterial 16S rRNA, fungal ITS and eukaryotic 18S rRNA genes, and comprehensively examined how the microbiome composition, diversity and networking developed with time in the rhizospheres and roots of RKN-inoculated and non-inoculated tomato plants. RESULTS As expected, infection with the RKN Meloidogyne incognita decreased plant growth. At individual timepoints, we found distinct bacterial, fungal and eukaryote community structures in the RKN-inoculated and non-inoculated rhizospheres and roots, and RKN inoculation affected several taxa in the root-associated microbiome differentially. Correlation analysis revealed several bacterial and fungal and few protist taxa that correlated negatively or positively with M. incognita. Moreover, network analysis using bacterial, fungal and eukaryotic data revealed more dynamic networks with higher robustness to disturbances in the RKN-inoculated than in the non-inoculated rhizospheres/roots. Hub taxa displayed a noticeable successional pattern that coincided with different phases of M. incognita parasitism. We found that fungal hubs had strong negative correlations with bacteria and eukaryotes, while positive correlations characterized hub members within individual kingdoms. CONCLUSION Our results reveal dynamic tomato-associated microbiomes that develop along different trajectories in plants suffering M. incognita infestation and non-infested plants. Overall, the results identify stronger associations between RKN and bacterial and fungal taxa than between eukaryotic taxa and RKN, suggesting that fungal and bacterial communities could play a larger role in the regulation of RKN. The study identifies several putative RKN-antagonistic bacterial and fungal taxa and confirms the antagonistic potential previously identified in other taxa.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| | - Susana S Santos
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| | - Olivera Topalović
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark.
| |
Collapse
|
5
|
Doi K, Mitani A, Nakakita SI, Higuchi Y, Takegawa K. Characterization of novel endo-β-N-acetylglucosaminidases from intestinal Barnesiella intestinihominis that hydrolyze multi-branched complex-type N-glycans. J Biosci Bioeng 2024; 137:101-107. [PMID: 38142217 DOI: 10.1016/j.jbiosc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze N-linked glycans. Many ENGases have been characterized, but few have been identified with hydrolytic activity towards multi-branched complex-type N-glycans. In this study, three candidate ENGases were identified from Barnesiella intestinihominis based on database searches and phylogenetic analysis. A domain search identified the N x E motif in all three candidates, suggesting that they were members of glycosyl hydrolase family 85 (GH85). The three candidate ENGases, named Endo-BIN1, Endo-BIN2, and Endo-BIN3, were expressed in Escherichia coli cells, and their hydrolytic activity towards N-glycans and glycoproteins was measured by high performance liquid chromatography analysis and SDS-PAGE analysis. All ENGases showed hydrolytic activity towards glycoproteins, but only Endo-BIN2 and Endo-BIN3 showed hydrolytic activity towards pyridylaminated N-glycans. The optimum pH of Endo-BIN1, Endo-BIN2, and End-BIN3 was pH 6.5, 4.0, and 7.0, respectively. We measured substrate specificities of Endo-BIN2 and Endo-BIN3 towards pyridylaminated N-glycans, and found that the two Endo-BIN enzymes showed similar substrate specificity, preferring bi-antennary complex-type N-glycans with galactose or α2,6-linked sialic acid residues at the non-reducing ends. Endo-BIN2 and Endo-BIN3 were also able to hydrolyze multi-branched complex-type N-glycans. SDS-PAGE analysis revealed that all Endo-BIN enzymes were capable of releasing complex-type N-glycans from glycoproteins such as rituximab, transferrin, and fetuin. We expect that B. intestinihominis possesses ENGases to facilitate the utilization of complex-type N-glycans from host cells. These findings will have applications in N-glycan remodeling of glycoproteins and the development of pharmaceuticals.
Collapse
Affiliation(s)
- Kanako Doi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Mitani
- Fushimi Pharmaceutical Co. Ltd., Marugame, Kagawa 763-8605, Japan
| | | | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Lv B, Zhao X, Guo Y, Li S, Sun M. Serine protease CrKP43 interacts with MAPK and regulates fungal development and mycoparasitism in Clonostachys chloroleuca. Microbiol Spectr 2023; 11:e0244823. [PMID: 37831480 PMCID: PMC10715147 DOI: 10.1128/spectrum.02448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycoparasites play important roles in the biocontrol of plant fungal diseases, during which they secret multiple hydrolases such as serine proteases to degrade their fungal hosts. In this study, we demonstrated that the serine protease CrKP43 was involved in C. chloroleuca development and mycoparasitism with the regulation of Crmapk. To the best of our knowledge, it is the first report on the functions and regulatory mechanisms of serine proteases in C. chloroleuca. Our findings will provide new insight into the regulatory mechanisms of serine proteases in mycoparasites and contribute to clarifying the mechanisms underlying mycoparasitism of C. chloroleuca, which will facilitate the development of highly efficient fungal biocontrol agents as well.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Lv B, Guo Y, Zhao X, Li S, Sun M. Glucose-6-phosphate 1-Epimerase CrGlu6 Contributes to Development and Biocontrol Efficiency in Clonostachys chloroleuca. J Fungi (Basel) 2023; 9:764. [PMID: 37504752 PMCID: PMC10381721 DOI: 10.3390/jof9070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Clonostachys chloroleuca (formerly classified as C. rosea) is an important mycoparasite active against various plant fungal pathogens. Mitogen-activated protein kinase (MAPK) signaling pathways are vital in mycoparasitic interactions; they participate in responses to diverse stresses and mediate fungal development. In previous studies, the MAPK-encoding gene Crmapk has been proven to be involved in mycoparasitism and the biocontrol processes of C. chloroleuca, but its regulatory mechanisms remain unclear. Aldose 1-epimerases are key enzymes in filamentous fungi that generate energy for fungal growth and development. By protein-protein interaction assays, the glucose-6-phosphate 1-epimerase CrGlu6 was found to interact with Crmapk, and expression of the CrGlu6 gene was significantly upregulated when C. chloroleuca colonized Sclerotinia sclerotiorum sclerotia. Gene deletion and complementation analyses showed that CrGlu6 deficiency caused abnormal morphology of hyphae and cells, and greatly reduced conidiation. Moreover, deletion mutants presented much lower antifungal activities and mycoparasitic ability, and control efficiency against sclerotinia stem rot was markedly decreased. When the CrGlu6 gene was reinserted, all biological characteristics and biocontrol activities were recovered. These findings provide new insight into the mechanisms of glucose-6-phosphate 1-epimerase in mycoparasitism and help to further reveal the regulation of MAPK and its interacting proteins in the biocontrol of C. chloroleuca.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Piombo E, Guaschino M, Jensen DF, Karlsson M, Dubey M. Insights into the ecological generalist lifestyle of Clonostachys fungi through analysis of their predicted secretomes. Front Microbiol 2023; 14:1112673. [PMID: 36876087 PMCID: PMC9978495 DOI: 10.3389/fmicb.2023.1112673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction The fungal secretome comprise diverse proteins that are involved in various aspects of fungal lifestyles, including adaptation to ecological niches and environmental interactions. The aim of this study was to investigate the composition and activity of fungal secretomes in mycoparasitic and beneficial fungal-plant interactions. Methods We used six Clonostachys spp. that exhibit saprotrophic, mycotrophic and plant endophytic lifestyles. Genome-wide analyses was performed to investigate the composition, diversity, evolution and gene expression of Clonostachys secretomes in relation to their potential role in mycoparasitic and endophytic lifestyles. Results and discussion Our analyses showed that the predicted secretomes of the analyzed species comprised between 7 and 8% of the respective proteomes. Mining of transcriptome data collected during previous studies showed that 18% of the genes encoding predicted secreted proteins were upregulated during the interactions with the mycohosts Fusarium graminearum and Helminthosporium solani. Functional annotation of the predicted secretomes revealed that the most represented protease family was subclass S8A (11-14% of the total), which include members that are shown to be involved in the response to nematodes and mycohosts. Conversely, the most numerous lipases and carbohydrate-active enzyme (CAZyme) groups appeared to be potentially involved in eliciting defense responses in the plants. For example, analysis of gene family evolution identified nine CAZyme orthogroups evolving for gene gains (p ≤ 0.05), predicted to be involved in hemicellulose degradation, potentially producing plant defense-inducing oligomers. Moreover, 8-10% of the secretomes was composed of cysteine-enriched proteins, including hydrophobins, important for root colonization. Effectors were more numerous, comprising 35-37% of the secretomes, where certain members belonged to seven orthogroups evolving for gene gains and were induced during the C. rosea response to F. graminearum or H. solani. Furthermore, the considered Clonostachys spp. possessed high numbers of proteins containing Common in Fungal Extracellular Membranes (CFEM) modules, known for their role in fungal virulence. Overall, this study improves our understanding of Clonostachys spp. adaptation to diverse ecological niches and establishes a basis for future investigation aiming at sustainable biocontrol of plant diseases.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Micol Guaschino
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
Samlali K, Alves CL, Jezernik M, Shih SCC. Droplet digital microfluidic system for screening filamentous fungi based on enzymatic activity. MICROSYSTEMS & NANOENGINEERING 2022; 8:123. [PMID: 36438986 PMCID: PMC9681769 DOI: 10.1038/s41378-022-00456-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Fungal cell-wall-degrading enzymes have great utility in the agricultural and food industries. These cell-wall-degrading enzymes are known to have functions that can help defend against pathogenic organisms. The existing methods used to discover these enzymes are not well adapted to fungi culture and morphology, which prevents the proper evaluation of these enzymes. We report the first droplet-based microfluidic method capable of long-term incubation and low-voltage conditions to sort filamentous fungi inside nanoliter-sized droplets. The new method was characterized and validated in solid-phase media based on colloidal chitin such that the incubation of single spores in droplets was possible over multiple days (2-4 days) and could be sorted without droplet breakage. With long-term culture, we examined the activity of cell-wall-degrading enzymes produced by fungi during solid-state droplet fermentation using three highly sensitive fluorescein-based substrates. We also used the low-voltage droplet sorter to select clones with highly active cell-wall-degrading enzymes, such as chitinases, β-glucanases, and β-N-acetylgalactosaminidases, from a filamentous fungi droplet library that had been incubated for >4 days. The new system is portable, affordable for any laboratory, and user-friendly compared to classical droplet-based microfluidic systems. We propose that this system will be useful for the growing number of scientists interested in fungal microbiology who are seeking high-throughput methods to incubate and sort a large library of fungal cells.
Collapse
Affiliation(s)
- Kenza Samlali
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC Canada
| | - Chiara Leal Alves
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC Canada
| | - Mara Jezernik
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - Steve C. C. Shih
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC Canada
- Department of Biology, Concordia University, Montréal, QC Canada
| |
Collapse
|
10
|
Comparative Small RNA and Degradome Sequencing Provides Insights into Antagonistic Interactions in the Biocontrol Fungus Clonostachys rosea. Appl Environ Microbiol 2022; 88:e0064322. [PMID: 35695572 PMCID: PMC9275246 DOI: 10.1128/aem.00643-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Necrotrophic mycoparasitism is an intricate process involving recognition, physical mycelial contact, and killing of host fungi (mycohosts). During such interactions, mycoparasites undergo a complex developmental process involving massive regulatory changes of gene expression to produce a range of chemical compounds and proteins that contribute to the parasitism of the mycohosts. Small RNAs (sRNAs) are vital components of posttranscriptional gene regulation, although their role in gene expression regulation during mycoparasitisms remain understudied. Here, we investigated the role of sRNA-mediated gene regulation in mycoparasitism by performing sRNA and degradome tag sequencing of the mycoparasitic fungus Clonostachys rosea interacting with the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum at two time points. The majority of differentially expressed sRNAs were downregulated during the interactions with the mycohosts compared to a C. rosea self-interaction control, thus allowing desuppression (upregulation) of mycohost-responsive genes. Degradome analysis showed a positive correlation between high degradome counts and antisense sRNA mapping and led to the identification of 201 sRNA-mediated potential gene targets for 282 differentially expressed sRNAs. Analysis of sRNA potential gene targets revealed that the regulation of genes coding for membrane proteins was a common response against both mycohosts. The regulation of genes involved in oxidative stress tolerance and cellular metabolic and biosynthetic processes was exclusive against F. graminearum, highlighting common and mycohost-specific gene regulation of C. rosea. By combining these results with transcriptome data collected during a previous study, we expand the understanding of the role of sRNA in regulating interspecific fungal interactions and mycoparasitism. IMPORTANCE Small RNAs (sRNAs) are emerging as key players in pathogenic and mutualistic fungus-plant interactions; however, their role in fungus-fungus interactions remains elusive. In this study, we employed the necrotrophic mycoparasite Clonostachys rosea and the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum and investigated the sRNA-mediated gene regulation in mycoparasitic interactions. The combined approach of sRNA and degradome tag sequencing identified 201 sRNA-mediated putative gene targets for 282 differentially expressed sRNAs, highlighting the role of sRNA-mediated regulation of mycoparasitism in C. rosea. We also identified 36 known and 13 novel microRNAs (miRNAs) and their potential gene targets at the endogenous level and at a cross-species level in B. cinerea and F. graminearum, indicating a role of cross-species RNA interference (RNAi) in mycoparasitism, representing a novel mechanism in biocontrol interactions. Furthermore, we showed that C. rosea adapts its transcriptional response, and thereby its interaction mechanisms, based on the interaction stages and identity of the mycohost.
Collapse
|
11
|
Bienes KM, Tautau FAP, Mitani A, Kinoshita T, Nakakita SI, Higuchi Y, Takegawa K. Characterization of novel endo-β-N-acetylglucosaminidase from Bacteroides nordii that hydrolyzes multi-branched complex type N-glycans. J Biosci Bioeng 2022; 134:7-13. [PMID: 35484013 DOI: 10.1016/j.jbiosc.2022.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze the N-linked oligosaccharides. Many ENGases have already been identified and characterized. However, there are still a few enzymes that have hydrolytic activity toward multibranched complex-type N-glycans on glycoproteins. In this study, one novel ENGase from Bacteroides nordii (Endo-BN) species was identified and characterized. The recombinant protein was prepared and expressed in Escherichia coli cells. This Endo-BN exhibited optimum hydrolytic activity at pH 4.0. High performance liquid chromatography (HPLC) analysis showed that Endo-BN preferred core-fucosylated complex-type N-glycans, with galactose or α2,6-linked sialic acid residues at their non-reducing ends. The hydrolytic activities of Endo-BN were also tested on different glycoproteins from high-mannose type to complex-type oligosaccharides. The reaction with human transferrin, fetuin, and α1-acid glycoprotein subsequently showed that Endo-BN is capable of releasing multi-branched complex-type N-glycans from these glycoproteins.
Collapse
Affiliation(s)
- Kristina Mae Bienes
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Feunai Agape Papalii Tautau
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Mitani
- Fushimi Pharmaceutical Co. Ltd., Marugame, Kagawa 763-8605, Japan
| | | | | | - Yujiro Higuchi
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
12
|
Bradley EL, Ökmen B, Doehlemann G, Henrissat B, Bradshaw RE, Mesarich CH. Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes. FRONTIERS IN PLANT SCIENCE 2022; 13:853106. [PMID: 35360318 PMCID: PMC8960721 DOI: 10.3389/fpls.2022.853106] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
During host colonization, plant-associated microbes, including fungi and oomycetes, deliver a collection of glycoside hydrolases (GHs) to their cell surfaces and surrounding extracellular environments. The number and type of GHs secreted by each organism is typically associated with their lifestyle or mode of nutrient acquisition. Secreted GHs of plant-associated fungi and oomycetes serve a number of different functions, with many of them acting as virulence factors (effectors) to promote microbial host colonization. Specific functions involve, for example, nutrient acquisition, the detoxification of antimicrobial compounds, the manipulation of plant microbiota, and the suppression or prevention of plant immune responses. In contrast, secreted GHs of plant-associated fungi and oomycetes can also activate the plant immune system, either by acting as microbe-associated molecular patterns (MAMPs), or through the release of damage-associated molecular patterns (DAMPs) as a consequence of their enzymatic activity. In this review, we highlight the critical roles that secreted GHs from plant-associated fungi and oomycetes play in plant-microbe interactions, provide an overview of existing knowledge gaps and summarize future directions.
Collapse
Affiliation(s)
- Ellie L. Bradley
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Bilal Ökmen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rosie E. Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Kim SH, Vujanovic V. Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight. BIORESOUR BIOPROCESS 2022; 8:127. [PMID: 34993050 PMCID: PMC8683091 DOI: 10.1186/s40643-021-00479-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mycoparasites are an assemblage of biotrophic and necrotrophic fungi that occur on plant pathogenic fungal hosts. Biotrophic mycoparasites are often overlooked in transcriptomic-based biocontrol studies. Sphaerodes mycoparasitica (S.m.) is a specific biotrophic mycoparasite of plant pathogenic Fusarium graminearum (F.g.), a devastating Fusarium head blight (FHB) disease in small-grain cereals. To understand the biotrophic mycoparasitism comprehensively, we performed Illumina RNA-Seq transcriptomic study on the fungus–fungus interaction in vitro. The aim is to identify the transcript-level mechanism related to the biotrophic S.m. mycoparasitism, particularly its ability to effectively control the F.g. 3-ADON chemotype. A shift in the transcriptomic profile of the mycoparasite was triggered in response to its interaction with F.g. during recognition (1.5 days) and colonization (3.5 days) steps. RNA-Seq analysis revealed ~ 30% of annotated transcripts with "function unknown". Further, 14 differentially expressed genes functionally linked to the biotrophic mycoparasitism were validated by quantitative real-time PCR (qPCR). The gene expression patterns of the filamentous haemagglutinin/adhesin/attachment factor as well as cell wall-degrading glucanases and chitinases were upregulated by host interaction. Besides, mycoparasitism-associated antioxidant resistance genes encoding ATP-binding cassette (ABC) transporter(s) and glutathione synthetase(s) were upregulated. However, the thioredoxin reductase was downregulated which infers that this antioxidant gene can be used as a resistance marker to assess S.m. antifungal and antimycotoxigenic activities. The interactive transcriptome of S. mycoparasitica provides new insights into specific mycoparasitism and will contribute to future research in controlling FHB.
Collapse
Affiliation(s)
- Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
14
|
Piombo E, Dubey M. Computational Analysis of HTS Data and Its Application in Plant Pathology. Methods Mol Biol 2022; 2536:275-307. [PMID: 35819611 DOI: 10.1007/978-1-0716-2517-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput sequencing is a basic tool of biological research, and it is extensively used in plant pathology projects. Here, we describe how to handle data coming from a variety of sequencing experiments, focusing on the analysis of Illumina reads. We describe how to perform genome assembly and annotation with DNA reads, correctly analyze RNA-seq data to discover differentially expressed genes, handle amplicon sequencing data from microbial communities, and utilize small RNA sequencing data to predict miRNA sequences and their putative targets.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Piombo E, Vetukuri RR, Broberg A, Kalyandurg PB, Kushwaha S, Funck Jensen D, Karlsson M, Dubey M. Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Microbiol Spectr 2021; 9:e0109921. [PMID: 34549988 PMCID: PMC8557909 DOI: 10.1128/spectrum.01099-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Dicer-like proteins (DCLs) play a vital role in RNA interference (RNAi), by cleaving RNA filament into small RNAs. Although DCL-mediated RNAi can regulate interspecific communication between pathogenic/mutualistic organisms and their hosts, its role in mycoparasitic interactions is yet to be investigated. In this study, we deleted dcl genes in the mycoparasitic fungus Clonostachys rosea and characterize the functions of DCL-dependent RNAi in mycoparasitism. Deletion of dcl2 resulted in a mutant with reduced secondary metabolite production, antagonism toward the plant-pathogenic fungus Botrytis cinerea, and reduced ability to control Fusarium foot rot disease on wheat, caused by Fusarium graminearum. Transcriptome sequencing of the in vitro interaction between the C. rosea Δdcl2 strain and B. cinerea or F. graminearum identified the downregulation of genes coding for transcription factors, membrane transporters, hydrolytic enzymes, and secondary metabolites biosynthesis enzymes putatively involved in antagonistic interactions, in comparison with the C. rosea wild-type interaction. A total of 61 putative novel microRNA-like RNAs (milRNAs) were identified in C. rosea, and 11 were downregulated in the Δdcl2 mutant. In addition to putative endogenous gene targets, these milRNAs were predicted to target B. cinerea and F. graminearum virulence factor genes, which showed an increased expression during interaction with the Δdcl2 mutant incapable of producing the targeting milRNAs. In summary, this study constitutes the first step in elucidating the role of RNAi in mycoparasitic interactions, with important implications for biological control of plant diseases, and poses the base for future studies focusing on the role of cross-species RNAi regulating mycoparasitic interactions. IMPORTANCE Small RNAs mediated RNA interference (RNAi) known to regulate several biological processes. Dicer-like endoribonucleases (DCLs) play a vital role in the RNAi pathway by generating sRNAs. In this study, we investigated a role of DCL-mediated RNAi in interference interactions between mycoparasitic fungus Clonostachys rosea and the two fungal pathogens Botrytis cinerea and Fusarium graminearum (here called mycohosts). We found that the dcl mutants were not able to produce 11 sRNAs predicted to finetune the regulatory network of genes known to be involved in production of hydrolytic enzymes, antifungal compounds, and membrane transporters needed for antagonistic action of C. rosea. We also found C. rosea sRNAs putatively targeting known virulence factors in the mycohosts, indicating RNAi-mediated cross-species communication. Our study expanded the understanding of underlying mechanisms of cross-species communication during interference interactions and poses a base for future works studying the role of DCL-based cross-species RNAi in fungal interactions.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sandeep Kushwaha
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
The Role of Glycoside Hydrolases in Phytopathogenic Fungi and Oomycetes Virulence. Int J Mol Sci 2021; 22:ijms22179359. [PMID: 34502268 PMCID: PMC8431085 DOI: 10.3390/ijms22179359] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Phytopathogenic fungi need to secrete different hydrolytic enzymes to break down complex polysaccharides in the plant cell wall in order to enter the host and develop the disease. Fungi produce various types of cell wall degrading enzymes (CWDEs) during infection. Most of the characterized CWDEs belong to glycoside hydrolases (GHs). These enzymes hydrolyze glycosidic bonds and have been identified in many fungal species sequenced to date. Many studies have shown that CWDEs belong to several GH families and play significant roles in the invasion and pathogenicity of fungi and oomycetes during infection on the plant host, but their mode of function in virulence is not yet fully understood. Moreover, some of the CWDEs that belong to different GH families act as pathogen-associated molecular patterns (PAMPs), which trigger plant immune responses. In this review, we summarize the most important GHs that have been described in eukaryotic phytopathogens and are involved in the establishment of a successful infection.
Collapse
|
17
|
Salgado-Salazar C, Skaltsas DN, Phipps T, Castlebury LA. Comparative genome analyses suggest a hemibiotrophic lifestyle and virulence differences for the beech bark disease fungal pathogens Neonectria faginata and Neonectria coccinea. G3-GENES GENOMES GENETICS 2021; 11:6163289. [PMID: 33693679 DOI: 10.1093/g3journal/jkab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/25/2021] [Indexed: 11/14/2022]
Abstract
Neonectria faginata and Neonectria coccinea are the causal agents of the insect-fungus disease complex known as beech bark disease (BBD), known to cause mortality in beech forest stands in North America and Europe. These fungal species have been the focus of extensive ecological and disease management studies, yet less progress has been made toward generating genomic resources for both micro- and macro-evolutionary studies. Here, we report a 42.1 and 42.7 mb highly contiguous genome assemblies of N. faginata and N. coccinea, respectively, obtained using Illumina technology. These species share similar gene number counts (12,941 and 12,991) and percentages of predicted genes with assigned functional categories (64 and 65%). Approximately 32% of the predicted proteomes of both species are homologous to proteins involved in pathogenicity, yet N. coccinea shows a higher number of predicted mitogen-activated protein kinase genes, virulence determinants possibly contributing to differences in disease severity between N. faginata and N. coccinea. A wide range of genes encoding for carbohydrate-active enzymes capable of degradation of complex plant polysaccharides and a small number of predicted secretory effector proteins, secondary metabolite biosynthesis clusters and cytochrome oxidase P450 genes were also found. This arsenal of enzymes and effectors correlates with, and reflects, the hemibiotrophic lifestyle of these two fungal pathogens. Phylogenomic analysis and timetree estimations indicated that the N. faginata and N. coccinea species divergence may have occurred at ∼4.1 million years ago. Differences were also observed in the annotated mitochondrial genomes as they were found to be 81.7 kb (N. faginata) and 43.2 kb (N. coccinea) in size. The mitochondrial DNA expansion observed in N. faginata is attributed to the invasion of introns into diverse intra- and intergenic locations. These first draft genomes of N. faginata and N. coccinea serve as valuable tools to increase our understanding of basic genetics, evolutionary mechanisms and molecular physiology of these two nectriaceous plant pathogenic species.
Collapse
Affiliation(s)
- Catalina Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Demetra N Skaltsas
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA.,Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN 37831, USA
| | - Tunesha Phipps
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Lisa A Castlebury
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| |
Collapse
|
18
|
Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17. Curr Microbiol 2021; 78:3124-3132. [PMID: 34173840 DOI: 10.1007/s00284-021-02578-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Plant-protecting Bacillus sp. strains used as biocontrol agents frequently produce metabolites inhibiting phytopathogenic fungi. Recently, the search for a novel biocontrol agent with a wide spectrum of disease control drew attention to Bacillus subtilis and their related species, including Bacillus mojavensis. In this study, we determined the antifungal properties of the endophytic B. mojavensis PS17 isolated from wheat seeds. Metabolites produced by B. mojavensis PS-17 inhibit the growth of Fusarium graminearum, Fusarium oxysporum, Fusarium chlamydosporum, Ascochyta pisi, Alternaria alternate, Sclerotinia sclerotiorum, Verticillium dahliaee, and Epicoccum nigrum strains. B. mojavensis strain PS17 produces several hydrolytic enzymes, such as chitinase, β-glucanase, cellulase, lipase, and protease. Additionally, strain B. mojavensis PS17 demonstrates drought tolerance under osmotic pressure of -2.2 MPa and a moderate halotolerance in 5% (w/v) of NaCl. B. mojavensis PS17 on tomato seedlings was able to reduce lesions of Forl ZUM2407 by 48.11% ± 1.07, showing the potentials of B. mojavensis PS17 to be adapted as a biocontrol agent for agricultural use.
Collapse
|
19
|
Broberg M, Dubey M, Iqbal M, Gudmundssson M, Ihrmark K, Schroers H, Funck Jensen D, Brandström Durling M, Karlsson M. Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in Clonostachys subgenus Bionectria (Fungi, Ascomycota, Hypocreales). Evol Appl 2021; 14:476-497. [PMID: 33664789 PMCID: PMC7896725 DOI: 10.1111/eva.13134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
Various strains of the mycoparasitic fungal species Clonostachys rosea are used commercially as biological control agents for the control of fungal plant diseases in agricultural crop production. Further improvements of the use and efficacy of C. rosea in biocontrol require a mechanistic understanding of the factors that determines the outcome of the interaction between C. rosea and plant pathogenic fungi. Here, we determined the genome sequences of 11 Clonostachys strains, representing five species in Clonostachys subgenus Bionectria, and performed a comparative genomic analysis with the aim to identify gene families evolving under selection for gene gains or losses. Several gene families predicted to encode proteins involved in biosynthesis of secondary metabolites, including polyketide synthases, nonribosomal peptide syntethases and cytochrome P450s, evolved under selection for gene gains (p ≤ .05) in the Bionectria subgenus lineage. This was accompanied with gene copy number increases (p ≤ .05) in ATP-binding cassette (ABC) transporters and major facilitator superfamily (MFS) transporters predicted to contribute to drug efflux. Most Clonostachys species were also characterized by high numbers of auxiliary activity (AA) family 9 lytic polysaccharide monooxygenases, AA3 glucose-methanol-choline oxidoreductases and additional carbohydrate-active enzyme gene families with putative activity (or binding) towards xylan and rhamnose/pectin substrates. Particular features of the C. rosea genome included expansions (p ≤ .05) of the ABC-B4 multidrug resistance transporters, the ABC-C5 multidrug resistance-related transporters and the 2.A.1.3 drug:H + antiporter-2 MFS drug resistance transporters. The ABC-G1 pleiotropic drug resistance transporter gene abcG6 in C. rosea was induced (p ≤ .009) by exposure to the antifungal Fusarium mycotoxin zearalenone (1121-fold) and various fungicides. Deletion of abcG6 resulted in mutants with reduced (p < .001) growth rates on media containing the fungicides boscalid, fenhexamid and iprodione. Our results emphasize the role of biosynthesis of, and protection against, secondary metabolites in Clonostachys subgenus Bionectria.
Collapse
Affiliation(s)
- Martin Broberg
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mudassir Iqbal
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mikael Gudmundssson
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Dan Funck Jensen
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
20
|
Yang Y, Sossah FL, Li Z, Hyde KD, Li D, Xiao S, Fu Y, Yuan X, Li Y. Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Mycogone perniciosa. Front Microbiol 2021; 11:596719. [PMID: 33505368 PMCID: PMC7829358 DOI: 10.3389/fmicb.2020.596719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Mycogone perniciosa causes wet bubble disease in Agaricus bisporus and various Agaricomycetes species. In a previous work, we identified 41 GH18 chitinase genes and other pathogenicity-related genes in the genome of M. perniciosa Hp10. Chitinases are enzymes that degrade chitin, and they have diverse functions in nutrition, morphogenesis, and pathogenesis. However, these important genes in M. perniciosa have not been fully characterized, and their functions remain unclear. Here, we performed a genome-wide analysis of M. perniciosa GH18 genes and analyzed the transcriptome profiles and GH18 expression patterns in M. perniciosa during the time course of infection in A. bisporus. Phylogenetic analysis of the 41 GH18 genes with those of 15 other species showed that the genes were clustered into three groups and eight subgroups based on their conserved domains. The GH18 genes clustered in the same group shared different gene structures but had the same protein motifs. All GH18 genes were localized in different organelles, were unevenly distributed on 11 contigs, and had orthologs in the other 13 species. Twelve duplication events were identified, and these had undergone both positive and purifying selection. The transcriptome analyses revealed that numerous genes, including transporters, cell wall degrading enzymes (CWDEs), cytochrome P450, pathogenicity-related genes, secondary metabolites, and transcription factors, were significantly upregulated at different stages of M. perniciosa Hp10 infection of A. bisporus. Twenty-three out of the 41 GH18 genes were differentially expressed. The expression patterns of the 23 GH18 genes were different and were significantly expressed from 3 days post-inoculation of M. perniciosa Hp10 in A. bisporus. Five differentially expressed GH18 genes were selected for RT-PCR and gene cloning to verify RNA-seq data accuracy. The results showed that those genes were successively expressed in different infection stages, consistent with the previous sequencing results. Our study provides a comprehensive analysis of pathogenicity-related and GH18 chitinase genes’ influence on M. perniciosa mycoparasitism of A. bisporus. Our findings may serve as a basis for further studies of M. perniciosa mycoparasitism, and the results have potential value for improving resistance in A. bisporus and developing efficient disease-management strategies to mitigate wet bubble disease.
Collapse
Affiliation(s)
- Yang Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Frederick Leo Sossah
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai' an, China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Dan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Shijun Xiao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yongping Fu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xiaohui Yuan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
21
|
Zapparata A, Baroncelli R, Brandström Durling M, Kubicek CP, Karlsson M, Vannacci G, Sarrocco S. Fungal cross-talk: an integrated approach to study distance communication. Fungal Genet Biol 2021; 148:103518. [PMID: 33497840 DOI: 10.1016/j.fgb.2021.103518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/06/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Despite the interest on fungi as eukaryotic model systems, the molecular mechanisms regulating the fungal non-self-recognition at a distance have not been studied so far. This paper investigates the molecular mechanisms regulating the cross-talk at a distance between two filamentous fungi, Trichoderma gamsii and Fusarium graminearum which establish a mycoparasitic interaction where T. gamsii and F. graminearum play the roles of mycoparasite and prey, respectively. In the present work, we use an integrated approach involving dual culture tests, comparative genomics and transcriptomics to investigate the fungal interaction before contact ('sensing phase'). Dual culture tests demonstrate that growth rate of F. graminearum accelerates in presence of T. gamsii at the sensing phase. T. gamsii up-regulates the expression of a ferric reductase involved in iron acquisition, while F. graminearum up-regulates the expression of genes coding for transmembrane transporters and killer toxins. At the same time, T. gamsii decreases the level of extracellular interaction by down-regulating genes coding for hydrolytic enzymes acting on fungal cell wall (chitinases). Given the importance of fungi as eukaryotic model systems and the ever-increasing genomic resources available, the integrated approach hereby presented can be applied to other interactions to deepen the knowledge on fungal communication at a distance.
Collapse
Affiliation(s)
- Antonio Zapparata
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Riccardo Baroncelli
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christian P Kubicek
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Takashima S, Kurogochi M, Osumi K, Sugawara SI, Mizuno M, Takada Y, Amano J, Matsuda A. Novel endo-β-N-acetylglucosaminidases from Tannerella species hydrolyze multibranched complex-type N-glycans with different specificities. Glycobiology 2020; 30:923-934. [PMID: 32337602 DOI: 10.1093/glycob/cwaa037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Endo-β-N-acetylglucosaminidases are enzymes that hydrolyze the N,N'-diacetylchitobiose unit of N-glycans. Many endo-β-N-acetylglucosaminidases also exhibit transglycosylation activity, which corresponds to the reverse of the hydrolysis reaction. Because of these activities, some of these enzymes have recently been used as powerful tools for glycan remodeling of glycoproteins. Although many endo-β-N-acetylglucosaminidases have been identified and characterized to date, there are few enzymes that exhibit hydrolysis activity toward multibranched (tetra-antennary or more) complex-type N-glycans on glycoproteins. Therefore, we searched for novel endo-β-N-acetylglucosaminidases that exhibit hydrolysis activity toward multibranched complex-type N-glycans in this study. From database searches, we selected three candidate enzymes from Tannerella species-Endo-Tsp1006, Endo-Tsp1263 and Endo-Tsp1457-and prepared them as recombinant proteins. We analyzed the hydrolysis activity of these enzymes toward N-glycans on glycoproteins and found that Endo-Tsp1006 and Endo-Tsp1263 exhibited hydrolysis activity toward complex-type N-glycans, including multibranched N-glycans, preferentially, whereas Endo-Tsp1457 exhibited hydrolysis activity toward high-mannose-type N-glycans exclusively. We further analyzed substrate specificities of Endo-Tsp1006 and Endo-Tsp1263 using 18 defined glycopeptides as substrates, each having a different N-glycan structure. We found that Endo-Tsp1006 preferred N-glycans with galactose or α2,6-linked sialic acid residues in their nonreducing ends as substrates, whereas Endo-Tsp1263 preferred N-glycans with N-acetylglucosamine residues in their nonreducing ends as substrates.
Collapse
Affiliation(s)
- Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Masaki Kurogochi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Kenji Osumi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Shu-Ichi Sugawara
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Junko Amano
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Akio Matsuda
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan.,Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
23
|
Iqbal M, Broberg M, Haarith D, Broberg A, Bushley KE, Brandström Durling M, Viketoft M, Funck Jensen D, Dubey M, Karlsson M. Natural variation of root lesion nematode antagonism in the biocontrol fungus Clonostachys rosea and identification of biocontrol factors through genome-wide association mapping. Evol Appl 2020; 13:2264-2283. [PMID: 33005223 PMCID: PMC7513725 DOI: 10.1111/eva.13001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Biological control is a promising approach to reduce plant diseases caused by nematodes to ensure high productivity in agricultural production. Large-scale analyses of genetic variation in fungal species used for biocontrol can generate knowledge regarding interaction mechanisms that can improve efficacy of biocontrol applications. In this study, we performed a genome-wide association study (GWAS) for in vitro antagonism against the root lesion nematode Pratylenchus penetrans in 53 previously genome re-sequenced strains of the biocontrol fungus Clonostachys rosea. Nematode mortality in C. rosea potato dextrose broth (PDB) culture filtrates was highly variable and showed continuous variation (p < .001) between strains, indicating a polygenic inheritance. Twenty-one strains produced culture filtrates with higher (p ≤ .05) nematode mortality compared with the PDB control treatment, while ten strains lowered (p ≤ .05) the mortality. The difference in in vitro antagonism against P. penetrans correlated with antagonism against the soybean cyst nematode Heterodera glycines, indicating lack of host specificity in C. rosea. An empirical Bayesian multiple hypothesis testing approach identified 279 single nucleotide polymorphism markers significantly (local false sign rate < 10-10) associated with the trait. Genes present in the genomic regions associated with nematicidal activity included several membrane transporters, a chitinase and genes encoding proteins predicted to biosynthesize secondary metabolites. Gene deletion strains of the predicted nonribosomal peptide synthetase genes nps4 and nps5 were generated and showed increased (p ≤ .001) fungal growth and conidiation rates compared to the wild type. Deletion strains also exhibited reduced (p < .001) nematicidal activity and reduced (p ≤ .05) biocontrol efficacy against nematode root disease and against fusarium foot rot on wheat. In summary, we show that the GWAS approach can be used to identify biocontrol factors in C. rosea, specifically the putative nonribosomal peptide synthetases NPS4 and NPS5.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Martin Broberg
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Deepak Haarith
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Anders Broberg
- Department of Molecular Sciences Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Kathryn E Bushley
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Maria Viketoft
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
24
|
Lv B, Jiang N, Hasan R, Chen Y, Sun M, Li S. Cell Wall Biogenesis Protein Phosphatase CrSsd1 Is Required for Conidiation, Cell Wall Integrity, and Mycoparasitism in Clonostachys rosea. Front Microbiol 2020; 11:1640. [PMID: 32760382 PMCID: PMC7373758 DOI: 10.3389/fmicb.2020.01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022] Open
Abstract
Cell wall biogenesis protein phosphatases play important roles in various cellular processes in fungi. However, their functions in the widely distributed mycoparasitic fungus Clonostachys rosea remain unclear, as do their potential for controlling plant fungal diseases. Herein, the function of cell wall biogenesis protein phosphatase CrSsd1 in C. rosea 67-1 was investigated using gene disruption and complementation approaches. The gene-deficient mutant ΔCrSsd1 exhibited much lower conidiation, hyphal growth, mycoparasitic ability, and biocontrol efficacy than the wild-type (WT) strain, and it was more sensitive to sorbitol and Congo red. The results indicate that CrSsd1 is involved in fungal conidiation, osmotic stress adaptation, cell wall integrity, and mycoparasitism in C. rosea.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rakibul Hasan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingying Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J. The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol Res 2020; 240:126552. [PMID: 32659716 DOI: 10.1016/j.micres.2020.126552] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Trichoderma spp. are universal saprotrophic fungi in terrestrial ecosystems, and as rhizosphere inhabitants, they mediate interactions with other soil microorganisms, plants, and arthropods at multiple trophic levels. In the rhizosphere, Trichoderma can reduce the abundance of phytopathogenic microorganisms, which involves the action of potent inhibitory molecules, such as gliovirin and siderophores, whereas endophytic associations between Trichoderma and the seeds and roots of host plants can result in enhanced plant growth and crop productivity, as well as the alleviation of abiotic stress. Such beneficial effects are mediated via the activation of endogenous mechanisms controlled by phytohormones such as auxins and abscisic acid, as well as by alterations in host plant metabolism. During either root colonization or in the absence of physical contact, Trichoderma can trigger early defense responses mediated by Ca2+ and reactive oxygen species, and subsequently stimulate plant immunity by enhancing resistance mechanisms regulated by the phytohormones salicylic acid, jasmonic acid, and ethylene. In addition, Trichoderma release volatile organic compounds and nitrogen or oxygen heterocyclic compounds that serve as signaling molecules, which have effects on plant growth, phytopathogen levels, herbivorous insects, and at the third trophic level, play roles in attracting the natural enemies (predators and parasitoids) of herbivores. In this paper, we review some of the most recent advances in our understanding of the environmental influences of Trichoderma spp., with particular emphasis on their multiple interactions at different trophic levels.
Collapse
Affiliation(s)
- Lourdes Macías-Rodríguez
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico.
| | - Hexon Angel Contreras-Cornejo
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico; Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico.
| | - Sandra Goretti Adame-Garnica
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Ek Del-Val
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| | - John Larsen
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| |
Collapse
|
26
|
Sun ZB, Wang Q, Sun MH, Li SD. The Mitogen-Activated Protein Kinase Gene Crmapk Is Involved in Clonostachys chloroleuca Mycoparasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:902-910. [PMID: 32282260 DOI: 10.1094/mpmi-03-20-0062-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clonostachys chloroleuca is a mycoparasite used for biocontrol of numerous fungal plant pathogens. Sequencing of the transcriptome of C. chloroleuca following mycoparasitization of the sclerotia of Sclerotinia sclerotiorum revealed significant upregulation of a mitogen-activated protein kinase (MAPK)-encoding gene, crmapk. Although MAPKs are known to regulate fungal growth and development, the function of crmapk in C. chloroleuca mycoparasitism is unclear. In this study, we investigated the role of crmapk in C. chloroleuca mycoparasitism through gene knockout and complementation. Deletion of crmapk had no influence on the C. chloroleuca morphological characteristics but could significantly reduce the mycoparasitic ability to sclerotia and biocontrol capacity to soybean Sclerotinia stem rot; crmapk complementation restored these abilities. Transcriptome analysis between Δcrmapk and the wild-type strain revealed numerous genes were significantly down-regulated after crmapk deletion, including cytochrome P450, transporters, and cell wall-degrading enzymes (CWDEs). Our findings indicate that crmapk influences C. chloroleuca mycoparasitism by regulation of genes controlling the activity of CWDEs or antibiotic production. This study provides a basis for further studies of the molecular mechanism of C. chloroleuca mycoparasitism.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Man-Hong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Dubey M, Vélëz H, Broberg M, Jensen DF, Karlsson M. LysM Proteins Regulate Fungal Development and Contribute to Hyphal Protection and Biocontrol Traits in Clonostachys rosea. Front Microbiol 2020; 11:679. [PMID: 32373095 PMCID: PMC7176902 DOI: 10.3389/fmicb.2020.00679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/24/2020] [Indexed: 01/23/2023] Open
Abstract
Lysin motif (LysM) modules are approximately 50 amino acids long and bind to peptidoglycan, chitin and its derivatives. Certain LysM proteins in plant pathogenic and entomopathogenic fungi are shown to scavenge chitin oligosaccharides and thereby dampen host defense reactions. Other LysM proteins can protect the fungal cell wall against hydrolytic enzymes. In this study, we investigated the biological function of LysM proteins in the mycoparasitic fungus Clonostachys rosea. The C. rosea genome contained three genes coding for LysM-containing proteins and gene expression analysis revealed that lysm1 and lysm2 were induced during mycoparasitic interaction with Fusarium graminearum and during colonization of wheat roots. Lysm1 was suppressed in germinating conidia, while lysm2 was induced during growth in chitin or peptidoglycan-containing medium. Deletion of lysm1 and lysm2 resulted in mutants with increased levels of conidiation and conidial germination, but reduced ability to control plant diseases caused by F. graminearum and Botrytis cinerea. The Δlysm2 strain showed a distinct, accelerated mycelial disintegration phenotype accompanied by reduced biomass production and hyphal protection against hydrolytic enzymes including chitinases, suggesting a role of LYSM2 in hyphal protection against chitinases. The Δlysm2 and Δlysm1Δlysm2 strains displayed reduced ability to colonize wheat roots, while only Δlysm1Δlysm2 failed to suppress expression of the wheat defense response genes PR1 and PR4. Based on our data, we propose a role of LYSM1 as a regulator of fungal development and of LYSM2 in cell wall protection against endogenous hydrolytic enzymes, while both are required to suppress plant defense responses. Our findings expand the understanding of the role of LysM proteins in fungal-fungal interactions and biocontrol.
Collapse
Affiliation(s)
- Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
28
|
Sun ZB, Li SD, Ren Q, Xu JL, Lu X, Sun MH. Biology and applications of Clonostachys rosea. J Appl Microbiol 2020; 129:486-495. [PMID: 32115828 DOI: 10.1111/jam.14625] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
Clonostachys rosea is a promising saprophytic filamentous fungus that belongs to phylum Ascomycota. Clonostachys rosea is widespread around the world and exists in many kinds of habitats, with the highest frequency in soil. As an excellent mycoparasite, C. rosea exhibits strong biological control ability against numerous fungal plant pathogens, nematodes and insects. These behaviours are based on the activation of multiple mechanisms such as secreted cell-wall-degrading enzymes, production of antifungal secondary metabolites and induction of plant defence systems. Besides having significant biocontrol activity, C. rosea also functions in the biodegradation of plastic waste, biotransformation of bioactive compounds, as a bioenergy sources and in fermentation. This mini review summarizes information about the biology and various applications of C. rosea and expands on its possible uses.
Collapse
Affiliation(s)
- Z-B Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S-D Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - J-L Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - X Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - M-H Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Peng Y, Wang L, Gao Y, Ye L, Xu H, Li S, Jiang J, Li G, Dang X. Identification and characterization of the glycoside hydrolase family 18 genes from the entomopathogenic fungus Isaria cicadae genome. Can J Microbiol 2020; 66:274-287. [PMID: 31961710 DOI: 10.1139/cjm-2019-0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fungal chitinases play essential roles in chitin degradation, cell wall remodeling, chitin recycling, nutrition acquisition, autolysis, and virulence. In this study, 18 genes of the glycoside hydrolase 18 (GH18) family were identified in the Isaria cicadae genome. Seventeen of the genes belonged to chitinases and one was an endo-β-N-acetylglucosaminidase (ENGase). According to phylogenetic analysis, the 17 chitinases were designated as subgroups A (7 chitinases), B (7), and C (3). The exon-intron organizations of these genes were analyzed. The conserved regions DxxDxDxE and S/AxGG and the domains CBM1, CBM18, and CBM50 were detected in I. cicadae chitinases and ENGase. The results of analysis of expression patterns showed that genes ICchiA1, ICchiA6, ICchiB1, and ICchiB4 had high transcript levels in the different growth conditions or developmental stages. Subgroup A chitinase genes had higher transcript levels than the genes of all other chitinases. Subgroup B chitinase genes (except ICchiB7) presented higher transcript levels in chitin medium compared with other conditions. ICchiC2 and ICchiC3 were mainly transcribed in autolysis medium and in blastospores, respectively. Moreover, ICchiB1 presented higher transcript levels than genes of other chitinases. This work provides an overview of the GH18 chitinases and ENGase in I. cicadae and provides a context for the chitinolytic potential, functions, and biological controls of these enzymes of entomopathogenic fungi.
Collapse
Affiliation(s)
- Yao Peng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Lifang Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Liang Ye
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Huihui Xu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Shuangjiao Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Junqi Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Guiting Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Xiangli Dang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R. China
| |
Collapse
|
30
|
Iqbal M, Dubey M, Broberg A, Viketoft M, Jensen DF, Karlsson M. Deletion of the Nonribosomal Peptide Synthetase Gene nps1 in the Fungus Clonostachys rosea Attenuates Antagonism and Biocontrol of Plant Pathogenic Fusarium and Nematodes. PHYTOPATHOLOGY 2019; 109:1698-1709. [PMID: 31120795 DOI: 10.1094/phyto-02-19-0042-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Secondary metabolites produced by biological control agents may influence the outcome of their interactions with plant pathogenic microorganisms and plants. In the present study, we investigated the role of the nonribosomal peptide synthetase gene nps1 expressed by the biocontrol fungus Clonostachys rosea. A gene expression analysis showed that nps1 was induced during confrontations with the plant pathogenic fungus Botrytis cinerea. Gene deletion strains of nps1 displayed increased growth rates and conidiation. However, the nematicidal activity of culture filtrates from C. rosea Δnps1 strains was significantly weaker than that from wild-type filtrates (P ≤ 0.001); after 24 h of incubation with culture filtrates from nps1 deletion strains, only 13 to 33% of a mixed community of nematodes were dead compared with 42% of nematodes incubated with wild-type culture filtrates. The Δnps1 strains also showed reduced biocontrol efficacy during pot experiments, thus failing to protect wheat seedlings from foot rot disease caused by the plant pathogenic fungus Fusarium graminearum. Furthermore, C. rosea Δnps1 strains were not able to reduce populations of plant-parasitic nematodes in soil or in roots of wheat as efficiently as the wild-type strain. Both C. rosea wild-type and Δnps1 strains increased the dry shoot weight and shoot length of wheat by 20 and 13%, respectively. We showed that NPS1, a putative nonribosomal peptide synthetase encoded by nps1, is a biocontrol factor, presumably by producing a hitherto unknown nonribosomal peptide compound with antifungal and nematicidal properties that contributes to the biocontrol properties of C. rosea.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Viketoft
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| |
Collapse
|
31
|
Gimeno A, Sohlberg E, Pakula T, Limnell J, Keller B, Laitila A, Vogelgsang S. TaqMan qPCR for Quantification of Clonostachys rosea Used as a Biological Control Agent Against Fusarium graminearum. Front Microbiol 2019; 10:1627. [PMID: 31379780 PMCID: PMC6646457 DOI: 10.3389/fmicb.2019.01627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
Clonostachys rosea is a biological control agent against Fusarium graminearum in small grain cereals and maize. Infections with F. graminearum do not only reduce the yield but, due to the production of mycotoxins, also affect the entire value chain of food and feed. In addition, production of other secondary metabolites such as hydrophobins, also known as gushing inducers, may cause quality challenges for the malting and brewing industry. Sustainable disease control strategies using C. rosea are treatment of infected residues of the previous crop, direct treatment of the actual cereal crop or post-harvest treatment during malting processes. Follow-up of growth and survival of biocontrol organisms during these different stages is of crucial importance. In the current study, we developed a quantitative real-time PCR detection method that amends the currently available culture-dependent techniques by using TaqMan chemistry with a highly specific primer and probe set, targeting the actin gene. We established a sensitive assay that detects the biological control agent down to 100 genome copies per reaction, with PCR efficiencies between 90 and 100%. The specificity of the assay was confirmed against a panel of 30 fungal and 3 bacterial species including 12 members of the Fusarium head blight complex and DNA of barley, maize and wheat. The DNA of C. rosea was detected in Fusarium-infected maize crop residues that were either treated in the laboratory or in the field with C. rosea and followed its DNA throughout the barley malting process to estimate its growth during grain germination. We used a standardized DNA extraction protocol and showed that C. rosea can be quantified in different sample matrices. This method will enable the monitoring of C. rosea during experiments studying the biological control of F. graminearum on cereal crop residues and on cereal grains and will thus contribute to the development of a new disease control strategy.
Collapse
Affiliation(s)
- Alejandro Gimeno
- Ecological Plant Protection in Arable Crops, Research Division Plant Protection, Agroscope, Zurich, Switzerland.,Molecular Plant Biology and Phytopathology, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elina Sohlberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Tiina Pakula
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Jenni Limnell
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Beat Keller
- Molecular Plant Biology and Phytopathology, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Arja Laitila
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Susanne Vogelgsang
- Ecological Plant Protection in Arable Crops, Research Division Plant Protection, Agroscope, Zurich, Switzerland
| |
Collapse
|
32
|
Whole RNA-sequencing and gene expression analysis of Trichoderma harzianum Tr-92 under chlamydospore-producing condition. Genes Genomics 2019; 41:689-699. [PMID: 30968334 DOI: 10.1007/s13258-019-00812-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/21/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Trichoderma is one of the most important biocontrol fungi, which could produce mycelia, conidiospores, and chlamydospores three types of propagules under different conditions. Chlamydospores are produced in harsh conditions in various fungi, and may be more resistant to adverse conditions. However, the knowledge associated with the mechanism of chlamydospore formation remained unclear in Trichoderma. OBJECTIVES This study is aimed to explore the essential genes and regulatory pathways associated with chlamydospore formation in Trichoderma. METHODS The culture condition, survival rate, and biocontrol effects of chlamydospores and conidiospores from Trichoderma.harzianum Tr-92 were determined. Furthermore, the whole transcriptome profiles of T. harzianum Tr-92 under chlamydospore-producing and chlamydospore-nonproducing conditions were performed. RESULTS T. harzianum Tr-92 produced chlamydospores under particular conditions, and chlamydospore-based formulation of T. harzianum Tr-92 exhibited higher biocontrol ability against Botrytis cinerea in cucumber than conidoiospore-based formulation. In the transcriptome analysis, a total of 2,029 differentially expressed genes (DEGs) were identified in T. harzianum Tr-92 under chlamydospore-producing condition, compared to that under chlamydospore-nonproducing condition. GO classification indicated that the DEGs were significantly enriched in 284 terms among biological process, cellular components and molecular function categories. A total of 19 pathways were observed with DEGs by KEGG analysis. Furthermore, fifteen DEGs were verified by quantitative real-time PCR, and the expression profiles were consistent with the transcriptome data. CONCLUSION The results would provide a basis on the molecular mechanisms underlying Trichoderma sporulation, which would assist the development and application of fungal biocontrol agents.
Collapse
|
33
|
Killer toxin-like chitinases in filamentous fungi: Structure, regulation and potential roles in fungal biology. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Yang J, Zhang KQ. Chitin Synthesis and Degradation in Fungi: Biology and Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:153-167. [PMID: 31102246 DOI: 10.1007/978-981-13-7318-3_8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitin is one of the most important carbohydrates of the fungal cell wall, and is synthesized by chitin synthases. Chitin can be degraded by chitinases, which are important virulence factors in pathogenic fungi. Knowledge about the biosynthesis and degradation of chitin, and the enzymes responsible, has accumulated in recent years. In this review, we analyze the amino acid sequences of chitin synthases from several typical fungi. These enzymes can be divided into seven groups. While the different chitin synthases from a single fungus share a low degree of similarity, the same type of chitin synthase from different fungi shows high similarity. The number of chitinase genes in fungi display wide variation, from a single gene in Schizosaccharomyces pombe, to 36 genes in Trichoderma virens. Chitinases from different fungi can be divided into four groups. The functions of chitin synthases and chitinases in several typical fungi are summarized, and the crystal structures of chitinases and chitinase modification are also discussed.
Collapse
Affiliation(s)
- Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, 650091, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, 650091, Kunming, Yunnan, China.
| |
Collapse
|
35
|
Zhou J, Chen L, Kang L, Liu Z, Bai Y, Yang Y, Yuan S. ChiE1 from Coprinopsis cinerea is Characterized as a Processive Exochitinase and Revealed to Have a Significant Synergistic Action with Endochitinase ChiIII on Chitin Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12773-12782. [PMID: 30404442 DOI: 10.1021/acs.jafc.8b04261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fruiting bodies that exhibit strong autolysis of Coprinopsis cinerea are a good resource for the chitinolytic system. In this study, a new Chitinase ChiE1 from C. cinerea was cloned, heterologously expressed, and characterized. Biochemical analysis demonstrated that ChiE1 is an exochitinase with a processive mode of action. Although ChiE1 contains only a single catalytic domain without a binding domain, it can bind to and degrade insoluble chitin powder and colloidal chitin. The combination of ChiE1 and C. cinerea endochitinase ChiIII could increase the amount of reducing sugar released from chitin powder by approximately 120% compared to using ChiE1 and ChiIII alone. The synergistic action of ChiE1 and ChiIII on degradation of chitin powder is higher than all previously reported synergism of chitinases. The recombinant Chitinase ChiE1 expressed in Pichia pastoris may be used as a synergistic chitinase for a reconstituted chitinolytic system for agricultural, biological, and environmental applications.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Lingling Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Yang Bai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Yao Yang
- Ginling College , Nanjing Normal University , 122 Ninghai Road , Nanjing 210097 , PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| |
Collapse
|
36
|
Broberg M, Dubey M, Sun MH, Ihrmark K, Schroers HJ, Li SD, Jensen DF, Brandström Durling M, Karlsson M. Out in the Cold: Identification of Genomic Regions Associated With Cold Tolerance in the Biocontrol Fungus Clonostachys rosea Through Genome-Wide Association Mapping. Front Microbiol 2018; 9:2844. [PMID: 30524411 PMCID: PMC6262169 DOI: 10.3389/fmicb.2018.02844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/05/2018] [Indexed: 01/16/2023] Open
Abstract
There is an increasing importance for using biocontrol agents in combating plant diseases sustainably and in the long term. As large scale genomic sequencing becomes economically viable, the impact of single nucleotide polymorphisms (SNPs) on biocontrol-associated phenotypes can be easily studied across entire genomes of fungal populations. Here, we improved a previously reported genome assembly of the biocontrol fungus Clonostachys rosea strain IK726 using the PacBio sequencing platform, which resulted in a total genome size of 70.7 Mbp and 21,246 predicted genes. We further performed whole-genome re-sequencing of 52 additional C. rosea strains isolated globally using Illumina sequencing technology, in order to perform genome-wide association studies in conditions relevant for biocontrol activity. One such condition is the ability to grow at lower temperatures commonly encountered in cryic or frigid soils in temperate regions, as these will be prevalent for protecting growing crops in temperate climates. Growth rates at 10°C on potato dextrose agar of the 53 sequenced strains of C. rosea were measured and ranged between 0.066 and 0.413 mm/day. Performing a genome wide association study, a total of 1,478 SNP markers were significantly associated with the trait and located in 227 scaffolds, within or close to (< 1000 bp distance) 265 different genes. The predicted gene products included several chaperone proteins, membrane transporters, lipases, and proteins involved in chitin metabolism with possible roles in cold tolerance. The data reported in this study provides a foundation for future investigations into the genetic basis for cold tolerance in fungi, with important implications for biocontrol.
Collapse
Affiliation(s)
- Martin Broberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Man-Hong Sun
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Shi-Dong Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
37
|
Atanasova L, Dubey M, Grujić M, Gudmundsson M, Lorenz C, Sandgren M, Kubicek CP, Jensen DF, Karlsson M. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol 2018; 18:178. [PMID: 30404596 PMCID: PMC6223089 DOI: 10.1186/s12866-018-1310-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Pectin is one of the major and most complex plant cell wall components that needs to be overcome by microorganisms as part of their strategies for plant invasion or nutrition. Microbial pectinolytic enzymes therefore play a significant role for plant-associated microorganisms and for the decomposition and recycling of plant organic matter. Recently, comparative studies revealed significant gene copy number expansion of the polysaccharide lyase 1 (PL1) pectin/pectate lyase gene family in the Clonostachys rosea genome, while only low numbers were found in Trichoderma species. Both of these fungal genera are widely known for their ability to parasitize and kill other fungi (mycoparasitism) and certain species are thus used for biocontrol of plant pathogenic fungi. Results In order to understand the role of the high number of pectin degrading enzymes in Clonostachys, we studied diversity and evolution of the PL1 gene family in C. rosea compared with other Sordariomycetes with varying nutritional life styles. Out of 17 members of C. rosea PL1, we could only detect two to be secreted at acidic pH. One of them, the pectate lyase pel12 gene was found to be strongly induced by pectin and, to a lower degree, by polygalacturonic acid. Heterologous expression of the PEL12 in a PL1-free background of T. reesei revealed direct enzymatic involvement of this protein in utilization of pectin at pH 5 without a requirement for Ca2+. The mutants showed increased utilization of pectin compounds, but did not increase biocontrol ability in detached leaf assay against the plant pathogen Botrytis cinerea compared to the wild type. Conclusions In this study, we aimed to gain insight into diversity and evolution of the PL1 gene family in C. rosea and other Sordariomycete species in relation to their nutritional modes. We show that C. rosea PL1 expansion does not correlate with its mycoparasitic nutritional mode and resembles those of strong plant pathogenic fungi. We further investigated regulation, specificity and function of the C. rosea PEL12 and show that this enzyme is directly involved in degradation of pectin and pectin-related compounds, but not in C. rosea biocontrol. Electronic supplementary material The online version of this article (10.1186/s12866-018-1310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lea Atanasova
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden. .,Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria. .,Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
| | - Mukesh Dubey
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Marica Grujić
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria
| | - Mikael Gudmundsson
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Cindy Lorenz
- Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Mats Sandgren
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Christian P Kubicek
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria.,, Present address: Steinschötelgasse 7, 1100, Vienna, Austria
| | - Dan Funck Jensen
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| |
Collapse
|
38
|
Nygren K, Dubey M, Zapparata A, Iqbal M, Tzelepis GD, Durling MB, Jensen DF, Karlsson M. The mycoparasitic fungus Clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evol Appl 2018; 11:931-949. [PMID: 29928301 PMCID: PMC5999205 DOI: 10.1111/eva.12609] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/26/2018] [Indexed: 01/31/2023] Open
Abstract
Clonostachys rosea is a necrotrophic mycoparasitic fungus, used for biological control of plant pathogenic fungi. A better understanding of the underlying mechanisms resulting in successful biocontrol is important for knowledge-based improvements of the application and use of biocontrol in agricultural production systems. Transcriptomic analyses revealed that C. rosea responded with both common and specific gene expression during interactions with the fungal prey species Botrytis cinerea and Fusarium graminearum. Genes predicted to encode proteins involved in membrane transport, biosynthesis of secondary metabolites and carbohydrate-active enzymes were induced during the mycoparasitic attack. Predicted major facilitator superfamily (MFS) transporters constituted 54% of the induced genes, and detailed phylogenetic and evolutionary analyses showed that a majority of these genes belonged to MFS gene families evolving under selection for increased paralog numbers, with predicted functions in drug resistance and transport of carbohydrates and small organic compounds. Sequence analysis of MFS transporters from family 2.A.1.3.65 identified rapidly evolving loop regions forming the entry to the transport tunnel, indicating changes in substrate specificity as a target for selection. Deletion of the MFS transporter gene mfs464 resulted in mutants with increased growth inhibitory activity against F. graminearum, providing evidence for a function in interspecific fungal interactions. In summary, we show that the mycoparasite C. rosea can distinguish between fungal prey species and modulate its transcriptomic responses accordingly. Gene expression data emphasize the importance of secondary metabolites in mycoparasitic interactions.
Collapse
Affiliation(s)
- Kristiina Nygren
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Antonio Zapparata
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Mudassir Iqbal
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Georgios D. Tzelepis
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
- Department of Plant BiologyUppsala BiocenterLinnean Centre for Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant PathologyUppsala BiocenterSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
39
|
Sun ZB, Zhang J, Sun MH, Li SD. Identification of genes related to chlamydospore formation in Clonostachys rosea 67-1. Microbiologyopen 2018; 8:e00624. [PMID: 29635882 PMCID: PMC6341034 DOI: 10.1002/mbo3.624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/11/2018] [Accepted: 02/16/2018] [Indexed: 01/15/2023] Open
Abstract
Chlamydospores are specific structures that are of great significance to the commercialization of fungal biopesticides. To explore the genes associated with chlamydospore formation, a biocontrol fungus Clonostachys rosea 67‐1 that is capable of producing resistant spores under particular conditions was investigated by transcriptome sequencing and analysis. A total of 549,661,174 clean reads were obtained, and a series of differentially expressed genes potentially involved in fungal chlamydospore formation were identified. At 36 hr, 67 and 117 genes were up‐ and downregulated in C. rosea during chlamydospore production, compared with the control for conidiation, and 53 and 24 genes were up‐ and downregulated at 72 hr. GO classification suggested that the differentially expressed genes were related to cellular component, biological process, and molecular function categories. A total of 188 metabolism pathways were linked to chlamydospore production by KEGG analysis. Sixteen differentially expressed genes were verified by reverse transcription quantitative PCR, and the expression profiles were consistent with the transcriptome data. To the best of our knowledge, it is the first report on the genes associated with chlamydospore formation in C. rosea. The results provide insight into the molecular mechanisms underlying C. rosea sporulation, which will assist the development of fungal biocontrol agents.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Man-Hong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
40
|
Iqbal M, Dubey M, McEwan K, Menzel U, Franko MA, Viketoft M, Jensen DF, Karlsson M. Evaluation of Clonostachys rosea for Control of Plant-Parasitic Nematodes in Soil and in Roots of Carrot and Wheat. PHYTOPATHOLOGY 2018; 108:52-59. [PMID: 28945522 DOI: 10.1094/phyto-03-17-0091-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biological control is a promising approach to reduce plant diseases caused by nematodes. We tested the effect of the fungus Clonostachys rosea strain IK726 inoculation on nematode community composition in a naturally nematode infested soil in a pot experiment, and the effect of C. rosea on plant health. The numbers of plant-parasitic nematode genera extracted from soil and plant roots decreased by 40 to 73% when C. rosea was applied, while genera of nonparasitic nematodes were not affected. Soil inoculation of C. rosea increased fresh shoot weight and shoot length of wheat plants by 20 and 24%, respectively, while only shoot dry weight increased by 48% in carrots. Light microscopy of in vitro C. rosea-nematode interactions did not reveal evidence of direct parasitism. However, culture filtrates of C. rosea growing in potato dextrose broth, malt extract broth and synthetic nutrient broth exhibited toxicity toward nematodes and immobilized 57, 62, and 100% of the nematodes, respectively, within 48 h. This study demonstrates that C. rosea can control plant-parasitic nematodes and thereby improve plant growth. The most likely mechanism responsible for the antagonism is antibiosis through production of nematicidal compounds, rather than direct parasitism.
Collapse
Affiliation(s)
- Mudassir Iqbal
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Mukesh Dubey
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Kerstin McEwan
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Uwe Menzel
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Mikael Andersson Franko
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Maria Viketoft
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Dan Funck Jensen
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Magnus Karlsson
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| |
Collapse
|
41
|
Transformation of the endochitinase gene Chi67-1 in Clonostachys rosea 67-1 increases its biocontrol activity against Sclerotinia sclerotiorum. AMB Express 2017; 7:1. [PMID: 28050842 PMCID: PMC5209325 DOI: 10.1186/s13568-016-0313-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/19/2016] [Indexed: 01/26/2023] Open
Abstract
Clonostachys rosea is a promising biocontrol fungus active against various plant fungal pathogens. In this study, the endochitinase-encoding gene Chi67-1, the expression of which is sharply upregulated in C. rosea 67-1 when induced by sclerotia, was transformed into the original isolate by protoplast transformation, and transformants were screened against Sclerotinia rot of soybean. The transformation efficiency was approximately 50 transformants per 1 × 107 protoplasts, and 68 stably heritable recombinants were assayed. The parasitic rates of 32.4% of the tested strains increased by more than 50% compared to 43.3% of the wild type strain in 16 h, and the Rc4-4 transformant showed a parasitic rate of 100% in 16 h. The control efficiencies of the selected efficient transformants to soybean Sclerotinia stem rot were evaluated in pots in the greenhouse, and the results revealed that Rc4-4 achieved the highest efficiency of 81.4%, which was 31.7% and 28.7% higher than the control achieved by the wide type and the pesticide carbendazim, respectively. Furthermore, the expression level of Chi67-1 was 107-fold higher in Rc4-4 than in the wild type, and accordingly, the chitinase activity of the recombinant increased by 140%. The results lay a foundation for the development of efficient genetically engineered strains of C. rosea.
Collapse
|
42
|
Deglycosylating enzymes acting on N- glycans in fungi: Insights from a genome survey. Biochim Biophys Acta Gen Subj 2017; 1861:2551-2558. [DOI: 10.1016/j.bbagen.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022]
|
43
|
Xie C, Gong W, Zhu Z, Yan L, Hu Z, Peng Y. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage. Genomics 2017; 110:201-209. [PMID: 28970048 DOI: 10.1016/j.ygeno.2017.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 02/03/2023]
Abstract
Blue light is an important environmental factor which could induce mushroom primordium differentiation and fruiting body development. However, the mechanisms of Pleurotus eryngii primordium differentiation and development induced by blue light are still unclear. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of renewable lignocelluloses to provide carbohydrates for fungal growth, development and reproduction. In the present research, the expression profiles of genes were measured by comparison between the Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation and dark using high-throughput sequencing approach. After assembly and compared to the Pleurotus eryngii reference genome, 11,343 unigenes were identified. 539 differentially expressed genes including white collar 2 type of transcription factor gene, A mating type protein gene, MAP kinase gene, oxidative phosphorylation associated genes, CAZymes genes and other metabolism related genes were identified during primordium differentiated into fruiting body stage after blue light stimulation. KEGG results showed that carbon metabolism, glycolysis/gluconeogenesis and biosynthesis of amino acids pathways were affected during blue light inducing primordia formation. Most importantly, 319 differentially expressed CAZymes participated in carbon metabolism were identified. The expression patterns of six representative CAZymes and laccase genes were further confirmed by qRT-PCR. Enzyme activity results indicated that the activities of CAZymes and laccase were affected in primordium differentiated into fruiting body under blue light stimulation. In conclusion, the comprehensive transcriptome and CAZymes of Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation were obtained. The biological insights gained from this integrative system represent a valuable resource for future genomic studies on this commercially important mushroom.
Collapse
Affiliation(s)
- Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Zhenxiu Hu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China.
| |
Collapse
|
44
|
Human Chitotriosidase: Catalytic Domain or Carbohydrate Binding Module, Who's Leading HCHT's Biological Function. Sci Rep 2017; 7:2768. [PMID: 28584264 PMCID: PMC5459812 DOI: 10.1038/s41598-017-02382-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Chitin is an important structural component of numerous fungal pathogens and parasitic nematodes. The human macrophage chitotriosidase (HCHT) is a chitinase that hydrolyses glycosidic bonds between the N-acetyl-D-glucosamine units of this biopolymer. HCHT belongs to the Glycoside Hydrolase (GH) superfamily and contains a well-characterized catalytic domain appended to a chitin-binding domain (ChBDCHIT1). Although its precise biological function remains unclear, HCHT has been described to be involved in innate immunity. In this study, the molecular basis for interaction with insoluble chitin as well as with soluble chito-oligosaccharides has been determined. The results suggest a new mechanism as a common binding mode for many Carbohydrate Binding Modules (CBMs). Furthermore, using a phylogenetic approach, we have analysed the modularity of HCHT and investigated the evolutionary paths of its catalytic and chitin binding domains. The phylogenetic analyses indicate that the ChBDCHIT1 domain dictates the biological function of HCHT and not its appended catalytic domain. This observation may also be a general feature of GHs. Altogether, our data have led us to postulate and discuss that HCHT acts as an immune catalyser.
Collapse
|
45
|
Karlsson M, Atanasova L, Jensen DF, Zeilinger S. Necrotrophic Mycoparasites and Their Genomes. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0016-2016. [PMID: 28281442 PMCID: PMC11687461 DOI: 10.1128/microbiolspec.funk-0016-2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
Mycoparasitism is a lifestyle where one fungus establishes parasitic interactions with other fungi. Species of the genus Trichoderma together with Clonostachys rosea are among the most studied fungal mycoparasites. They have wide host ranges comprising several plant pathogens and are used for biological control of plant diseases. Trichoderma as well as C. rosea mycoparasites efficiently overgrow and kill their fungal prey by using infection structures and by applying lytic enzymes and toxic metabolites. Most of our knowledge on the putative signals and signaling pathways involved in prey recognition and activation of the mycoparasitic response is derived from studies with Trichoderma. These fungi rely on G-protein signaling, the cAMP pathway, and mitogen-activated protein kinase cascades during growth and development as well as during mycoparasitism. The signals being recognized by the mycoparasite may include surface molecules and surface properties as well as secondary metabolites and other small molecules released from the prey. Their exact nature, however, remains elusive so far. Recent genomics-based studies of mycoparasitic fungi of the order Hypocreales, i.e., Trichoderma species, C. rosea, Tolypocladium ophioglossoides, and Escovopsis weberi, revealed not only several gene families with a mycoparasitism-related expansion of gene paralogue numbers, but also distinct differences between the different mycoparasites. We use this information to illustrate the biological principles and molecular basis of necrotrophic mycoparasitism and compare the mycoparasitic strategies of Trichoderma as a "model" mycoparasite with the behavior and special features of C. rosea, T. ophioglossoides, and E. weberi.
Collapse
Affiliation(s)
- Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Lea Atanasova
- Institute of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Susanne Zeilinger
- Institute of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
46
|
Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J. Ecological functions ofTrichodermaspp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 2016; 92:fiw036. [DOI: 10.1093/femsec/fiw036] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
|
47
|
Kamou NN, Dubey M, Tzelepis G, Menexes G, Papadakis EN, Karlsson M, Lagopodi AL, Jensen DF. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7. Arch Microbiol 2016; 198:369-77. [PMID: 26860841 DOI: 10.1007/s00203-016-1198-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/07/2016] [Accepted: 01/28/2016] [Indexed: 01/06/2023]
Abstract
This study was carried out to assess the compatibility of the biocontrol fungus Clonostachys rosea IK726 with the phenazine-producing Pseudomonas chlororaphis ToZa7 or with the prodigiosin-producing Serratia rubidaea S55 against Fusarium oxysporum f. sp. radicis-lycopersici. The pathogen was inhibited by both strains in vitro, whereas C. rosea displayed high tolerance to S. rubidaea but not to P. chlororaphis. We hypothesized that this could be attributed to the ATP-binding cassette (ABC) proteins. The results of the reverse transcription quantitative PCR showed an induction of seven genes (abcB1, abcB20, abcB26, abcC12, abcC12, abcG8 and abcG25) from subfamilies B, C and G. In planta experiments showed a significant reduction in foot and root rot on tomato plants inoculated with C. rosea and P. chlororaphis. This study demonstrates the potential for combining different biocontrol agents and suggests an involvement of ABC transporters in secondary metabolite tolerance in C. rosea.
Collapse
Affiliation(s)
- Nathalie N Kamou
- Laboratory of Plant Pathology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 269, 541 24, Thessaloniki, Greece.
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007, Uppsala, Sweden
| | - Georgios Menexes
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 269, 541 24, Thessaloniki, Greece
| | - Emmanouil N Papadakis
- Laboratory of Pesticide Science, Department of Agriculture, Aristotle University of Thessaloniki, P.O. Box 1678, 540 06, Thessaloniki, Greece
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| | - Anastasia L Lagopodi
- Laboratory of Plant Pathology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 269, 541 24, Thessaloniki, Greece
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| |
Collapse
|