1
|
Yaseen AR, Suleman M, Habib M, Arshad T, Fatima M, Arif A, Rasool HS. Development of a Novel Pan-Species Multi-Epitope Vaccine (PS-MEV) Targeting Nine Staphylococcus Species to Combat Antibiotic Resistance. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10550-1. [PMID: 40301233 DOI: 10.1007/s12602-025-10550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
The increasing prevalence of antibiotic-resistant Staphylococcus species, including methicillin-resistant strains, calls for innovative approaches like a pan-species multi-epitope vaccine (PS-MEV). In this study, Sortase A (SrtA) was selected as the target protein due to its conserved role in Staphylococcus pathogenesis, and the MEV was designed to target nine Staphylococcus species. After stringent filtration of epitopes to ensure antigenicity, non-toxicity, and non-allergenicity, structural models of the MEV construct were generated using I-TASSER, AlphaFold, and RoseTTAFold. Docking analyses confirmed strong binding interactions between the MEV and TLR-3, with the AlphaFold model exhibiting the lowest binding energy of - 1284.1 kcal/mol and a center energy of - 1066.5 kcal/mol. The I-TASSER and RoseTTAFold models showed slightly higher binding energies, with lowest binding energies of - 938.5 kcal/mol and - 950.9 kcal/mol, respectively, and center energies of - 842.2 kcal/mol and - 825.4 kcal/mol. These values demonstrate consistent receptor binding across the models. Molecular dynamics (MD) simulations confirmed the stability of the interactions with the immune receptor, and immune simulations showed notable cytokine peaks, memory cell production, and a sustained T-cell response, indicating the potential for long-lasting immunity. Physicochemical profiling indicated that the vaccine construct is stable, moderately thermostable, and hydrophilic, which can enhance bioavailability and immunogenic effectiveness. This pan-species MEV presents a promising avenue in Staphylococcus vaccine development, with implications for broader applications in combating antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Allah Rakha Yaseen
- School of Biological Sciences (SBS), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Muhammad Suleman
- School of Biological Sciences (SBS), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Mahnoor Habib
- School of Biological Sciences (SBS), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Tehreem Arshad
- Department of Pharmacology and Toxicology, University of Veterinary & Animal Sciences - UVAS, Lahore, 54000, Pakistan
| | - Muskan Fatima
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 54000, Pakistan
| | - Ayesha Arif
- Center for Applied Molecular Biology, CAMB, University of the Punjab, Lahore, 54590, Pakistan
| | - Hafiza Sadia Rasool
- Department of Biotechnology, Lahore College for Women University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Chrustek A, Dombrowska-Pali A, Olszewska-Słonina D, Wiktorczyk-Kapischke N, Socha MW, Budzyńska A, Sadowska-Krawczenko I. Human Milk Microbiome from Polish Women Giving Birth via Vaginal Delivery-Pilot Study. BIOLOGY 2025; 14:332. [PMID: 40282197 PMCID: PMC12024558 DOI: 10.3390/biology14040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
The human milk (HM) microbiome is variable and depends on maternal, perinatal, and cultural-environmental factors. The diversity of the HM microbiome is crucial in the development of the child. The aim of the study was to assess the prevalence of bacteria (using culture-based methods) of Polish women with normal BMI, giving birth on time through vaginal delivery. METHODS The research material consisted of human milk and swabs from the areola and nipple, before and after breastfeeding, derived from Polish women (n = 86). Classic culture methods were used to obtain multiple bacteria. Species identification of the grown colonies was performed using MALDI TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry). RESULTS 120 species of bacteria were isolated, mainly from the genus Streptococcus and Staphylococcus. Species specific only to human milk were identified (belonging to the following genera: Microbacterium, Shewanella, Psychrobacter, Aeromonas, Serratia, Buttiauxella, Lactobacillus, Bifidobacterium) as well as species specific only to areola and nipple swabs after breastfeeding (Acinetobacter lactucae, Moraxella catarrhalis, Corynebacterium pseudodiphtheriticum, Corynebacterium propinquim). It was confirmed that most species were present in all tested materials collected from one patient. CONCLUSIONS The analysis carried out showed the presence of bacteria in the human milk of Polish women, including strains of lactic acid bacteria. The human milk microbiota may significantly influence the formation of the infant's intestinal microbiota, including some key genera, i.e., Lactobacillus, Bifidobacterium, and Limosilactobacillus, which were also isolated from the tested samples. The data presented here provide new data on culturable bacterial species isolated from breast milk from Polish women giving birth via vaginal delivery and potential routes of transmission from the neonate's oral cavity.
Collapse
Affiliation(s)
- Agnieszka Chrustek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska 9 St., 85-094 Bydgoszcz, Poland;
| | - Agnieszka Dombrowska-Pali
- Department of Perinatology, Gynecology and Gynecological Oncology, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Łukasiewicza 1 St., 85-821 Bydgoszcz, Poland; (A.D.-P.); (M.W.S.)
| | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska 9 St., 85-094 Bydgoszcz, Poland;
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska 9 St., 85-094 Bydgoszcz, Poland; (N.W.-K.); (A.B.)
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecological Oncology, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Łukasiewicza 1 St., 85-821 Bydgoszcz, Poland; (A.D.-P.); (M.W.S.)
| | - Anna Budzyńska
- Department of Microbiology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska 9 St., 85-094 Bydgoszcz, Poland; (N.W.-K.); (A.B.)
| | - Iwona Sadowska-Krawczenko
- Department of Neonatology, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75 St., 85-168 Bydgoszcz, Poland;
| |
Collapse
|
3
|
Bedaida IK, Bendjama E, Chelaghma W, Zouzou A, Benabderrahmane H, Rolain JM, Loucif L. Makeup testers as reservoirs and transmission sources of antibiotic resistant bacteria. Infect Dis Health 2025:S2468-0451(25)00009-4. [PMID: 40133190 DOI: 10.1016/j.idh.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Recently, the cosmetic market has been attracting growing attention. However, studies on the bacterial safety of these products are still very rare. In this preliminary study, we aimed to detect the presence of antibiotic-resistant staphylococci isolates from makeup testers beauty retailers in the city of Batna, Algeria. METHODS In May 2019, a total of 325 samples were collected by swabbing the surface of different types of makeup testers including mascara, lipstick, eye shadow, face powder and blusher in different beauty retailers. The samples were immediately subjected to non-selective culture, followed by selective isolation. Representative colonies were identified using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). Antimicrobial susceptibility testing was carried out by agar disk diffusion method. RESULTS Nineteen isolates were obtained from the different types of makeup testers and were identified as: Bacillus mojavensis (n = 1), Staphylococcus haemolyticus (n = 4), Bacillus subtilis (n = 3), Bacillus cereus (n = 3), Bacillus pumilus (n = 1), Bacillus sp. (n = 1), Bacillus amyloliquefaciens (n = 1), Staphylococcus warneri (n = 1) and four unidentified species (n = 4). Antimicrobial susceptibility test results revealed that Staphylococcus haemolyticus presented the highest antibiotic resistance level. CONCLUSIONS These results showed that makeup testers may act as reservoir and pathway of antibiotic-resistant Gram-positive bacteria transmission. Hence, to reduce health risks and enhance public safety awareness, it is crucial to implement effective control measures and preventive strategies.
Collapse
Affiliation(s)
- Ibtissam Kahina Bedaida
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria
| | - Esma Bendjama
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria; Département de Technologie Alimentaire, Institut des Sciences Vétérinaires et des Sciences Agronomiques, Université Batna 1, Batna 05000, Algeria
| | - Widad Chelaghma
- Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria
| | - Achwak Zouzou
- Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria
| | - Hind Benabderrahmane
- Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, MEPHI, Aix Marseille Université, Faculté de Médecine et de Pharmacie, Marseille, France; Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria.
| |
Collapse
|
4
|
Martins Simões P, van der Mee-Marquet N, Youenou B, Ranc AG, Dupieux-Chabert C, Menard G, Dupin C, Butin M, Vandenesch F, Laurent F, Berger-Carbonne A, Kolenda C, Tristan A. Epidemiology of Staphylococcus haemolyticus nosocomial bacteraemia in neonatal intensive care units, France, 2019 to 2023: predominance of the ST29 (CC3) multidrug-resistant lineage. Euro Surveill 2025; 30:2400309. [PMID: 40116031 PMCID: PMC11927072 DOI: 10.2807/1560-7917.es.2025.30.11.2400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/24/2024] [Indexed: 03/23/2025] Open
Abstract
BackgroundStaphylococcus haemolyticus (SH) is an opportunistic pathogen associated with nosocomial infections, particularly bacteraemia in neonates. Epidemiological trends and genetic diversity of these infections worldwide are largely unknown.AimTo investigate an increase in SH vascular catheter-related bacteraemia in neonates and describe the molecular epidemiology in France between 2019 and 2023.MethodsWe analysed clinical and microbiological surveillance data from the French national surveillance network for central catheter-related (venous and umbilical) infections between 2019 and 2023. We also performed genomic and phylogenetic analyses of 496 strains isolated both inside (n = 383 from neonates, staff and environmental samples) and outside (n = 113 from adults) the neonatal intensive care unit (NICU) settings.ResultsThe proportion of SH among the 474 reported cases of nosocomial bacteraemia increased from about 20% to 30% over 5 years, mainly affecting very low birth weight preterm neonates (≤ 1,500 g). The ST29 sequence type (ST) not prevalent in previous studies was predominant, accounting for 74% of NICU strains. ST29 was characterised by phenotypic multidrug resistance to at least six classes of antibiotics (oxacillin, quinolones, gentamicin, cotrimoxazole, clindamycin and rifampicin), which distinguished it with good sensitivity and specificity from other prevalent multidrug-resistant STs identified (ST1 and ST25). ST29 strains more frequently harboured the drfG, vga-LC and mupA genes and a triple point mutation (D471E, I527M and S532N) in the rpoB gene.ConclusionsThe present study highlights the success of a highly resistant ST29 lineage in French NICUs mainly affecting very low birth weight premature neonates.
Collapse
Affiliation(s)
- Patricia Martins Simões
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Nathalie van der Mee-Marquet
- National Network for Surveillance and Prevention of Infections Associated with Invasive Devices (SPIADI Network), Centre d'Appui Pour la Prévention des Infections Associées Aux Soins (Cpias) Centre Val de Loire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire, Tours, France
| | - Benjamin Youenou
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Anne-Gaelle Ranc
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Céline Dupieux-Chabert
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Guillaume Menard
- CHU de Rennes, service de bactériologie-hygiène hospitalière, 35033 Rennes, France
- Université de Rennes, UMR_S 1230 INSERM BRM, Rennes, France
| | - Clarisse Dupin
- Service de Microbiologie, CH de St BRIEUC, Saint-Brieuc, France
| | - Marine Butin
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
- Service de Réanimation Néonatale, HFME, Hospices Civils de Lyon, Bron, France
| | - François Vandenesch
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Frédéric Laurent
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Anne Berger-Carbonne
- Direction des maladies infectieuses, Santé Publique France, Saint-Maurice, France
| | - Camille Kolenda
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Anne Tristan
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
5
|
Michalik M, Podbielska-Kubera A, Dmowska-Koroblewska A. Antibiotic Resistance of Staphylococcus aureus Strains-Searching for New Antimicrobial Agents-Review. Pharmaceuticals (Basel) 2025; 18:81. [PMID: 39861144 PMCID: PMC11768290 DOI: 10.3390/ph18010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Inappropriate and excessive use of antibiotics is responsible for the rapid development of antimicrobial resistance, which is associated with increased patient morbidity and mortality. There is an urgent need to explore new antibiotics or alternative antimicrobial agents. S. aureus a commensal microorganism but is also responsible for numerous infections. In addition to innate resistance to β-lactam antibiotics, S. aureus strains resistant to methicillin (MRSA) often show resistance to other classes of antibiotics (multidrug resistance). The advancement of phage therapy against MRSA infections offers a promising alternative in the context of increasing antibiotic resistance. Therapeutic phages are easier to obtain and cheaper to produce than antibiotics. However, there is still a lack of standards to ensure the safe use of phages, including purification, dosage, means of administration, and the quantity of phages used. Some bacteria have developed defense mechanisms against phages. The use of phage cocktails or the combination of antibiotics and phages is preferred. For personalized therapy, it is essential to set up large collections to enable phage selection. In the future, the fight against MRSA strains using phages should be based on a multidisciplinary approach, including molecular biology and medicine. Other therapies in the fight against MRSA strains include the use of endolysin antimicrobial peptides (including defensins and cathelicidins). Researchers' activities also focus on the potential use of plant extracts, honey, propolis, alkaloids, and essential oils. To date, no vaccine has been approved against S. aureus strains.
Collapse
|
6
|
Szemraj M, Glajzner P, Olszowiec K, Sienkiewicz M. The prevalence of multidrug resistance in Staphylococcus hominis isolated from clinical materials. Sci Rep 2025; 15:414. [PMID: 39747570 PMCID: PMC11696355 DOI: 10.1038/s41598-024-84500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
The treatment of infections caused by Staphylococcus hominis remains a challenge, mainly due to the increasing resistance of these bacteria to antibiotics. The aim of the study was to determine antibiotic resistance in 62 strains S. hominis isolated from clinical materials, and to identify the molecular basis of resistance to antibiotics. Forty-six strains were both methicillin-resistant and harbored the mecA gene. Twenty-three of these strains had mec complex A and ccr complex AB1. Such a combination of the mec and ccr complexes does not correspond to any cassettes that have been demonstrated so far. However, over 80% of the tested strains were multidrug-resistant, of which as many as 12 were resistant to at least seven antibiotics. More than a half of strains harbored the tetK, acc(6')-Ie aph(2''), and ant(4')-I genes. erm(C) was the most common resistant gene to antibiotics from the MLS group. Two strains had as many as five antibiotic resistance genes from the tested groups (erm(C), msr(A), msr(B), mph(C), lnu(A)). The presence of the vga gene encoding resistance to streptogramins A was detected in one strain. All of strains were sensitive to vancomycin. However, 11 of them had reduced sensitivity to this antibiotic and eight of them were characterized by a heterogeneous resistance profile to this antibiotic. Our results clearly shows increasing threat of S. hominis caused by their multi-resistance. Moreover, these bacteria can constitute a reservoir of resistance genes for more pathogenic bacteria.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland.
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, Łódź, Poland
| | - Kamila Olszowiec
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
7
|
Dewi DAPR, Khalifa HO, Khandar H, Hisatsune J, Kutuno S, Yu L, Hayashi W, Kayama S, Mason CE, Sugai M, Suzuki H, Matsumoto T. Detection and genetic characterization of multidrug-resistant staphylococci isolated from public areas in an international airport. Sci Rep 2024; 14:27738. [PMID: 39532959 PMCID: PMC11557577 DOI: 10.1038/s41598-024-79447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The environmental realm has been acknowledged as a pivotal arena for the emergence and propagation of antimicrobial resistance. To further explore insight into antimicrobial resistance dynamics beyond clinical and veterinary settings, we embarked on an environmental surveillance initiative targeting the prevalence of antibiotic-resistant bacteria within the bustling confines of an international airport in Japan. Our findings illuminate a high prevalence of methicillin-resistant staphylococci (46.3%) on frequently contacted surfaces in the public domain. Notably, Staphylococcus haemolyticus and S. epidermidis emerged as the preeminent carriers of the mecA gene. Intriguingly, we encountered a virulent strain of livestock-associated MRSA harboring a PVL-positive ST1232 clone, CC398 lineage. Further scrutiny unveiled a repertoire of resistance mechanisms, the methicillin-resistant isolates exhibited two or more resistance genes conferring resistance against different types of antibiotics, including beta-lactams, macrolides, lincosamides, aminoglycosides, chloramphenicol, and fosfomycin. Revealing multidrug-resistant CoNS and a LA-MRSA across various surfaces in urban public areas unearths a looming public health hazard. Thus, implementation of molecular surveillance is imperative, augmenting our capacity for early detection and mitigation of the insidious spread and potential transfer of antibiotic resistance genes and virulence factors amidst urban settings, notably within pivotal nodes such as airports.
Collapse
Affiliation(s)
- Dewa A P Rasmika Dewi
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia.
- Faculty of Medicine and Health Sciences, Udayana University, Bali, Indonesia.
| | - Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El Sheikh, Egypt.
| | - Haque Khandar
- School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shoko Kutuno
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
| | - Motoyuki Sugai
- School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| | - Tetsuya Matsumoto
- School of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
8
|
Mikulich AV, Plavskii VY, Tretyakova AI, Nahorny RK, Sobchuk AN, Dudchik NV, Emeliyanova OA, Zhabrouskaya AI, Plavskaya LG, Ananich TS, Dudinova ON, Leusenka IA, Yakimchuk SV, Svechko AD, Tien TQ, Tong QC, Nguyen TP. Potential of using medicinal plant extracts as photosensitizers for antimicrobial photodynamic therapy. Photochem Photobiol 2024; 100:1833-1847. [PMID: 38456366 DOI: 10.1111/php.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to overcome antimicrobial resistance. However, for widespread implementation of this approach, approved photosensitizers are needed. In this study, we used commercially available preparations (Calendulae officinalis floridis extract, Chamomillae recutitae floridis extract, Achillea millefolii herbae extract; Hypericum perforatum extract; Eucalyptus viminalis folia extract) as photosensitizers for inactivation of gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Spectral-luminescent analysis has shown that the major chromophores are of chlorophyll (mainly chlorophyll a and b) and hypericin nature. The extracts are efficient generators of singlet oxygen with quantum yield (γΔ) from 0.40 to 0.64 (reference compound, methylene blue with γΔ = 0.52). In APDT assays, bacteria before irradiation were incubated with extracts for 30 min. After irradiation and 24 h of incubation, colony-forming units (CFU) were counted. Upon exposure of P. aeruginosa to radiation of 405 nm, 590 nm, and 660 nm at equal energy dose of 30 J/cm2 (irradiance - 100 mW/cm2, exposure time - 5 min), the most pronounced effect is observed with blue light (>3 log10 reduction); in case of S. aureus, the effect is approximately equivalent for light of indicated wavelengths and dose (>4 log10 reduction).
Collapse
Affiliation(s)
- Aliaksandr V Mikulich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Vitaly Yu Plavskii
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Antonina I Tretyakova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Raman K Nahorny
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Andrey N Sobchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Natalia V Dudchik
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Olga A Emeliyanova
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Anastasia I Zhabrouskaya
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Ludmila G Plavskaya
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Tatsiana S Ananich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Olga N Dudinova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Ihar A Leusenka
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Sergey V Yakimchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Alexei D Svechko
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Tran Quoc Tien
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Cong Tong
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Phuong Nguyen
- School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
9
|
Wolska-Gębarzewska M, Międzobrodzki J, Kosecka-Strojek M. Current types of staphylococcal cassette chromosome mec (SCC mec) in clinically relevant coagulase-negative staphylococcal (CoNS) species. Crit Rev Microbiol 2024; 50:1020-1036. [PMID: 37882662 DOI: 10.1080/1040841x.2023.2274841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Coagulase-negative staphylococci (CoNS) colonize human skin and mucosal membranes, which is why they are considered harmless commensal bacteria. Two species, Staphylococcus epidermidis and Staphylococcus haemolyticus belong to the group of CoNS species and are most frequently isolated from nosocomial infections, including device-associated healthcare-associated infections (DA-HAIs) and local or systemic body-related infections (FBRIs). Methicillin resistance, initially described in Staphylococcus aureus, has also been reported in CoNS species. It is mediated by the mecA gene within the staphylococcal cassette chromosome (SCCmec). SCCmec typing, primarily using PCR-based methods, has been employed as a molecular epidemiological tool. However, the introduction of whole genome sequencing (WGS) and next-generation sequencing (NGS) has enabled the identification and verification of new SCCmec types. This review describes the current distribution of SCCmec types, subtypes, and variants among CoNS species, including S. epidermidis, S. haemolyticus, and S. capitis. The literature review focuses on recent research articles from the past decade that discuss new combinations of SCCmec in coagulase-negative Staphylococcus. The high genetic diversity and gaps in CoNS SCCmec annotation rules underscore the need for an efficient typing system. Typing SCCmec cassettes in CoNS strains is crucial to continuously updating databases and developing a unified classification system.
Collapse
Affiliation(s)
- Mariola Wolska-Gębarzewska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
10
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Whole genome sequence analysis of multi-drug resistant and biofilm-forming Staphylococcus haemolyticus isolated from bovine milk. BMC Microbiol 2024; 24:426. [PMID: 39438820 PMCID: PMC11495027 DOI: 10.1186/s12866-024-03575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Milk is an excellent growth medium for microorganisms due to its nutritive composition. Microorganisms have been implicated in bovine mastitis (BM) in dairy cows as well as causing infections in animals and humans. Despite extensive endeavours to manage BM, this condition continues to persist as the most prevalent and economically burdensome problem affecting dairy cattle on a global scale. Non-aureus staphylococci (NAS) species such as Staphylococcus haemolyticus, S. epidermidis, and S. xylosus are currently the predominant microbiological agents identified as the main cause of subclinical udder infections and are also considered opportunistic pathogens in cases of clinical mastitis in dairy cows. Therefore, it is crucial to elucidate the genetic profile of these species. The primary objective of this study was to characterise three phenotypically determined multidrug-resistant NAS environmental strains (NWU MKU1, NWU MKU2, and NWU MKS3) obtained from dairy cows milk via whole-genome sequencing. RESULTS The results confirmed that the three isolates were S. haemolyticus with genome sizes of 2.44, 2.56, and 2.56 Mb and a G + C content of 32.8%. The genomes contained an array of antibiotic resistance genes that may potentially confer resistance to a range of antibiotic classes, such as macrolides, fluoroquinolones, aminoglycosides, cephalosporins, tetracyclines, peptides, and phenicol. Furthermore, all the genomes carried virulence genes, which are responsible for several functions, such as adhesion, enzyme and toxin production. The genomes of these organisms contained signatures encoding mobile genetic elements such as prophages and insertion sequences. CONCLUSION These findings indicate there is a need for diligent monitoring with improved management practices and quality control strategies on farms to safeguard milk production systems and human health.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Tesleem Olatunde Abolarinwa
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Peter Kotsoana Montso
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
11
|
Wang TSA, Chen PL, Chen YCS, Chiu YW, Lin ZJ, Kao CY, Hung HM. Evaluation of the Stereochemistry of Staphyloferrin A for Developing Staphylococcus-Specific Targeting Conjugates. Chembiochem 2024; 25:e202400480. [PMID: 38965052 DOI: 10.1002/cbic.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Bacteria in the genus Staphylococcus are pathogenic and harmful to humans. Alarmingly, some Staphylococcus, such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have spread worldwide and become notoriously resistant to antibiotics, threatening and concerning public health. Hence, the development of new Staphylococcus-targeting diagnostic and therapeutic agents is urgent. Here, we chose the S. aureus-secreted siderophore staphyloferrin A (SA) as a guiding unit. We developed a series of Staphyloferrin A conjugates (SA conjugates) and showed the specific targeting ability to Staphylococcus bacteria. Furthermore, among the structural factors we evaluated, the stereo-chemistry of the amino acid backbone of SA conjugates is essential to efficiently target Staphylococci. Finally, we demonstrated that fluorescent Staphyloferrin A probes (SA-FL probes) could specifically target Staphylococci in complex bacterial mixtures.
Collapse
Affiliation(s)
- Tsung-Shing Andrew Wang
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Pin-Lung Chen
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Yi-Chen Sarah Chen
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Yu-Wei Chiu
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Zih-Jheng Lin
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Chih-Yao Kao
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Hsuan-Min Hung
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
12
|
Rajput S, Mitra S, Mondal AH, Kumari H, Mukhopadhyay K. Prevalence and molecular characterization of multidrug-resistant coagulase negative staphylococci from urban wastewater in Delhi-NCR, India. Arch Microbiol 2024; 206:399. [PMID: 39254720 DOI: 10.1007/s00203-024-04124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Antimicrobial resistance (AMR) is global health concern escalating rapidly in both clinical settings and environment. The effluent from pharmaceuticals and hospitals may contain diverse antibiotics, exerting selective pressure to develop AMR. To study the aquatic prevalence of drug-resistant staphylococci, sampling was done from river Yamuna (3 sites) and wastewater (7 sites) near pharmaceutical industries in Delhi-NCR, India. 59.25% (224/378) were considered presumptive staphylococci while, methicillin resistance was noted in 25% (56/224) isolates. Further, 23 methicillin-resistant coagulase negative staphylococci (MR-CoNS) of 8 different species were identified via 16S rRNA gene sequencing. Multidrug resistance (MDR) was noted in 60.87% (14/23) isolates. PCR based detection of antibiotic resistance genes revealed the number of isolates containing mecA (7/23), blaZ (6/23), msrA (10/23), aac(6')aph (2") (2/23), aph(3')-IIIa (2/23), ant(4')-Ia (1/23), dfrG (4/23), dfrA(drfS1) (3/23), tetK (1/23) and tetM (1/23). The current research highlights the concerning prevalence of MDR-CoNS in aquatic environment in Delhi.
Collapse
Affiliation(s)
- Sonali Rajput
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sayani Mitra
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aftab Hossain Mondal
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Himani Kumari
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Rossi CC, Ahmad F, Giambiagi-deMarval M. Staphylococcus haemolyticus: An updated review on nosocomial infections, antimicrobial resistance, virulence, genetic traits, and strategies for combating this emerging opportunistic pathogen. Microbiol Res 2024; 282:127652. [PMID: 38432015 DOI: 10.1016/j.micres.2024.127652] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Staphylococcus haemolyticus, a key species of the Staphylococcus genus, holds significant importance in healthcare-associated infections, due to its notable resistance to antimicrobials, like methicillin, and proficient biofilms-forming capabilities. This coagulase-negative bacterium poses a substantial challenge in the battle against nosocomial infections. Recent research has shed light on Staph. haemolyticus genomic plasticity, unveiling genetic elements responsible for antibiotic resistance and their widespread dissemination within the genus. This review presents an updated and comprehensive overview of the clinical significance and prevalence of Staph. haemolyticus, underscores its zoonotic potential and relevance in the one health framework, explores crucial virulence factors, and examines genetics features contributing to its success in causing emergent and challenging infections. Additionally, we scrutinize ongoing studies aimed at controlling spread and alternative approaches for combating it.
Collapse
Affiliation(s)
- Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG, Brazil.
| | - Faizan Ahmad
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG, Brazil
| | | |
Collapse
|
14
|
Liu Z, Wang L, Sun J, Zhang Q, Peng Y, Tang S, Zhang L, Li X, Yu Z, Zhang T. Whole Genome Sequence Analysis of Two Oxacillin-Resistant and mecA-Positive Strains of Staphylococcus haemolyticus Isolated from Ear Swab Samples of Patients with Otitis Media. Infect Drug Resist 2024; 17:1291-1301. [PMID: 38576824 PMCID: PMC10992674 DOI: 10.2147/idr.s455051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Objective Staphylococcus haemolyticus can cause a series of infections including otitis media (OM), and the oxacillin-resistant S. haemolyticus has become a serious health concern. This study aimed to investigate the genomic characteristics of two strains of oxacillin-resistant and mecA-positive S. haemolyticus isolated from the samples of ear swabs from patients with OM and explore their acquired antibiotic resistance genes (ARGs) and the mobile genetic elements (MGEs). Methods Two oxacillin-resistant S. haemolyticus strains, isolated from ear swab samples of patients with OM, underwent antimicrobial susceptibility evaluation, followed by whole-genome sequencing. The acquired ARGs and the MGEs carried by the ARGs, harbored by the genomes of two strains of S. haemolyticus were identified. Results The two strains of oxacillin-resistant S. haemolyticus (strain SH1275 and strain SH9361) both carried the genetic contexts of mecA with high similarity with the SCCmec type V(5C2&5) subtype c. Surprisingly, the chromosomal aminoglycoside resistance gene aac(6')-aph(2") harbored by S. haemolyticus strain SH936 was flanked by two copies of IS256, forming the IS256-element (IS256-GNAT-[aac(6')-aph(2")]-IS256), which was widely present in strains of both Staphylococcus and Enterococcus genus. Furthermore, the two strains of oxacillin-resistant and MDR S. haemolyticus were found to harbor antimicrobial resistance plasmids, including one 26.9-kb plasmid (pSH1275-2) containing msr(A)-mph(C)) and qacA, one mobilizable plasmid pSH1275-3 harboring vga(A)LC, one plasmid (pSH9361-1) carrying erm(C), and one plasmid (pSH9361-2) carrying qacJ. Conclusion The systematic analysis of whole-genome sequences provided insights into the mobile genetic elements responsible for multi-drug resistance in these two strains of oxacillin-resistant and mecA-positive S. haemolyticus, which will assist clinicians in devising precise, personalized, and clinical therapeutic strategies for treating otitis media caused by multi-drug resistant S. haemolyticus.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Ling Wang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jiabing Sun
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Qinghuan Zhang
- Department of Clinical Laboratory, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Yue Peng
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Susu Tang
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
- Zhuhai Precision Medical Center, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Zhijian Yu
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Tao Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Crippa BL, de Matos LG, Souza FN, Silva NCC. Non- aureus staphylococci and mammaliicocci (NASM): their role in bovine mastitis and One Health. J DAIRY RES 2024; 91:44-56. [PMID: 38584301 DOI: 10.1017/s0022029924000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Non-aureus staphylococci (NAS) are gaining importance in mastitis and public health, and some NAS have been reclassified as mammaliicocci (NASM). Bovine milk production has a major influence on the world economy, being an essential source of income for small, medium and large producers, and bovine mastitis caused by NASM can cause an economic impact. Mastitis generates financial losses due to reduced revenue, increased veterinary costs and expenses associated with animal slaughter. However, it is also a public health issue involving animal health and welfare, human health and the ecosystem. Furthermore, it is an increasingly common infection caused by NASM, including antimicrobial-resistant strains. Despite all these adverse effects that NASM can cause, some studies also point to its protective role against mastitis. Therefore, this review article addresses the negative and positive aspects that NASM can cause in bovine mastitis, the virulence of the disease and resistance factors that make it difficult to treat and, through the One Health approach, presents a holistic view of how mastitis caused by NASM can affect both animal and human health at one and the same time.
Collapse
Affiliation(s)
- Bruna Lourenço Crippa
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Luiz Gustavo de Matos
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Lombardia, Italy
| | - Fernando Nogueira Souza
- Department of Clinical Science, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
- Department of Veterinary Medicine, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| |
Collapse
|
16
|
Nandivarmane SB, Manoharan M, Sugumar M, Sistla S. Evaluation of different linezolid susceptibility testing methods and detection of linezolid resistance gene (cfr) in staphylococcal isolates. Indian J Med Microbiol 2024; 47:100516. [PMID: 38000621 DOI: 10.1016/j.ijmmb.2023.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Linezolid is an effective oxazolidinone antibiotic against multi resistant Gram-positive organisms. Linezolid resistance is an emerging problem and some controversy exists about the reliability of different phenotypic methods of linezolid susceptibility testing. Fifty isolates each of methicillin resistant S. aureus (MRSA) and Staphylococcus haemolyticus were tested for linezolid susceptibility using Kirby-Bauer disc diffusion, E-test, automated system VITEK2, Broth micro-dilution (reference method) and PCR for the cfr gene. Six resistant isolates were identified, three each in MRSA and S. haemolyticus, all carrying the cfr gene. E-test and VITEK2 were found to be more accurate than disc diffusion test.
Collapse
Affiliation(s)
- Sudarsan Bagavane Nandivarmane
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| | - Meerabai Manoharan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| | - Madhan Sugumar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| | - Sujatha Sistla
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| |
Collapse
|
17
|
Morgado S, Freitas F, Caldart R, Fonseca E, Vicente AC. In-silico genomic characterization of Staphylococcus haemolyticus on a global scale: lineages, resistome, and virulome. J Infect Public Health 2024; 17:18-24. [PMID: 37992430 DOI: 10.1016/j.jiph.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Staphylococcus haemolyticus belongs to the Coagulase-Negative Staphylococci (CoNS), exhibiting the highest levels of antibiotic resistance within this group of bacteria. This species has been increasingly implicated in nosocomial and animal infections worldwide, with a prevalence of methicillin-resistant Staphylococcus haemolyticus (MRSH). Most information about this organism comes from regional analyzes or with the absence of typing data, thus not revealing the real role of S. haemolyticus strains in world public health. METHODS Here, we performed an enhanced global epidemiological analysis considering all available S. haemolyticus genomes from all continents, including genomes of nosocomial, environmental, and animal origin (n = 310). Furthermore, we added original genomic information from a clinical MRSH from the Brazilian Amazon region. The resistome and virulome of the genomes were associated with their mobilome, being inferred based on the presence of specific genes and databases such as CARD, VFDB, and PlasmidFinder, respectively. RESULTS Phylogenetic analysis revealed three main groups, the main one covering most of the clinical clonal complex 3 (CC3) genomes in the world. The virulome of some genomes in this cluster showed the complete capsule operon (capA-capM). Importantly, this virulome trait could be associated with the mobilome, since the capsule operon, as well as a whole set of genes of the type VII secretion system, were observed in plasmids. In addition, the resistome of the main cluster (CC3) was larger, characterized mainly by the presence of the mecA gene, in addition to a set of other genes (aad, aac-aph, aph, erm), contrasting with the poor resistome of the other two clusters. Several insertion sequences were identified, some of them linked to specific clusters, and resistance genes, such as the rare cfrA (IS257). CONCLUSIONS Therefore, successful lineages of CC3 S. haemolyticus causing human infections are widespread worldwide, raising concern about the impact of this scenario on public health.
Collapse
Affiliation(s)
- Sergio Morgado
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fernanda Freitas
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Caldart
- Universidade Federal de Roraima, Boa Vista, Roraima, Brazil
| | - Erica Fonseca
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Hervochon C, Hennart B, Leroy AG, Corvec S, Boutoille D, Senneville É, Sotto A, Illes G, Chavanet P, Dubée V, Bleibtreu A, De Carné MC, Talarmin JP, Revest M, Castan B, Bellouard R, Dailly É, Allorge D, Dinh A, Le Turnier P, Gregoire M. Dalbavancin plasma concentrations in 133 patients: a PK/PD observational study. J Antimicrob Chemother 2023; 78:2919-2925. [PMID: 37864551 DOI: 10.1093/jac/dkad331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
OBJECTIVES Limited pharmacokinetics data support dalbavancin long-term use in off-label indications and the optimal dosing regimen is debated. We aimed to describe dalbavancin concentrations in an observational retrospective multicentre study. METHODS Patients from 13 French hospitals, treated with 1500 mg doses of dalbavancin and for whom therapeutic drug monitoring was performed from June 2018 to March 2021 were included. Dalbavancin plasma concentrations were described at peak and 1, 2, 3, 4, 6 and 8 weeks after the last 1500 mg dose. Concentrations in patients weighing more or less than 75 kg and with a GFR greater or less than 60 mL/min were compared. Microbiological data were collected and dalbavancin MIC was measured when possible. RESULTS One hundred and thirty-three patients were included (69% treated for bone and joint infections, 16% for endocarditis). Thirty-five patients received a single dose of dalbavancin and 98 received several administrations. Two, 3 and 4 weeks after the last dose, median plasma concentrations were respectively 25.00, 14.80 and 9.24 mg/L for the first doses and 34.55, 22.60 and 19.20 mg/L for the second or subsequent doses. Weight and renal function had an impact on pharmacokinetics. Infection was documented in 105 patients (Staphylococcus spp. in 68% of cases). Staphylococcus aureus was isolated in 32.5% of cases (median MIC: 0.047 mg/L) and Staphylococcus epidermidis in 27% of cases (median MIC of 0.047 mg/L). CONCLUSIONS Plasma concentrations of dalbavancin were consistent with those described in clinical trials and those sought during the industrial development of the molecule.
Collapse
Affiliation(s)
- Charles Hervochon
- Nantes Université, CHU Nantes, Service de Pharmacologie Clinique, 9 quai Moncousu 44093, F-44000 Nantes, France
| | - Benjamin Hennart
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France
| | - Anne-Gaëlle Leroy
- Nantes Université, CHU Nantes, INCIT 1302, Service de Bactériologie et Contrôles Microbiologiques, F-44000 Nantes, France
- Laboratoire de Microbiologie, CHU Sud Réunion, Saint-Pierre, La Réunion, France
| | - Stéphane Corvec
- Nantes Université, CHU Nantes, INCIT 1302, Service de Bactériologie et Contrôles Microbiologiques, F-44000 Nantes, France
| | - David Boutoille
- Nantes Université, CHU Nantes, INSERM, Service de Maladies Infectieuses et Tropicales, CIC 1413, F-44000 Nantes, France
| | - Éric Senneville
- Infectious Diseases Department, Gustave Dron Hospital, Tourcoing, France
| | - Albert Sotto
- Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Gabriella Illes
- Infectious Disease Unit, Hospital of Mont-de-Marsan, Mont-de-Marsan, France
| | - Pascal Chavanet
- Infectious Diseases Department, Dijon University Hospital, Dijon, France
| | - Vincent Dubée
- Department of Infectious Diseases, University Hospital of Angers, Angers, France
| | - Alexandre Bleibtreu
- Department of Infectious and Tropical Diseases, Sorbonne Université, Pitié-Salpêtrière hospital, Assistance Publique-Hôpitaux de Paris, Emergence and diffusion of multiple resistance against antibiotics, CIMI, INSERM U1135, Paris, France
| | - Marie-Charlotte De Carné
- Service de Maladies Infectieuses et Tropicales - Médecine Interne, CH Versailles André Mignot, Le Chesnay, France
| | | | - Matthieu Revest
- Service des Maladies Infectieuses et Réanimation Médicale, CHU Rennes, Rennes, France
| | - Bernard Castan
- Département de Maladies infectieuses et Tropicales, CHG, 24000 Périgueux, France
| | - Ronan Bellouard
- Nantes Université, CHU Nantes, Service de Pharmacologie Clinique, 9 quai Moncousu 44093, F-44000 Nantes, France
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Éric Dailly
- Nantes Université, CHU Nantes, Service de Pharmacologie Clinique, 9 quai Moncousu 44093, F-44000 Nantes, France
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Delphine Allorge
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France
| | - Aurélien Dinh
- Infectious Disease Department, Raymond-Poincaré University Hospital, Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Garches, France
| | - Paul Le Turnier
- Nantes Université, CHU Nantes, INSERM, Service de Maladies Infectieuses et Tropicales, CIC 1413, F-44000 Nantes, France
- Infectious Diseases Department, Cayenne Hospital, Cayenne, French Guiana
| | - Matthieu Gregoire
- Nantes Université, CHU Nantes, Service de Pharmacologie Clinique, 9 quai Moncousu 44093, F-44000 Nantes, France
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
| |
Collapse
|
19
|
Guest JD, Luo Z, Liu Y, Gao H, Wang D, Xu XM, Zhu H. Acute penetrating injury of the spinal cord by a wooden spike with delayed surgery: a case report. Neural Regen Res 2023; 18:2781-2784. [PMID: 37449645 DOI: 10.4103/1673-5374.373668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Rarely, penetrating injuries to the spinal cord result from wooden objects, creating unique challenges to mitigate neurological injury and high rates of infection and foreign body reactions. We report a man who sustained a penetrating cervical spinal cord injury from a sharpened stick. While initially tetraparetic, he rapidly recovered function. The risks of neurological deterioration during surgical removal made the patient reluctant to consent to surgery despite the impalement of the spinal cord. A repeat MRI on day 3 showed an extension of edema indicating progressive inflammation. On the 7th day after injury, fever and paresthesias occurred with a large increase in serum inflammatory indicators, and the patient agreed to undergo surgical removal of the wooden object. We discuss the management nuances related to wood, the longitudinal evolution of MRI findings, infection risk, surgical risk mitigation and technique, an inflammatory marker profile, long-term recovery, and the surprisingly minimal neurological deficits associated with low-velocity midline spinal cord injuries. The patient had an excellent clinical outcome. The main lessons are that a wooden penetrating central nervous system injury has a high risk for infection, and that surgical removal from the spinal cord should be performed soon after injury and under direct visualization.
Collapse
Affiliation(s)
- James D Guest
- Neurological Surgery, and the Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zhuojing Luo
- Department of Orthopedic Spinal Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yansheng Liu
- Department of Neurosurgery, Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Hongkun Gao
- Kunming International Spine, and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Dianchun Wang
- Kunming International Spine, and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Xiao-Ming Xu
- Indiana University School of Medicine, Stark Neurosciences Research Institute, Indianapolis, IN, USA
| | - Hui Zhu
- Kunming International Spine, and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital, Kunming, Yunnan Province, China
| |
Collapse
|
20
|
Mazuecos-Blanca J, Mazuecos-Gutiérrez JR, Jiménez-Gil A. Erosive balanitis caused by Staphylococcus haemolyticus in a healthy, circumcised adult male. Access Microbiol 2023; 5:000582.v4. [PMID: 37841092 PMCID: PMC10569649 DOI: 10.1099/acmi.0.000582.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Balanitis is an inflammation of the glans penis. Balanoposthitis involves both the glans penis and prepuce and occurs only in uncircumcised males. Recurrent balanoposthitis represents a strong indication for circumcision. After Candida infections, aerobic bacteria are the second most common aetiological cause of acute infectious balanoposthitis, mainly streptococci groups B and D, and staphylococci, usually S. aureus . Their clinical manifestations are variable inflammatory changes, including diffuse erythema and oedema. Severe balanopreputial oedema with purulent exudate occurs in painful, erosive streptococcal balanoposthitis. Coagulase-negative staphylococci (CoNS) are commensal skin bacteria, but are also recognized pathogens of the genitourinary system, mainly related to urinary tract infections. Staphylococcus haemolyticus is one of the main species of CoNS that is part of the cutaneous microflora but is also associated with nosocomial infections. In addition, S. haemolyticus also causes other infections of the male urogenital tract, such as chronic prostatitis and epididymo-orchitis, but it has not been associated with balanitis. Case presentation A 45-year-old man reports having suffered several episodes of balanoposthitis in the last 3 years, which were treated with topical antifungal treatments alone or associated with corticosteroids. For this reason, he underwent a postectomy by his urologist 8 months ago to avoid further recurrences. The patient consulted for an episode of painful, erosive and exudative lesions on the glans penis and over the post-operative scars lasting 5 days. He had no urinary discomfort or inguinal lymphadenopathy. A complete blood count, biochemical analysis, C-reactive protein (CRP), prostate-specific antigen (PSA) and urinalysis were normal. Abundant growth of S. haemolyticus was obtained in the culture on tryptone soya agar with sheep blood and chocolate agar with Vitox media. The MicroScan panel CIM 37 (PM37) was used to study the antimicrobial susceptibilities of the isolated bacteria. The fungal culture on Sabouraud dextrose agar was negative. Based on the antimicrobial susceptibility study, treatment with oral ciprofloxacin and topical mupirocin was started, and the genital infection was completely cured. Conclusion We present a healthy, non-diabetic, circumcised male patient with severe, erosive and painful balanitis probably due to S. haemolyticus .
Collapse
Affiliation(s)
- José Mazuecos-Blanca
- Dermatology Area, Department of Medicine. Faculty of Medicine, University of Seville, Sevilla, Spain
| | | | - Ana Jiménez-Gil
- Amate Health Centre, Seville District, Andalusian Health Service, Seville, Spain
| |
Collapse
|
21
|
Bermudez M, Epstein SB, Guevara N, Pedraza L, Dahdouh M, Awad I. Prostatic Abscess Secondary to Staphylococcus haemolyticus and Escherichia coli: A Case Report. Cureus 2023; 15:e40406. [PMID: 37456390 PMCID: PMC10348605 DOI: 10.7759/cureus.40406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
A prostate abscess is a rare clinical entity with an incidence of 0.2%-0.5% in males. No case reports exist of Staphylococcus haemolyticus as an etiologic bacterial agent. We report a 59-year-old man with a past medical history of poorly controlled diabetes mellitus and benign prostatic hyperplasia who was hospitalized due to urosepsis and obstruction. A prostatic abscess was discovered and initially treated with intravenous vancomycin and ertapenem. Clinical improvement was apparent within two days following transrectal prostatic abscess drainage. Four weeks of intravenous antibiotics followed. Prostatic abscess cultures grew Staphylococcus haemolyticus and Escherichia coli following tube deployment. To the best of our knowledge, this is the first case reporting Staphylococcus haemolyticus as an organism in a prostate abscess. We regard this as another example of the rising incidence of gram-positive organisms in prostatic abscesses in the post-antibiotic era.
Collapse
Affiliation(s)
| | | | | | | | | | - Ihab Awad
- Urology, SBH Health System, New York, USA
| |
Collapse
|
22
|
Pimenta LKL, Rodrigues CA, Filho ARG, Coelho CJ, Goes V, Estrela M, de Souza P, Avelino MAG, Vieira JDG, Carneiro L. Staphylococcus spp. Causatives of Infections and Carrier of blaZ, femA, and mecA Genes Associated with Resistance. Antibiotics (Basel) 2023; 12:antibiotics12040671. [PMID: 37107033 PMCID: PMC10135354 DOI: 10.3390/antibiotics12040671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Staphylococcus spp. have been associated with cases of healthcare associated infections due to their high incidence in isolates from the hospital environment and their ability to cause infections in immunocompromised patients; synthesize biofilms on medical instruments, in the case of negative coagulase species; and change in genetic material, thus making it possible to disseminate genes that code for the acquisition of resistance mechanisms against the action of antibiotics. This study evaluated the presence of blaZ, femA, and mecA chromosomal and plasmid genes of Staphylococcus spp. using the qPCR technique. The results were associated with the phenotypic expression of resistance to oxacillin and penicillin G. We found that the chromosomal femA gene was present in a greater proportion in S. intermedius when compared with the other species analyzed, while the plasmid-borne mecA gene was prevalent in the S. aureus samples. The binary logistic regression performed to verify the association among the expression of the genes analyzed and the acquisition of resistance to oxacillin and penicillin G were not significant in any of the analyses, p > 0.05.
Collapse
Affiliation(s)
- Laryssa Ketelyn Lima Pimenta
- Biotechnology Department, Medicine Tropical and Health Public Institute, Universidade Federal de Goiás, Goiania 74605-020, Brazil
| | - Carolina Andrade Rodrigues
- Colemar Natal e Silva Camp, Biotechnology Department, Medicine Faculty, Universidade Federal de Goiás, Goiania 74605-020, Brazil
| | | | - Clarimar José Coelho
- Computer Department, College of Computer Engineering, Pontifíca Universidade Católica de Goiás, Goiania 74605-020, Brazil
| | - Viviane Goes
- Inovation Department, Instituto de Biologia Molecular do Paraná, Curitiba 81350-010, Brazil
| | - Mariely Estrela
- Inovation Department, Instituto de Biologia Molecular do Paraná, Curitiba 81350-010, Brazil
| | - Priscila de Souza
- Inovation Department, Instituto de Biologia Molecular do Paraná, Curitiba 81350-010, Brazil
| | - Melissa Ameloti Gomes Avelino
- Colemar Natal e Silva Camp, Biotechnology Department, Medicine Faculty, Universidade Federal de Goiás, Goiania 74605-020, Brazil
| | - José Daniel Gonçalves Vieira
- Biotechnology Department, Medicine Tropical and Health Public Institute, Universidade Federal de Goiás, Goiania 74605-020, Brazil
| | - Lilian Carneiro
- Biotechnology Department, Medicine Tropical and Health Public Institute, Universidade Federal de Goiás, Goiania 74605-020, Brazil
- Correspondence:
| |
Collapse
|
23
|
Lin LC, Chang SC, Ou YH, Liu TP, Lu JJ. Clonal Spreading of ST42 Staphylococcus haemolyticus Strains Occurs Possibly Due to fusB and tetK Resistant Genes and Capsule-Related Genes. Int J Mol Sci 2023; 24:ijms24076198. [PMID: 37047168 PMCID: PMC10094739 DOI: 10.3390/ijms24076198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Multi-drug resistant Staphylococcus haemolyticus is a frequent nosocomial invasive bacteremia pathogen in hospitals. Our previous analysis showed one of the predominant strains, ST42 originated from ST3, had only one multilocus sequence typing (MLST) variation among seven loci in SH1431; yet no significant differences in biofilm formation observed between ST42 and ST3, suggesting that other factors influence clonal lineage change. Whole genome sequencing was conducted on two isolates from ST42 and ST3 to find phenotypic and genotypic variations, and these variations were further validated in 140 clinical isolates. The fusidic acid- and tetracycline-resistant genes (fusB and tetK) were found only in CGMH-SH51 (ST42). Further investigation revealed consistent resistant genotypes in all isolates, with 46% and 70% of ST42 containing fusB and tetK, respectively. In contrast, only 23% and 4.2% ST3 contained these two genes, respectively. The phenotypic analysis also showed that ST42 isolates were highly resistant to fusidic acid (47%) and tetracycline (70%), compared with ST3 (23% and 4%, respectively). Along with drug-resistant genes, three capsule-related genes were found in higher percentage distributions in ST42 than in ST3 isolates. Our findings indicate that ST42 could become endemic in Taiwan, further constitutive surveillance is required to prevent the spread of this bacterium.
Collapse
|
24
|
Shen J, Yang F, Wang G, Mou X, Li J, Ding X, Wang X, Li H. Paeoniflorin alleviates inflammation in bovine mammary epithelial cells induced by Staphylococcus haemolyticus through TLR2/NF-κB signaling pathways. Res Vet Sci 2023; 156:95-103. [PMID: 36796241 DOI: 10.1016/j.rvsc.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is one of the most common coagulase-negative staphylococci (CoNS) isolates from bovine mastitis. Paeoniflorin (PF) shows anti-inflammatory effects on different inflammatory diseases in vitro studies and in vivo animal experiments. In this study, the viability of bovine mammary epithelial cells (bMECs) was detected by the cell counting kit-8 experiment. Subsequently, bMECs were induced with S. haemolyticus, and the induction dosage was determined. The expression of pro-inflammatory cytokines and toll-like receptor (TLR2) and nuclear factor kappa-B (NF-κB) signaling pathway-related genes were investigated by quantitative real-time PCR. The critical pathway proteins were detected by western blot. The results showed that the multiplicity of infection (MOI; the ratio of bacteria to bMECs) 5:1 of S. haemolyticus for 12 h could cause cellular inflammation, which was selected to establish the inflammatory model. Incubation with 50 μg/ml PF for 12 h was the best intervention condition for cells stimulated by S. hemolyticus. Quantitative real-time PCR and western blot analysis showed that PF inhibited the activation of TLR2 and NF-κB pathway-related genes and the expression of related proteins. Western blot results showed that PF suppressed the expression of NF-κB unit p65, NF-κB unit p50, and MyD88 in bMECs stimulated by S. haemolyticus. The inflammatory response pathway and molecular mechanism caused by S. haemolyticus on bMECs are related to TLR2-mediated NF-κB signaling pathways. The anti-inflammatory mechanism of PF may also be through this pathway. Therefore, PF is expected to develop potential drugs against CoNS-induced bovine mastitis.
Collapse
Affiliation(s)
- Jirao Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guibo Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xiaoqing Mou
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jinyu Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xurong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| |
Collapse
|
25
|
Szemraj M, Lisiecki P, Glajzner P, Szewczyk EM. Vancomycin heteroresistance among methicillin-resistant clinical isolates S. haemolyticus, S. hominis, S. simulans, and S. warneri. Braz J Microbiol 2023; 54:159-167. [PMID: 36374479 PMCID: PMC9944261 DOI: 10.1007/s42770-022-00870-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
Besides being an essential part of the skin microbiome, coagulase-negative staphylococci are the etiological factors of serious infections. The aim of the study was to evaluate the heteroresistance to vancomycin and the potential antimicrobial efficacy of teicoplanin and daptomycin against the multiresistant strains of S. haemolyticus, S. hominis, S. warneri, and S. simulans. The study covered 80 clinical coagulase-negative staphylococci. Teicoplanin, vancomycin, and daptomycin MICs for the tested strains were determined according to EUCAST recommendation. The vanA and vanB genes were searched. The brain heart infusion screen agar method detected vancomycin heteroresistance. The population analysis profile method and analysis of autolytic activity were applied for the strains growing on BHI containing 4 mg/L vancomycin. Seven S. haemolyticus, two S. hominis, and two S. warneri strains presented a heterogeneous resistance to vancomycin. Their subpopulations were able to grow on a medium containing 4-12 mg/L of vancomycin. Monitoring heteroresistance to peptide antibiotics, which are often the last resort in staphylococcal infections, is essential due to the severe crisis in antibiotic therapy and the lack of alternatives to treat infections with multiresistant strains. Our work highlights the selection of resistant strains and the need for more careful use of peptide antibiotics.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego 1, 90-235, Łódź, Poland.
| | - Paweł Lisiecki
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego 1, 90-235, Łódź, Poland
| | - Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego 1, 90-235, Łódź, Poland
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego 1, 90-235, Łódź, Poland
| |
Collapse
|
26
|
Singhal L, Gupta V, Sharma S, Agarwal A, Gupta P. Mucoid Staphylococcus haemolyticus: an unheeded multidrug-resistant pathogen. Braz J Microbiol 2023; 54:191-198. [PMID: 36680660 PMCID: PMC9943796 DOI: 10.1007/s42770-022-00901-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
Coagulase-negative Staphylococci (CoNS) are among the most abundant members of human skin microbiome. CoNS have lately been recognized as substantial agents in plethora of infections, especially nosocomial infections in preterm infants and immunocompromised patients. Staphylococcus haemolyticus is the second most common species isolated from blood, and identification is further hindered when there is a deviation in morphology from the classical one. Here, we report an uncommon case of multidrug resistant mucoid S. hemolyticus isolated from blood in a patient of polytrauma. The patient was managed with ceftriaxone-sulbactam, gentamicin, and meropenem as empirical therapy, which was subsequently changed to intravenous vancomycin. The patient showed favorable response to treatment. Mucoid isolates are known to be more virulent and multi-drug resistant than the classical morphotypes. We also conducted systematic review to decipher the prevalence of mucoid S. hemolyticus and linezolid (LZD) resistance in the same. This case highlights the significance of awareness of mucoid phenotypes of Gram-positive cocci for clinical microbiologists to reach accurate identification. Resistance to LZD further underscores the need of restriction policies in hospitals and to roll out antimicrobial stewardship program stringently, so that the growing resistance could be contained.
Collapse
Affiliation(s)
| | - Varsha Gupta
- Department of Microbiology, GMCH-32 Chandigarh, India
| | - Swati Sharma
- Department of Microbiology, GMCH-32 Chandigarh, India
| | - Aditi Agarwal
- Department of Microbiology, GMCH-32 Chandigarh, India
| | | |
Collapse
|
27
|
Wang C, Wei PW, Song CR, Wang X, Zhu GF, Yang YX, Xu GB, Hu ZQ, Tang L, Liu HM, Wang B. Evaluation of the antimicrobial function of Ginkgo biloba exocarp extract against clinical bacteria and its effect on Staphylococcus haemolyticus by disrupting biofilms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115602. [PMID: 36030030 DOI: 10.1016/j.jep.2022.115602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Ginkgo biloba L. (Ginkgo nuts) has been used for a long time as a critical Chinese medicine material to treat cough and asthma, as well as a disinfectant. Similar records were written in the Compendium of Materia Medica (Ben Cao Gang Mu, pinyin in Chinese) and Sheng Nong's herbal classic (Shen Nong Ben Cao Jing, pinyin in Chinese). Recent research has shown that Ginkgo biloba exocarp extract (GBEE) has the functions of unblocking blood vessels and improving brain function, as well as antitumour activity and antibacterial activity. GBEE was shown to inhibit methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation as a traditional Chinese herb in our previous report in this journal. AIM OF THE STUD: yThe antibiotic resistance of clinical bacteria has recently become increasingly serious. Thus, this study aimed to investigate the Ginkgo biloba exocarp extract (GBEE) antibacterial lineage, as well as its effect and mechanism on S. haemolyticus biofilms. This study will provide a new perspective on clinical multidrug resistant (MDR) treatment with ethnopharmacology herbs. METHODS The microbroth dilution assay was carried out to measure the antibacterial effect of GBEE on 13 types of clinical bacteria. Bacterial growth curves with or without GBEE treatment were drawn at different time points. The potential targets of GBEE against S. haemolyticus were screened by transcriptome sequencing. The effects of GBEE on bacterial biofilm formation and mature biofilm disruption were determined by crystal violet staining and scanning electron microscopy. The metabolic activity of bacteria inside the biofilm was assessed by colony-forming unit (CFU) counting and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2HY-tetrazolium bromide (MTT) assay. Quantitative polymerase chain reaction (qPCR) was used to measure the gene expression profile of GBEE on S. haemolyticus biofilm-related factors. RESULTS The results showed that GBEE has bacteriostatic effects on 3 g-positive (G+) and 2 g-negative (G-) bacteria among 13 species of clinical bacteria. The antibacterial effect of GBEE supernatant liquid was stronger than the antibacterial effect of GBEE supernviaould-like liquid. GBEE supernatant liquid inhibited the growth of S. epidermidis, S. haemolyticus, and E. faecium at shallow concentrations with minimum inhibitory concentrations (MICs) of 2 μg/ml, 4 μg/ml and 8 μg/ml, respectively. Genes involved in quorum sensing, two-component systems, folate biosynthesis, and ATP-binding cassette (ABC) transporters were differentially expressed in GBEE-treated groups compared with controls. Crystal violet, scanning electron microscopy (SEM) and MTT assays showed that GBEE suppressed S. haemolyticus biofilm formation in a dose-dependent manner. Moreover, GBEE supernatant liquid downregulated cidA, cidB and atl, which are involved in cell lysis and extracellular DNA (eDNA) release, as well as downregulated the cbp, ebp and fbp participation in encoding cell-surface binding proteins. CONCLUSIONS GBEE has an excellent antibacterial effect on gram-positive bacteria and also inhibits the growth of gram-negative bacteria, such as A. baumannii (carbapenem-resistant Acinetobacter baumannii) CRABA and S. maltophilia. GBEE inhibits the biofilm formation of S. haemolyticus by altering the regulation and biofilm material-related genes, including the release of eDNA and cell-surface binding proteins.
Collapse
Affiliation(s)
- Cong Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Gao-Feng Zhu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Guo-Bo Xu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zu-Quan Hu
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, 550025, Guizhou, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Bing Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Biology and Medical Engineering, Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, 550025, Guizhou, China.
| |
Collapse
|
28
|
Medis S, Dissanayake T, Kottahachchi J, Namali D, Gunasekara S, Wijesinghe G, Dilrukshi N, Weerasekera M. Biofilm formation and antibiotic resistance among Coagulase Negative Staphylococcus species isolated from central venous catheters of intensive care unit patients. Indian J Med Microbiol 2022; 42:71-76. [PMID: 36400647 DOI: 10.1016/j.ijmmb.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE This study was conducted to determine the biofilm formation of coagulase negative Staphylococcus species (CoNS) isolated from patients with catheter related blood stream infection (CRBSI) and colonized central venous catheters (CVC) and their antibiotic susceptibility patterns and in situ biofilm formation of CVC tips. METHODS Eighty-two CoNS isolated from intensive care unit (ICU) patients with CRBSI (n = 8) or colonized CVC (n = 74) were included. Species identification and antibiotic susceptibility test were done. All isolates were screened for biofilm formation using crystal violet and 3-(4,5-dimethylthiazole-2-yl)-2-5-diphenyl-2H-tetrazolium bromide (MTT) assays and categorized as strong or moderate biofilm formers. CVC tips were subjected to crystal violet stain and scanning electron microscopy (SEM) to detect in-situ biofilm formation. RESULTS Staphylococcus haemolyticus (n = 34; 41%) was the commonest to cause both CRBSI and CVC colonization. All 82 CoNS produced biofilms. Among them 77 (93.90%) were strong biofilm formers including all from CRBSI patients and 05 (6.10%) were moderate biofilm formers as detected by both methods. SEM showed bacteria adhered to surfaces of CVC tips with microbial-aggregates embedded in extracellular matrix. Mean crystal violet absorbance of CVC from CRBSI patients (0.6628) was significantly higher than colonized CVC (mean value 0.5592) (p = 0.030). S. haemolyticus showed higher resistance to cloxacillin compared to other CoNS (p = 0.039). CONCLUSION Majority of CoNS isolated were strong biofilm formers. In-situ biofilm formation on CVC tips were significantly evident in CRBSI patients compared to CVC colonized patients. S. haemolyticus is the commonest to cause both CRBSI and CVC colonization and shows significantly higher cloxacillin resistance rate.
Collapse
|
29
|
Boucherabine S, Nassar R, Mohamed L, Olsen M, Alqutami F, Zaher S, Hachim M, Alkhajeh A, McKirdy S, Alghafri R, Tajouri L, Senok A. Healthcare Derived Smart Watches and Mobile Phones are Contaminated Niches to Multidrug Resistant and Highly Virulent Microbes. Infect Drug Resist 2022; 15:5289-5299. [PMID: 36106052 PMCID: PMC9464629 DOI: 10.2147/idr.s378524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background As high touch wearable devices, the potential for microbial contamination of smart watches is high. In this study, microbial contamination of smart watches of healthcare workers (HCWs) was assessed and compared to the individual’s mobile phone and hands. Methods This study was part of a larger point prevalence survey of microbial contamination of mobile phones of HCWs at the emergency unit of a tertiary care facility. Swabs from smart watches, mobile phones and hands were obtained from four HCWs with dual ownership of these digital devices. Bacterial culture was carried out for all samples and those from smart watches and mobile phones were further assessed using shotgun metagenomic sequencing. Results Majority of the participants were females (n/N = 3/4; 75%). Although they all use their digital devices at work and believe that these devices could harbour microbes, cleaning in the preceding 24 hours was reported by one individual. Predominant organisms identified on bacterial culture were multidrug resistant Staphylococcus hominis and Staphylococcus epidermidis. At least one organism identified from the hands was also detected on all mobile phones and two smart watches. Shotgun metagenomics analysis demonstrated greater microbial number and diversity on mobile phones compared to smart watches. All devices had high signatures of Pseudomonas aeruginosa and associated bacteriophages and antibiotic resistance genes. Almost half of the antibiotic resistance genes (n/N = 35/75;46.6%) were present on all devices and majority were related to efflux pumps. Of the 201 virulence factor genes (VFG) identified, majority (n/N = 148/201;73%) were associated with P. aeruginosa with 96% (n/N = 142/148) present on smart watches and mobile phones. Conclusion This first report on microbial contamination of smart watches using metagenomics next generation sequencing showed similar pattern of contamination with microbes, VFG and antibiotic resistance genes across digital devices. Further studies on microbial contamination of wearable digital devices are urgently needed.
Collapse
Affiliation(s)
- Syrine Boucherabine
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Lobna Mohamed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Matthew Olsen
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Fatma Alqutami
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Shroque Zaher
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Simon McKirdy
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Rashed Alghafri
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia.,Harry Butler Institute, Murdoch University, Murdoch, WA, Australia.,General Department of Forensic Sciences and Criminology, Dubai Police, Dubai, United Arab Emirates.,Dubai Police Scientists Council, Dubai, United Arab Emirates
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia.,Harry Butler Institute, Murdoch University, Murdoch, WA, Australia.,Dubai Police Scientists Council, Dubai, United Arab Emirates
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
30
|
Molecular Characterisation of Antibiotic Resistance in Staphylococcus haemolyticus Isolates from Chennai, South India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus haemolyticus is a highly resistant opportunistic pathogen having close genomic relatedness with other virulent species of staphylococci. However, compared to Staphylococcus aureus and Staphylococcus epidermidis, little is known about the resistance genes of S. haemolyticus. The purpose of this study was to characterise antibiotic resistance genes in S. haemolyticus isolates. Standard microbiological techniques were used to identify and confirm 104 S. haemolyticus isolates included in the study. Antibiotic susceptibility testing and D-test were performed, followed by PCR amplification of various resistance determinants (mecA, ermA, ermC, msrA, aac(6′)-Ie-aph(2″), ant(4′)-Ia,aph(3′)-IIIa, tetK, tetM, dfrA, fusB, fusC, fusD and mupA). Methicillin resistance was observed in 93.3% of study isolates. The maximum number of isolates showed resistance to erythromycin (n=79, 76%), followed by ciprofloxacin (n=66, 63.5%) and cotrimoxazole (n=58, 55.8%). In the D-test, 8 isolates showed inducible (iMLSB) and 11 showed constitutive (cMLSB) resistance. Among the resistance determinants, mecA gene (93.3%) was the most prevalent, followed by dfrA (50.5%). Furthermore, aac(6’)-Ie-aph(2’’) and aph(3’)-IIIa combination was observed in 26.9% of isolates, and aac(6’)-Ie-aph(2’’) alone was present in 3.8% of isolates. Among the study isolates, 17.3% exhibited tetK gene, whereas only 1% exhibited tetM; a combination of tetK and tetM was observed in one isolate. The fusB and fusC were present in 11.5% of isolates, and 12.5% of the isolates were positive for mupA. In conclusion, the present study underlines the concern of increasing antibiotic resistance among S. haemolyticus isolates. Avoiding misuse/overuse of antibiotics along with continuous surveillance programs can reduce the spread of antibiotic resistance.
Collapse
|
31
|
Antimicrobial resistance and genomic analysis of staphylococci isolated from livestock and farm attendants in Northern Ghana. BMC Microbiol 2022; 22:180. [PMID: 35864456 PMCID: PMC9306040 DOI: 10.1186/s12866-022-02589-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background The emergence of antimicrobial resistant bacteria in food producing animals is of growing concern to food safety and health. Staphylococci are common inhabitants of skin and mucous membranes in humans and animals. Infections involving antibiotic resistant staphylococci are associated with increased morbidity and mortality, with notable economic consequences. Livestock farms may enable cross-species transfer of antibiotic resistant staphylococci. The aim of the study was to investigate antimicrobial resistance patterns of staphylococci isolated from livestock and farm attendants in Northern Ghana using phenotypic and genotypic methods. Antimicrobial susceptibility testing was performed on staphylococci recovered from livestock and farm attendants and isolates resistant to cefoxitin were investigated using whole genome sequencing. Results One hundred and fifty-two staphylococci comprising S. sciuri (80%; n = 121), S. simulans (5%; n = 8), S. epidermidis (4%; n = 6), S. chromogens (3%; n = 4), S. aureus (2%; n = 3), S. haemolyticus (1%; n = 2), S. xylosus (1%; n = 2), S. cohnii (1%; n = 2), S. condimenti (1%; n = 2), S. hominis (1%; n = 1) and S. arlettae (1%; n = 1) were identified. The isolates showed resistance to penicillin (89%; n = 135), clindamycin (67%; n = 102), cefoxitin (19%; n = 29), tetracycline (15%; n = 22) and erythromycin (11%; n = 16) but showed high susceptibility to gentamicin (96%; n = 146), sulphamethoxazole/trimethoprim (98%; n = 149) and rifampicin (99%; n = 151). All staphylococci were susceptible to linezolid and amikacin. Carriage of multiple resistance genes was common among the staphylococcal isolates. Genome sequencing of methicillin (cefoxitin) resistant staphylococci (MRS) isolates revealed majority of S. sciuri (93%, n = 27) carrying mecA1 (which encodes for beta-lactam resistance) and the sal(A) gene, responsible for resistance to lincosamide and streptogramin. Most of the MRS isolates were recovered from livestock. Conclusion The study provides insights into the genomic content of MRS from farm attendants and livestock in Ghana and highlights the importance of using whole-genome sequencing to investigate such opportunistic pathogens. The finding of multi-drug resistant staphylococci such as S. sciuri carrying multiple resistant genes is of public health concern as they could pose a challenge for treatment of life-threatening infections that they may cause.
Collapse
|
32
|
Clinical Infections, Antibiotic Resistance, and Pathogenesis of Staphylococcus haemolyticus. Microorganisms 2022; 10:microorganisms10061130. [PMID: 35744647 PMCID: PMC9231169 DOI: 10.3390/microorganisms10061130] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus haemolyticus (S. haemolyticus) constitutes the main part of the human skin microbiota. It is widespread in hospitals and among medical staff, resulting in being an emerging microbe causing nosocomial infections. S. haemolyticus, especially strains that cause nosocomial infections, are more resistant to antibiotics than other coagulase-negative Staphylococci. There is clear evidence that the resistance genes can be acquired by other Staphylococcus species through S. haemolyticus. Severe infections are recorded with S. haemolyticus such as meningitis, endocarditis, prosthetic joint infections, bacteremia, septicemia, peritonitis, and otitis, especially in immunocompromised patients. In addition, S. haemolyticus species were detected in dogs, breed kennels, and food animals. The main feature of pathogenic S. haemolyticus isolates is the formation of a biofilm which is involved in catheter-associated infections and other nosocomial infections. Besides the biofilm formation, S. haemolyticus secretes other factors for bacterial adherence and invasion such as enterotoxins, hemolysins, and fibronectin-binding proteins. In this review, we give updates on the clinical infections associated with S. haemolyticus, highlighting the antibiotic resistance patterns of these isolates, and the virulence factors associated with the disease development.
Collapse
|
33
|
Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis. Nat Commun 2022; 13:1558. [PMID: 35322016 PMCID: PMC8943153 DOI: 10.1038/s41467-022-29064-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Idiopathic pulmonary fibrosis is an incurable disease of unknown etiology. Acute exacerbation of idiopathic pulmonary fibrosis is associated with high mortality. Excessive apoptosis of lung epithelial cells occurs in pulmonary fibrosis acute exacerbation. We recently identified corisin, a proapoptotic peptide that triggers acute exacerbation of pulmonary fibrosis. Here, we provide insights into the mechanism underlying the processing and release of corisin. Furthermore, we demonstrate that an anticorisin monoclonal antibody ameliorates lung fibrosis by significantly inhibiting acute exacerbation in the human transforming growth factorβ1 model and acute lung injury in the bleomycin model. By investigating the impact of the anticorisin monoclonal antibody in a general model of acute lung injury, we further unravel the potential of corisin to impact such diseases. These results underscore the role of corisin in the pathogenesis of acute exacerbation of pulmonary fibrosis and acute lung injury and provide a novel approach to treating this incurable disease.
Collapse
|
34
|
Periago J, Mason C, Griep MA. Theoretical Development of DnaG Primase as a Novel Narrow-Spectrum Antibiotic Target. ACS OMEGA 2022; 7:8420-8428. [PMID: 35309427 PMCID: PMC8928506 DOI: 10.1021/acsomega.1c05928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
The widespread use of antibiotics to treat infections is one of the reasons that global mortality rates have fallen over the past 80 years. However, antibiotic use is also responsible for the concomitant rise in antibiotic resistance because it results in dysbiosis in which commensal and pathogenic bacteria are both greatly reduced. Therefore, narrow-range antibiotics are a promising direction for reducing antibiotic resistance because they are more discriminate. As a step toward addressing this problem, the goal of this study was to identify sites on DnaG primase that are conserved within Gram-positive bacteria and different from the equivalent sites in Gram-negative bacteria. Based on sequence and structural analysis, the primase C-terminal helicase-binding domain (CTD) was identified as most promising. Although the primase CTD sequences are very poorly conserved, they have highly conserved protein folds, and Gram-positive bacterial primases fold into a compact state that creates a small molecule binding site adjacent to a groove. The small molecule would stabilize the protein in its compact state, which would interfere with the helicase binding. This is important because primase CTD must be in its open conformation to bind to its cognate helicase at the replication fork.
Collapse
|
35
|
Wang B, Song CR, Zhang QY, Wei PW, Wang X, Long YH, Yang YX, Liao SG, Liu HM, Xu GB. The Fusaric Acid Derivative qy17 Inhibits Staphylococcus haemolyticus by Disrupting Biofilm Formation and the Stress Response via Altered Gene Expression. Front Microbiol 2022; 13:822148. [PMID: 35369527 PMCID: PMC8964301 DOI: 10.3389/fmicb.2022.822148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is the second most commonly isolated coagulase-negative staphylococcus (CoNS) in patients with hospital-acquired infections. It can produce phenol-soluble modulin (PSM) toxins and form biofilms. Compared with the wealth of information on Staphylococcus aureus and Staphylococcus epidermidis, very little is known about S. haemolyticus. There is an urgent need to find an effective preparation to combat the harm caused by S. haemolyticus infection. Chinese herbs have been utilized to cure inflammation and infectious diseases and have a long history of anticancer function in China. Here, we modified fusaric acid characterized from the metabolites of Gibberella intermedia, an endophyte previously isolated from Polygonum capitatum. This study shows that fusaric acid analogs (qy17 and qy20) have strong antibacterial activity against S. haemolyticus. In addition, crystal violet analyses and scanning electron microscopy observations demonstrated that qy17 inhibited biofilm formation and disrupted mature biofilms of S. haemolyticus in a dose-dependent manner. Additionally, it reduced the number of live bacteria inside the biofilm. Furthermore, the antibiofilm function of qy17 was achieved by downregulating transcription factors (sigB), transpeptidase genes (srtA), and bacterial surface proteins (ebp, fbp) and upregulating biofilm-related genes and the density-sensing system (agrB). To further elucidate the bacteriostatic mechanism, transcriptomic analysis was carried out. The following antibacterial mechanisms were uncovered: (i) the inhibition of heat shock (clpB, groES, groL, grpE, dnaK, dnaJ)-, oxidative stress (aphC)- and biotin response (bioB)-related gene expression, which resulted in S. haemolyticus being unable to compensate for various stress conditions, thereby affecting bacterial growth; and (ii) a reduction in the expression of PSM-beta (PSMβ1, PSMβ2, PSMβ3) toxin- and Clp protease (clpP, clpX)-related genes. These findings could have major implications for the treatment of diseases caused by S. haemolyticus infections. Our research reveals for the first time that fusaric acid derivatives inhibit the expression of biofilm formation-related effector and virulence genes of S. haemolyticus. These findings provide new potential drug candidates for hospital-acquired infections caused by S. haemolyticus.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Qing-Yan Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yao-Hang Long
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| |
Collapse
|
36
|
Influence of Sub-Inhibitory Dosage of Cefotaxime on Multidrug Resistant Staphylococcus haemolyticus Isolated from Sick Neonatal Care Unit. Antibiotics (Basel) 2022; 11:antibiotics11030360. [PMID: 35326823 PMCID: PMC8944431 DOI: 10.3390/antibiotics11030360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus haemolyticus has emerged to be a frequently encountered late-onset sepsis pathogen among newborn infants. Critical care of neonates involves substantial usage of antibiotics and these pathogens are often exposed to sub-optimal doses of antibiotics which can augment maintenance of selection determinants and a range of physiological effects, prime among them being biofilm formation. Therefore, in this study, the outcome of a sub-inhibitory dosage of a commonly prescribed third-generation antibiotic, cefotaxime (CTX), on multidrug resistant (MDR) S. haemolyticus, was investigated. A total of 19 CTX-resistant, MDR and 5 CTX-susceptible strains isolated from neonates were included. Biofilm-forming abilities of S. haemolyticus isolates in the presence of sub-optimal CTX (30 μg/mL) were determined by crystal violet assays and extracellular DNA (eDNA) quantitation. CTX was found to significantly enhance biofilm production among the non-susceptible isolates (p-valueWilcoxintest—0.000008) with an increase in eDNA levels (p-valueWilcoxintest—0.000004). Further, in the absence of antibiotic selection in vitro, populations of MDR isolates, JNM56C1 and JNM60C2 remained antibiotic non-susceptible after >500 generations of growth. These findings demonstrate that sub-optimal concentration of CTX induces biofilm formation and short-term non-exposure to antibiotics does not alter non-susceptibility among S. haemolyticus isolates under the tested conditions.
Collapse
|
37
|
Ranjani S, Parthasarathy P, Rameshkumar P, Hemalatha S. Myrobalan-Mediated Nanocolloids in Controlling Marine Pathogens. Appl Biochem Biotechnol 2022; 194:1120-1135. [PMID: 35037167 DOI: 10.1007/s12010-022-03816-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Aquaculture production is affected by disease outbreak, which affects the production, profitability, and sustainability of the global aquaculture industry. Antibiotics have been widely used to control various infectious diseases. Indiscriminate usage of antibiotics results in development of antibiotic resistance in pathogens. This current study aims to synthesize myrobalan-mediated green silver nanocolloids (MBNc) by using the extract of three myrobalans and characterized by using various physiochemical techniques. Antibacterial potential of MBNc was screened in vibriosis causing pathogens (V. harveyi, V. alginolyticus, V. Parahaemolyticus), and foodborne pathogen S. haemolyticus, isolated from infected fish. Further, the presence of ESBL genes including CTX-M-15 and Amp C was analyzed in control and MBNc-treated strains. From our studies, it was observed that MBNc was very effective in controlling the growth. MBNc confirmed the anti-biofilm property in all tested marine pathogens and effectively abolish the genes encoding CTX-M-15 in tested pathogens. Thus, MBNc can be formulated to control the growth of marine pathogens and it can be used as an alternative to antibiotics to prevent infection in cage culturing and aquafarming.
Collapse
Affiliation(s)
- S Ranjani
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Pradeep Parthasarathy
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - P Rameshkumar
- Central Marine Fisheries Research Institute, Mandapam, India
| | - S Hemalatha
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India.
| |
Collapse
|
38
|
Lin YT, Hung WC, Wan TW, Li H, Lee TF, Hsueh PR, Teng LJ. Staphylococcus taiwanensis sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel coagulase-negative
Staphylococcus
strain (NTUH-S172T) was isolated from human blood culture in Taiwan with preliminary identification of
Staphylococcus saprophyticus
. 16S rRNA gene analysis and multilocus sequence analysis (MLSA) showed that NTUH-S172T was most closely related to
Staphylococcus haemolyticus
. The average nucleotide identity and digital DNA–DNA hybridization values with the whole genome sequence were <95 % and<70 % when compared to the related species. Strain NTUH-S172T could be distinguished from
S. haemolyticus
by urease production and from
Staphylococcus borealis
by nitrate reduction. In addition, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) spectrum of NTHU-S172T was significantly different from that of
S. haemolyticus
, which could be used in clinical identification. In conclusion, it is proposed that this isolate represents a novel species, named Staphylococcus taiwanensis sp. nov., with type strain NTUH-S172T (=BCRC 81315T=JCM 34726T).
Collapse
Affiliation(s)
- Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, ROC
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Tsai-Wen Wan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Hsin Li
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Tai-Fen Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
39
|
Michalik M, Nowakiewicz A, Trościańczyk A, Kowalski C, Podbielska-Kubera A. Multidrug resistant coagulase-negative Staphylococcus spp. isolated from cases of chronic rhinosinusitis in humans. Study from Poland. Acta Microbiol Immunol Hung 2021; 69:68-76. [PMID: 34898473 DOI: 10.1556/030.2021.01580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
For many years, coagulase-negative staphylococci (CoNS) have been considered non-pathogenic bacteria. However, recently, CoNS are becoming more common bacteriological factors isolated from cases of chronic rhinosinusitis in humans. Moreover, most of them represent the multidrug-resistant or/and methicillin-resistant profile, which significantly increases the therapeutic difficulties. The aim of the study was to characterize profile of resistant coagulase-negative staphylococci isolated from cases of chronic rhinosinusitis in patients treated in a Medical Center in Warsaw in 2015-2016. The study material was derived from patients with diagnosed chronic rhinosinusitis treated at the MML Medical Center in Warsaw. The material was obtained intraoperatively from maxillary, frontal, and ethmoid sinuses. In total, 1,044 strains were isolated from the studied material. Coagulase-negative staphylococci were predominant, with the largest share of Staphylococcus epidermidis. Isolated CoNS were mainly resistant to macrolide, lincosamide, and tetracycline. Among the S. epidermidis strains, we also showed 35.6% of MDR and 34.7% of methicillin-resistant strains. The same values for other non-epidermidis species were 31.5% and 18.5%, respectively and the percentage of strains with MAR >0.2 was greater in S. epidermidis (32.6%) than S. non-epidermidis (23.9%). Although the percentage of strains resistant to tigecycline, glycopeptides, rifampicin and oxazolidinones was very small (2.3%, 1.9%, 1.4% and 0.7% respectively), single strains were reported in both groups. The study has shown a high proportion of MDR and methicillin-resistant CoNS strains, which indicates a large share of drug-resistant microorganisms in the process of persistence of chronic rhinosinusitis; therefore, isolation of this group of microorganisms from clinical cases using aseptic techniques should not be neglected.
Collapse
Affiliation(s)
| | - Aneta Nowakiewicz
- 2 University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Aleksandra Trościańczyk
- 2 University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Cezary Kowalski
- 3 University of Life Sciences, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Environmental Protection, Akademicka 12, 20-033, Lublin, Poland
| | | |
Collapse
|
40
|
Cave R, Cole J, Mkrtchyan HV. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. ENVIRONMENT INTERNATIONAL 2021; 157:106836. [PMID: 34479136 PMCID: PMC8443212 DOI: 10.1016/j.envint.2021.106836] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistant (AMR) bacteria present one of the biggest threats to public health; this must not be forgotten while global attention is focussed on the COVID-19 pandemic. Resistant bacteria have been demonstrated to be transmittable to humans in many different environments, including public settings in urban built environments where high-density human activity can be found, including public transport, sports arenas and schools. However, in comparison to healthcare settings and agriculture, there is very little surveillance of AMR in the built environment outside of healthcare settings and wastewater. In this review, we analyse the existing literature to aid our understanding of what surveillance has been conducted within different public settings and identify what this tells us about the prevalence of AMR. We highlight the challenges that have been reported; and make recommendations for future studies that will help to fill knowledge gaps present in the literature.
Collapse
Affiliation(s)
- Rory Cave
- School of Biomedical Sciences, University of West London, United Kingdom
| | - Jennifer Cole
- Royal Holloway University of London, Department of Health Studies, United Kingdom
| | | |
Collapse
|
41
|
Lima RD, Dos Reis GA, da Silva Reviello J, Glatthardt T, da Silva Coimbra L, Lima COGX, Antunes LCM, Ferreira RBR. Antibiofilm activity of Cutibacterium acnes cell-free conditioned media against Staphylococcus spp. Braz J Microbiol 2021; 52:2373-2383. [PMID: 34599747 PMCID: PMC8578501 DOI: 10.1007/s42770-021-00617-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
Staphylococcus spp. and Cutibacterium acnes are members of the skin microbiome but can also act as pathogens. Particularly, Staphylococcus species are known to cause medical devices-associated infections, and biofilm production is one of their main virulence factors. Biofilms allow bacteria to adhere and persist on surfaces, protecting them from antimicrobials and host defenses. Since both bacteria are found in the human skin, potentially competing for niches, we aimed to investigate if C. acnes produces molecules that affect Staphylococcus spp. biofilm formation and dispersal. Thus, we evaluated the impact of C. acnes cell-free conditioned media (CFCM) on S. aureus, S. epidermidis, S. hominis, and S. lugdunensis biofilm formation. S. lugdunensis and S. hominis biofilm formation was significantly reduced with C. acnes CFCM without impact on their planktonic growth. C. acnes CFCM also significantly disrupted S. hominis established biofilms. The active molecules against S. lugdunensis and S. hominis biofilms appeared to be distinct since initial characterization points to different sizes and sensitivity to sodium metaperiodate, although the activity is highly resistant to heat in both cases. Mass spectrometry analysis of the fractions active against S. hominis revealed several potential candidates. Investigating how species present in the same environment interact, affecting the dynamics of biofilm formation, may reveal clinically useful compounds as well as molecular aspects of interspecies interactions.
Collapse
Affiliation(s)
- Rayssa Durães Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle Antunes Dos Reis
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana da Silva Reviello
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Glatthardt
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa da Silva Coimbra
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luis Caetano Martha Antunes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana Barreto Rocha Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, CCS, Bloco I2-028, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
42
|
Salah A, Al-Subol I, Hudna A, Alhaj A, Alqubaty AR, Farie W, Sulieman D, Alnadhari O, Alwajeeh T, Alobathani F, Almikhlafy A, Mahdy MAK. Neonatal sepsis in Sana'a city, Yemen: a predominance of Burkholderia cepacia. BMC Infect Dis 2021; 21:1108. [PMID: 34706677 PMCID: PMC8554861 DOI: 10.1186/s12879-021-06808-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/19/2021] [Indexed: 03/16/2023] Open
Abstract
Background Neonatal sepsis is a global concern with increasing morbidity and mortality. The burden of neonatal sepsis is highest in developing countries, especially in those lacking proper surveillance systems. The causative pathogens and their drug-resistance levels vary between countries with emergence of multidrug resistance organisms. Thus, accurate records on the recent trends of organisms causing neonatal sepsis will provide vital information for appropriate intervention. We aimed to investigate neonatal sepsis, identify its associated factors and causative pathogens and to assess the antibiotic susceptibility patterns in Sana’a city, Yemen. Methods A cross-sectional study was conducted on neonates admitted to intensive care units of six hospitals in Sana’a city, Yemen, in the period from January 15, to March 30, 2020. Natal and prenatal medical data were collected using well-structured questionnaire. Neonates were subjected to sepsis work-up including blood culture, complete blood count and C-reactive protein. Organisms were identified by Gram staining and analyzed by the VITEK II system for bacterial bio-typing and antibiotic susceptibility testing. Findings Of the 199-neonates with suspected neonatal sepsis, 154 (77.38%) had culture-proven sepsis. Early-onset neonatal sepsis (EOS) was higher (50.25%; 100/199) than late-onset neonatal sepsis (LOS) (27.13%; 54/199). Multivariable analysis identified vaginal delivery as an independent risk factor for neonatal sepsis p = 0.005. Majority of isolated bacteria (74.39%) were gram-negative with Burkholderia cepacia (39%) and Klebsiella oxytoca (13%) being the most common pathogens of EOS and LOS. The most common gram-positive pathogens were Staphylococcus haemolyticus (9.1%) and Staphylococcus epidermidis (7.1%). B. cepacia showed multidrug resistance except for cefepime. All Klebsiella species isolates (100%) and most Pantoea species (93%) were ESBL and carbapenemase positive. All Escherichia coli and Acinetobacter baumannii isolates were ESBL positive. A significant number of gram-positive bacteria showed resistance to vancomycin. Conclusion The study findings show a high proportion of neonatal sepsis among neonates admitted to hospitals in Sana’a city with antibiotic-resistant B. cepacia being the single most common pathogen causing EOS and LOS. Findings also emphasize the emerging threat of multidrug-resistant bacteria in neonatal units and will help develop evidence-based management of neonatal sepsis in Yemen.
Collapse
Affiliation(s)
- Adeeb Salah
- Department of Pathology, Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen.
| | - Ibrahim Al-Subol
- Department of Microbiology, Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Ahmed Hudna
- Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Ali Alhaj
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Abdulhabib R Alqubaty
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Waleed Farie
- Department of Laboratory Medicine, Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Dalal Sulieman
- Department of Laboratory Medicine, Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Ola Alnadhari
- Department of Pediatrics, C-PLAS Hospital, Sanaa, Yemen
| | - Talal Alwajeeh
- Department of Laboratory Medicine, Faculty of Medicine and Health Sciences, University of Amran, Amran, Yemen
| | - Fawaz Alobathani
- Department of Pediatrics, Al-Kuwait University Hospital, Sanaa, Yemen
| | - Abdullah Almikhlafy
- Department of Community Medicine, Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Mohmmed A K Mahdy
- Department of Parasitology, Faculty of Medicine, University of Sana'a, Sanaa, Yemen.,Tropical Disease Research Center, University of Science and Technology, Sanaa, Yemen
| |
Collapse
|
43
|
Riccardi C, Di Filippo P, Pomata D, Simonetti G, Castellani F, Uccelletti D, Bruni E, Federici E, Buiarelli F. Comparison of analytical approaches for identifying airborne microorganisms in a livestock facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147044. [PMID: 34088133 DOI: 10.1016/j.scitotenv.2021.147044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
An intensive study, applied to a site characterized by multiple sources of microorganisms, was aimed at understanding the best approach to study bioaerosol. Culture-based, molecular biological, and chemical methods were applied to Particulate Matter (PM) samples collected in a livestock facility, during spring and autumn seasons, in two different outdoor areas. The first one was close to a place where feed was stored and handled and the second next to an open cowshed. Qualitative analysis of bacteria was performed by sequencing techniques applied to DNA extracted from both isolated culturable bacteria and particulate matter samples. Quantification of microorganisms was achieved through three distinct approaches. Microorganism colonies were counted, after incubation at 28 °C, and expressed as colony-forming units (CFU) per m3. Chemical method consisted in the identification of individual biomarkers, and their conversion to number of microorganisms per m3, using proper conversion factors. Finally, qPCR was applied to DNA extracted from PM samples, and the results were expressed as total amount of bacteria present in the bioaerosol (UG/m3). The presence of airborne sterols was also studied to broaden the knowledge of bioaerosol components in atmosphere. Small seasonal differences and major sampling site differences occurred. Obviously, culture-dependent method identified less and different bacteria, than culture-independent approach. The chemical approach and the culture independent metagenomic method were in good agreement. As expected, CFU/m3 accounted for not more than 0.3% of bacteria calculated as the average of chemical and culture independent metagenomic methods. The complexity of the obtained results shows that the different approaches are complementary to obtain an exhaustive description of bioaresol in terms of concentration, speciation, viability, pathogenicity.
Collapse
Affiliation(s)
| | | | | | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Erika Bruni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | |
Collapse
|
44
|
Hoorzook KB, Pieterse A, Heine L, Barnard TG, van Rensburg NJ. Soul of the Jukskei River: The Extent of Bacterial Contamination in the Jukskei River in Gauteng Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8537. [PMID: 34444286 PMCID: PMC8392637 DOI: 10.3390/ijerph18168537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023]
Abstract
River water quality is an important health issue as the water is utilised for drinking, domestic and agricultural use in developing countries. This study aimed to investigate the effect water from a major city has on the water quality of the Jukskei River that daylights in Johannesburg, South Africa. The river water samples were analysed for physio-chemical properties, microbiology, antibiotic resistance of bacterial isolates, genetic markers, and potentially toxic metals. Data analysis revealed increased electrical conductivity, total dissolved solids, and turbidity since 2010. Total Coliform and Escherichia coli detected were above the South African water quality guidelines for domestic, recreational, and irrigation purposes. Additionally, sodium, zinc, nickel, lithium, and lead exceeded the guidelines in domestic, recreational, and irrigation water. Pathogenic strains of E. coli (aEPEC, EHEC, EIEC, and EAEC) were isolated from the water. Various other potentially pathogenic organisms that have been implicated as causes of gastro-intestinal, and a wide range of other diseases, were also detected and demonstrated multiple levels of resistance to antibiotics tested. The results show that the river water is a potential health threat to downstream users. These results will feed into the environmental management action plan for Water for the Future (NGO group).
Collapse
Affiliation(s)
- Kousar Banu Hoorzook
- Process Energy Environment Technology Station (PEETS), Faculty of Engineering and Built Environment, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Anton Pieterse
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Lee Heine
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Nickey Janse van Rensburg
- Process Energy Environment Technology Station (PEETS), Faculty of Engineering and Built Environment, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
45
|
Almehmadi AH. An In Vitro Analysis of Sodium Hypochlorite Decontamination for the Reuse of Implant Healing Abutments. J ORAL IMPLANTOL 2021; 47:271-279. [PMID: 32780861 DOI: 10.1563/aaid-joi-d-19-00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reuse of healing abutments (HAs) has become common practice in implant dentistry for economic concerns and the aim of this in vitro study was to assess the effect of sodium hypochlorite (NaOCl) in decontamination of HAs. A total of 122 HAs (used and sterilized [n = 107]; new [n = 15]) were procured from 3 centers, of which 3 samples were discarded due to perforation in the sterilization pouch. For sterility assessment, the used HAs (n = 80) were cultured in Brain Heart Infusion Broth (BHI) and potato dextrose agar (PDA); bacterial isolates were identified in 7 samples. Also, 24 used HAs were stained with phloxine B, photographed, and compared to new HAs (n = 5). A scanning electron microscope (SEM) assessed the differences between 2 sets of HAs, after which the 7 contaminated HAs along with 24 used HAs from staining experiment (total: 31) were subsequently treated with sodium hypochlorite (NaOCl) and SEM images were observed. About 8.75% of HAs tested positive in bacterial culture; Streptococcus sanguis, Dermabacter hominis, Staphylococcus haemolyticus, and Aspergillus species were isolated. Phloxine B staining was positive for used and sterilized HAs compared to controls. The SEM images revealed deposits in the used HAs and although treatment with NaOCl eliminated the contamination of cultured HAs, the SEM showed visible debris in the HA thread region. This in vitro study concluded that SEM images showed debris in used HAs at screw-hole and thread regions even though they tested negative in bacterial culture. The treatment with NaOCl of used HAs showed no bacterial contamination but the debris was observed in SEM images. Future studies on the chemical composition, biological implications, and clinical influence is warranted before considering reuse of HAs.
Collapse
Affiliation(s)
- Ahmad H Almehmadi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
46
|
Eltwisy HO, Abdel-Fattah M, Elsisi AM, Omar MM, Abdelmoteleb AA, El-Mokhtar MA. Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence 2021; 11:1142-1157. [PMID: 32799619 PMCID: PMC7549902 DOI: 10.1080/21505594.2020.1809962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STAPHYLOCOCCUS HAEMOLYTICUS (S. haemolyticus) is one of the Coagulase-negative staphylococci (CoNS) that inhabits the skin as a commensal. It is increasingly implicated in opportunistic infections, including diabetic foot ulcer (DFU) infections. In contrast to the abundance of information available for S. aureus and S. epidermidis, little is known about the pathogenicity of S. haemolyticus, despite the increased prevalence of this pathogen in hospitalized patients. We described, for the first time, the pathogenesis of different clinical isolates of S. haemolyticus isolated from DFU on primary human skin fibroblast (PHSF) cells. Virulence-related genes were investigated, adhesion and invasion assays were carried out using Giemsa stain, transmission electron microscopy (TEM), MTT and flowcytometry assays. Our results showed that most S. haemolyticus carried different sets of virulence-related genes. S. haemolyticus adhered to the PHSF cells to variable degrees. TEM showed that the bacteria were engulfed in a zipper-like mechanism into a vacuole inside the cell. Bacterial internalization was confirmed using flowcytometry and achieved high intracellular levels. PHSF cells infected with S.haemolyticus suffered from amarked decrease in viability and increased apoptosis when treated with whole bacterial suspensions or cell-free supernatants but not with heat-treated cells. After co-culture with PBMCs, S. haemolyticus induced high levels of pro-inflammatory cytokines. This study highlights the significant development of S. haemolyticus, which was previously considered a contaminant when detected in cultures of clinical samples. Their high ability to adhere, invade and kill the PHSF cells illustrate the severe damage associated with DFU infections. ABBREVIATIONS CoNS, coagulase-negative staphylococci; DFU, diabetic foot ulcer; DM, diabetes mellitus; DMEM, Dulbecco's Modified Eagle Medium; MTT, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; PBMCs,peripheral blood mononuclear cells; PHSF, primary human skin fibroblast; CFU, colony-forming unit.
Collapse
Affiliation(s)
- Hala O Eltwisy
- Department of Microbiology, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Medhat Abdel-Fattah
- Department of Microbiology and Botany, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Amani M Elsisi
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University , Beni-Suef, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University , El-Minia, Egypt
| | | | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| |
Collapse
|
47
|
Kranjec C, Kristensen SS, Bartkiewicz KT, Brønner M, Cavanagh JP, Srikantam A, Mathiesen G, Diep DB. A bacteriocin-based treatment option for Staphylococcus haemolyticus biofilms. Sci Rep 2021; 11:13909. [PMID: 34230527 PMCID: PMC8260761 DOI: 10.1038/s41598-021-93158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteriocins are ribosomally-synthesized antimicrobial peptides, showing great potential as novel treatment options for multidrug-resistant pathogens. In this study, we designed a novel hybrid bacteriocin, Hybrid 1 (H1), by combing the N-terminal part and the C-terminal part of the related bacteriocins enterocin K1 (K1) and enterocin EJ97 (EJ97), respectively. Like the parental bacteriocins, H1 used the membrane-bound protease RseP as receptor, however, it differed from the others in the inhibition spectrum. Most notably, H1 showed a superior antimicrobial effect towards Staphylococcus haemolyticus—an important nosocomial pathogen. To avoid strain-dependency, we further evaluated H1 against 27 clinical and commensal S. haemolyticus strains, with H1 indeed showing high activity towards all strains. To curtail the rise of resistant mutants and further explore the potential of H1 as a therapeutic agent, we designed a bacteriocin-based formulation where H1 was used in combination with the broad-spectrum bacteriocins micrococcin P1 and garvicin KS. Unlike the individual bacteriocins, the three-component combination was highly effective against planktonic cells and completely eradicated biofilm-associated S. haemolyticus cells in vitro. Most importantly, the formulation efficiently prevented development of resistant mutants as well. These findings indicate the potential of a bacteriocins-based formulation as a treatment option for S. haemolyticus.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karolina T Bartkiewicz
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Mikkel Brønner
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn P Cavanagh
- Pediatric Infections Group, Department of Pediatrics, University Hospital of North Norway, Tromsö, Norway.,Pediatric Infections Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsö, Norway
| | - Aparna Srikantam
- Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
48
|
Kizerwetter-Świda M, Chrobak-Chmiel D, Kwiecień E, Rzewuska M, Binek M. Molecular characterization of high-level mupirocin resistance in methicillin-resistant staphylococci isolated from companion animals. Vet Microbiol 2021; 259:109160. [PMID: 34197979 DOI: 10.1016/j.vetmic.2021.109160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
High-level mupirocin resistance (HLMR) is determined by the plasmid-located ileS2 gene flanked by two copies of the insertion sequence 257 (IS257). The molecular epidemiology of high-level mupirocin-resistant isolates could be assessed by the determination of their IS257-ileS2 spacer regions conformation. In this study, 188 isolates of methicillin-resistant staphylococci were subjected to the detection of HLMR, and analysis of the conformation of the IS257-ileS2 spacer regions. Mupirocin resistance was detected in five (2,6%) isolates, among which two were recognized as Staphylococcus pseudintermedius, two as Staphylococcus haemolyticus, and one as Staphylococcus aureus. High-level mupirocin resistance was revealed by the agar disk diffusion method, and MIC values, and was confirmed by the detection of the ileS2 gene. The conformations of the IS257-ileS2 spacer regions were homologous in two S. haemolyticus strains tested. The remaining three isolates showed diverse IS257-ileS2 conformations. The results of this study indicate that HLMR occasionally occurs in staphylococci isolated from companion animals. The heterogeneity and the homogeneity of the IS257-ileS2 spacer regions confirm that the ileS2 gene spread among staphylococci of animal origin by the transfer of different as well as the same plasmids. Surveillance of the occurrence of mupirocin resistance and molecular characterization of resistant isolates are strongly recommended due to the possibility of plasmid-located resistance gene transfer between staphylococci.
Collapse
Affiliation(s)
- Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego Str. 8, 02-786, Warsaw, Poland.
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego Str. 8, 02-786, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego Str. 8, 02-786, Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego Str. 8, 02-786, Warsaw, Poland
| | - Marian Binek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego Str. 8, 02-786, Warsaw, Poland
| |
Collapse
|
49
|
First Report of Multi-drug Resistant Staphylococcus haemolyticus in Nosocomial Infections in North Western Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report in this study for the first time the prevalence of multiple resistant Staphylococcus haemolyticus in clinical settings in Saudi Arabia. A total of 1060 clinical specimens of hospitalized patients were screened for the presence of S. haemolyticus in the period between September and December 2020. Primary identification of the isolates was carried out by colonial characteristics on mannitol salt agar and clumping factor test, confirmation of presumptive isolates and antimicrobial susceptibility testing was performed by Vitek® 2, while PCR was employed to detect mecA and vanA genes. A total of 20 S. haemolyticus isolates were recovered from 20 samples (blood cultures, urine, nasal swab, wound swab, groin swab, and axilla swab), 90% (P <0.001, x2) of the isolates were multiple resistant to three antimicrobial agents and more. Resistance to oxacillin was exhibited in 95% of the isolates, while none of the isolates were resistant to vancomycin and linezolid, yet resistance to rifampicin was observed in 30 % of the isolates. The findings of this study highlights the emerging trends of Staphylococcus haemolyticus as potential drug resistant pathogen in hospital settings in Saudi Arabia, which requires in depth investigation on molecular understanding on antimicrobial resistance and virulence traits of the strains.
Collapse
|
50
|
Chen L, Hu JX, Liu C, Liu J, Ma ZB, Tang ZY, Li YF, Zeng ZL. Identification of the Multiresistance Gene poxtA in Oxazolidinone-Susceptible Staphylococcus haemolyticus and Staphylococcus saprophyticus of Pig and Feed Origins. Pathogens 2021; 10:pathogens10050601. [PMID: 34069037 PMCID: PMC8156375 DOI: 10.3390/pathogens10050601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
Previous studies on the prevalence and transmission mechanism of oxazolidinone resistance gene poxtA in CoNS are lacking, which this study addresses. By screening 763 CoNS isolates from different sources of several livestock farms in Guangdong, China, 2018–2020, we identified that the poxtA was present in seven CoNS isolates of pig and feed origins. Species identification and multilocus sequence typing (MLST) confirmed that seven poxtA-positive CoNS isolates were composed of five ST64-Staphylococcus haemolyticus and two Staphylococcus saprophyticus isolates. All poxtA-positive Staphylococcus haemolyticus isolates shared similar pulsed-field gel electrophoresis (PFGE) patterns. Transformation assays demonstrated all poxtA-positive isolates were able to transfer poxtA gene to Staphylococcus aureus RN4220. S1-PFGE and whole-genome sequencing (WGS) revealed the presence of poxtA-carrying plasmids in size around 54.7 kb. The plasmid pY80 was 55,758 bp in size and harbored the heavy metal resistance gene czcD and antimicrobial resistance genes, poxtA, aadD, fexB and tet(L). The regions (IS1216E-poxtA-IS1216E) in plasmid pY80 were identified in Staphylococcus spp. and Enterococcus spp. with different genetic and source backgrounds. In conclusion, this was the first report about the poxtA gene in Staphylococcus haemolyticus and Staphylococcus saprophyticus, and IS1216 may play an important role in the dissemination of poxtA among different Gram-positive bacteria.
Collapse
Affiliation(s)
- Lin Chen
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Public Monitoring Center of Agro-Product of Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Jian-Xin Hu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chang Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiao Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Bao Ma
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Yun Tang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Fei Li
- Public Monitoring Center of Agro-Product of Guangdong Academy of Sciences, Guangzhou 510640, China
- Correspondence: (Y.-F.L.); (Z.-L.Z.); Tel./Fax: +86-20-85284896 (Z.-L.Z.)
| | - Zhen-Ling Zeng
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.-F.L.); (Z.-L.Z.); Tel./Fax: +86-20-85284896 (Z.-L.Z.)
| |
Collapse
|