1
|
Bush NG, Diez-Santos I, Sankara Krishna P, Clavijo B, Maxwell A. Insights into antibiotic resistance promoted by quinolone exposure. Antimicrob Agents Chemother 2025; 69:e0099724. [PMID: 39589140 PMCID: PMC11784200 DOI: 10.1128/aac.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Quinolone-induced antibiotic resistance (QIAR) refers to the phenomenon by which bacteria exposed to sublethal levels of quinolones acquire resistance to non-quinolone antibiotics. We have explored this in Escherichia coli MG1655 using a variety of compounds and bacteria carrying a quinolone-resistance mutation in gyrase, mutations affecting the SOS response, and mutations in error-prone polymerases. The nature of the antibiotic-resistance mutations was determined by whole-genome sequencing. Exposure to low levels of most quinolones tested led to mutations conferring resistance to chloramphenicol, ampicillin, kanamycin, and tetracycline. The mutations included point mutations and deletions and could mostly be correlated with the resistance phenotype. QIAR depended upon DNA gyrase and involved the SOS response but was not dependent on error-prone polymerases. Only moxifloxacin, among the quinolones tested, did not display a significant QIAR effect. We speculate that the lack of QIAR with moxifloxacin may be attributable to it acting via a different mechanism. In addition to the concerns about antimicrobial resistance to quinolones and other compounds, QIAR presents an additional challenge in relation to the usage of quinolone antibacterials.
Collapse
Affiliation(s)
- Natassja G. Bush
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Isabel Diez-Santos
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Pilla Sankara Krishna
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Bernardo Clavijo
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
2
|
Dubey AK, Sardana D, Verma T, Alam P, Chattopadhyay A, Nandini SS, Khamari B, Bulagonda EP, Sen S, Nandi D. Quantifying Membrane Alterations with Tailored Fluorescent Dyes: A Rapid Antibiotic Resistance Profiling Methodology. ACS Infect Dis 2024; 10:2836-2859. [PMID: 39024306 DOI: 10.1021/acsinfecdis.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Accurate detection of bacterial antibiotic sensitivity is crucial for theranostics and the containment of antibiotic-resistant infections. However, the intricate task of detecting and quantifying the antibiotic-induced changes in the bacterial cytoplasmic membrane, and their correlation with other metabolic pathways leading to antibiotic resistance, poses significant challenges. Using a novel class of 4-aminophthalimide (4AP)-based fluorescent dyes with precisely tailored alkyl chains, namely 4AP-C9 and 4AP-C13, we quantify stress-mediated alterations in E. coli membranes. Leveraging the unique depth-dependent positioning and environment-sensitive fluorescence properties of these dyes, we detect antibiotic-induced membrane damage through single-cell imaging and monitoring the fluorescence peak maxima difference ratio (PMDR) of the dyes within the bacterial membrane, complemented by other methods. The correlation between the ROS-induced cytoplasmic membrane damage and the PMDR of dyes quantifies sensitivity against bactericidal antibiotics, which correlates to antibiotic-induced lipid peroxidation. Significantly, our findings largely extend to clinical isolates of E. coli and other ESKAPE pathogens like K. pneumoniae and Enterobacter subspecies. Our data reveal that 4AP-Cn probes can potentially act as precise scales to detect antibiotic-induced membrane damage ("thinning") occurring at a subnanometer scale through the quantification of dyes' PMDR, making them promising membrane dyes for rapid detection of bacterial antibiotic resistance, distinguishing sensitive and resistant infections with high specificity in a clinical setup.
Collapse
Affiliation(s)
- Ashim Kumar Dubey
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Deepika Sardana
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Taru Verma
- Centre for BioSystems, Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Parvez Alam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Avik Chattopadhyay
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Santhi Sanil Nandini
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Eswarappa Pradeep Bulagonda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
3
|
Leyn SA, Kent JE, Zlamal JE, Elane ML, Vercruysse M, Osterman AL. Two classes of DNA gyrase inhibitors elicit distinct evolutionary trajectories toward resistance in gram-negative pathogens. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:5. [PMID: 39843513 PMCID: PMC11702832 DOI: 10.1038/s44259-024-00021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2025]
Abstract
Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii. The evolution of GP6 resistance in both species was driven by a combination of two classes of mutational events: (i) amino acid substitutions near the ATP-binding site of the GyrB subunit of the DNA gyrase target; and (ii) various mutations and genomic rearrangements leading to upregulation of efflux pumps, species-specific (AcrAB/TolC in E. coli and AdeIJK in A. baumannii) and shared by both species (MdtK). A comparison with the experimental evolution of resistance to ciprofloxacin (CIP), previously performed using the same workflow and strains, revealed fundamental differences between these two distinct classes of compounds. Most notable were non-overlapping spectra of target mutations and distinct evolutionary trajectories that, in the case of GP6, were dominated by upregulation of efflux machinery prior to (or even in lieu) of target modification. Most of the efflux-driven GP6-resistant isolates of both species displayed a robust cross-resistance to CIP, while CIP-resistant clones showed no appreciable increase in GP6-resistance.
Collapse
Affiliation(s)
- Semen A Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - James E Kent
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jaime E Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Marinela L Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maarten Vercruysse
- Roche Pharma Research and Early Development, Immunology, Inflammation, and Infectious Diseases, Basel, Switzerland
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Verma T, Nandini SS, Singh V, Raghavan A, Annappa H, Bhaskarla C, Dubey AK, Nandi D. Divergent Roles of Escherichia Coli Encoded Lon Protease in Imparting Resistance to Uncouplers of Oxidative Phosphorylation: Roles of marA, rob, soxS and acrB. Curr Microbiol 2024; 81:98. [PMID: 38372817 DOI: 10.1007/s00284-024-03632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Uncouplers of oxidative phosphorylation dissipate the proton gradient, causing lower ATP production. Bacteria encounter several non-classical uncouplers in the environment, leading to stress-induced adaptations. Here, we addressed the molecular mechanisms responsible for the effects of uncouplers in Escherichia coli. The expression and functions of genes involved in phenotypic antibiotic resistance were studied using three compounds: two strong uncouplers, i.e., Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-Dinitrophenol (DNP), and one moderate uncoupler, i.e., Sodium salicylate (NaSal). Quantitative expression studies demonstrated induction of transcripts encoding marA, soxS and acrB with NaSal and DNP, but not CCCP. Since MarA and SoxS are degraded by the Lon protease, we investigated the roles of Lon using a lon-deficient strain (Δlon). Compared to the wild-type strain, Δlon shows compromised growth upon exposure to NaSal or 2, 4-DNP. This sensitivity is dependent on marA but not rob and soxS. On the other hand, the Δlon strain shows enhanced growth in the presence of CCCP, which is dependent on acrB. Interestingly, NaSal and 2,4-DNP, but not CCCP, induce resistance to antibiotics, such as ciprofloxacin and tetracycline. This study addresses the effects of uncouplers and the roles of genes involved during bacterial growth and phenotypic antibiotic resistance. Strong uncouplers are often used to treat wastewater, and these results shed light on the possible mechanisms by which bacteria respond to uncouplers. Also, the rampant usage of some uncouplers to treat wastewater may lead to the development of antibiotic resistance.
Collapse
Affiliation(s)
- Taru Verma
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Santhi Sanil Nandini
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Varsha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Harshita Annappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Chetana Bhaskarla
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Ashim Kumar Dubey
- Undergraduate program, Indian Institute of Science, Bengaluru, 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
5
|
Leyn SA, Kent JE, Zlamal JE, Elane ML, Vercruysse M, Osterman AL. Two Classes of DNA Gyrase Inhibitors Elicit Distinct Evolutionary Trajectories Toward Resistance in Gram-Negative Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546596. [PMID: 37425702 PMCID: PMC10327078 DOI: 10.1101/2023.06.26.546596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii. The evolution of GP6 resistance in both species was driven by a combination of two classes of mutational events: (i) amino acid substitutions near the ATP-binding site of the GyrB subunit of the DNA gyrase target; and (ii) various mutations and genomic rearrangements leading to upregulation of efflux pumps, species-specific (AcrAB/TolC in E. coli and AdeIJK in A. baumannii) and shared by both species (MdtK). A comparison with the experimental evolution of resistance to ciprofloxacin (CIP), previously performed using the same workflow and strains, revealed fundamental differences between these two distinct classes of compounds. Most notable were non-overlapping spectra of target mutations and distinct evolutionary trajectories that, in the case of GP6, were dominated by upregulation of efflux machinery prior to (or even in lieu) of target modification. Most of efflux-driven GP6-resistant isolates of both species displayed a robust cross-resistance to CIP, while CIP-resistant clones showed no appreciable increase in GP6-resistance.
Collapse
Affiliation(s)
- Semen A Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - James E Kent
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jaime E Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marinela L Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maarten Vercruysse
- Roche Pharma Research and Early Development, Immunology, Inflammation, and Infectious Diseases, Basel, Switzerland
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. Int J Mol Sci 2023; 24:ijms24043422. [PMID: 36834832 PMCID: PMC9961632 DOI: 10.3390/ijms24043422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Proteases are the group of enzymes that carry out proteolysis in all forms of life and play an essential role in cell survival. By acting on specific functional proteins, proteases affect the transcriptional and post-translational pathways in a cell. Lon, FtsH, HslVU and the Clp family are among the ATP-dependent proteases responsible for intracellular proteolysis in bacteria. In bacteria, Lon protease acts as a global regulator, governs an array of important functions such as DNA replication and repair, virulence factors, stress response and biofilm formation, among others. Moreover, Lon is involved in the regulation of bacterial metabolism and toxin-antitoxin systems. Hence, understanding the contribution and mechanisms of Lon as a global regulator in bacterial pathogenesis is crucial. In this review, we discuss the structure and substrate specificity of the bacterial Lon protease, as well as its ability to regulate bacterial pathogenesis.
Collapse
|
7
|
Singh S, Verma T, Nandi D, Umapathy S. Herbicides 2,4-Dichlorophenoxy Acetic Acid and Glyphosate Induce Distinct Biochemical Changes in E. coli during Phenotypic Antibiotic Resistance: A Raman Spectroscopic Study. J Phys Chem B 2022; 126:8140-8154. [PMID: 36205931 DOI: 10.1021/acs.jpcb.2c04151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibiotic resistance is a major global health concern. The increased use of herbicides may lead to multiple antibiotic resistance in bacteria. Conventional techniques for diagnosing antibiotic resistance are laborious, time-intensive, expensive, and lack information about antibiotic susceptibility. On the other hand, Raman spectroscopy is a rapid, label-free, noninvasive alternative to traditional techniques to detect antibiotic resistance. In this study, two popular herbicides 2,4-dichlorophenoxy acetic acid (2,4-D) and N-(phosphonomethyl)glycine (glyphosate) were used to study their effects on the emergence of antibiotic resistance. The Escherichia coli wild-type (WT) MG1655 strain and two isogenic mutants, Δlon and ΔacrB, were used together with Raman spectroscopy. The WT E. coli is sensitive to antibiotics, but exposure to both herbicides induces antibiotic resistance. Using an excitation wavelength of 785 nm, the intensity ratios (e.g., I740/I785, I740/I1003, I1480/I1445, I2934/I2868, and I2934/I2845) were identified as biomarkers to study the induction of antibiotic resistance in bacteria but not NaCl-mediated stress. Using an excitation wavelength of 633 nm, the peak intensity at 740 cm-1 assigned to cytochrome bd decreases under antibiotic stress but increases upon exposure to both herbicides and antibiotics, indicating the development of resistance. Thus, this study can be applied to monitor antibiotic resistance using Raman spectroscopy.
Collapse
Affiliation(s)
- Saumya Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Taru Verma
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Dipankar Nandi
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India.,Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India.,Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Cisneros-Mayoral S, Graña-Miraglia L, Pérez-Morales D, Peña-Miller R, Fuentes-Hernáandez A. Evolutionary history and strength of selection determine the rate of antibiotic resistance adaptation. Mol Biol Evol 2022; 39:6692293. [PMID: 36062982 PMCID: PMC9512152 DOI: 10.1093/molbev/msac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial adaptation to stressful environments often produces evolutionary constraints whereby increases in resistance are associated with reduced fitness in a different environment. The exploitation of this resistance-cost trade-off has been proposed as the basis of rational antimicrobial treatment strategies designed to limit the evolution of drug resistance in bacterial pathogens. Recent theoretical, laboratory, and clinical studies have shown that fluctuating selection can maintain drug efficacy and even restore drug susceptibility, but can also increase the rate of adaptation and promote cross-resistance to other antibiotics. In this paper, we combine mathematical modeling, experimental evolution, and whole-genome sequencing to follow evolutionary trajectories towards β-lactam resistance under fluctuating selective conditions. Our experimental model system consists of eight populations of Escherichia coli K12 evolving in parallel to a serial dilution protocol designed to dynamically control the strength of selection for resistance. We implemented adaptive ramps with mild and strong selection, resulting in evolved populations with similar levels of resistance, but with different evolutionary dynamics and diverging genotypic profiles. We found that mutations that emerged under strong selection are unstable in the absence of selection, in contrast to resistance mutations previously selected in the mild selection regime that were stably maintained in drug-free environments and positively selected for when antibiotics were reintroduced. Altogether, our population dynamics model and the phenotypic and genomic analysis of the evolved populations show that the rate of resistance adaptation is contingent upon the strength of selection, but also on evolutionary constraints imposed by prior drug exposures.
Collapse
Affiliation(s)
- Sandra Cisneros-Mayoral
- Programa de Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mexico
| | - Lucía Graña-Miraglia
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deyanira Pérez-Morales
- Programa de Biología de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Méexico, 62210, Cuernavaca, Mexico
| | - Rafael Peña-Miller
- Programa de Biología de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mexico
| | - Ayari Fuentes-Hernáandez
- Programa de Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Méexico, 62210, Cuernavaca, Mexico
| |
Collapse
|
9
|
Turner AB, Gerner E, Firdaus R, Echeverz M, Werthén M, Thomsen P, Almqvist S, Trobos M. Role of sodium salicylate in Staphylococcus aureus quorum sensing, virulence, biofilm formation and antimicrobial susceptibility. Front Microbiol 2022; 13:931839. [PMID: 35992652 PMCID: PMC9384861 DOI: 10.3389/fmicb.2022.931839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
The widespread threat of antibiotic resistance requires new treatment options. Disrupting bacterial communication, quorum sensing (QS), has the potential to reduce pathogenesis by decreasing bacterial virulence. The aim of this study was to investigate the influence of sodium salicylate (NaSa) on Staphylococcus aureus QS, virulence production and biofilm formation. In S. aureus ATCC 25923 (agr III), with or without serum, NaSa (10 mM) downregulated the agr QS system and decreased the secretion levels of alpha-hemolysin, staphopain A and delta-hemolysin. Inhibition of agr expression caused a downregulation of delta-hemolysin, decreasing biofilm dispersal and increasing biofilm formation on polystyrene and titanium under static conditions. In contrast, NaSa did not increase biofilm biomass under flow but caused one log10 reduction in biofilm viability on polystyrene pegs, resulting in biofilms being twice as susceptible to rifampicin. A concentration-dependent effect of NaSa was further observed, where high concentrations (10 mM) decreased agr expression, while low concentrations (≤0.1 mM) increased agr expression. In S. aureus 8325-4 (agr I), a high concentration of NaSa (10 mM) decreased hla expression, and a low concentration of NaSa (≤1 mM) increased rnaIII and hla expression. The activity of NaSa on biofilm formation was dependent on agr type and material surface. Eight clinical strains isolated from prosthetic joint infection (PJI) or wound infection belonging to each of the four agr types were evaluated. The four PJI S. aureus strains did not change their biofilm phenotype with NaSa on the clinically relevant titanium surface. Half of the wound strains (agr III and IV) did not change the biofilm phenotype in the 3D collagen wound model. In addition, compared to the control, ATCC 25923 biofilms formed with 10 mM NaSa in the collagen model were more susceptible to silver. It is concluded that NaSa can inhibit QS in S. aureus, decreasing the levels of toxin production with certain modulation of biofilm formation. The effect on biofilm formation was dependent on the strain and material surface. It is suggested that the observed NaSa inhibition of bacterial communication is a potential alternative or adjuvant to traditional antibiotics.
Collapse
Affiliation(s)
- Adam Benedict Turner
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Gerner
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Mölnlycke Health Care AB, Gothenburg, Sweden
| | - Rininta Firdaus
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Maite Echeverz
- Microbial Pathogenesis Research Unit, Public University of Navarre, Pamplona, Spain
| | - Maria Werthén
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
| | | | - Margarita Trobos
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Margarita Trobos,
| |
Collapse
|
10
|
Jia Y, Lu H, Zhu L. Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155090. [PMID: 35398118 PMCID: PMC8985400 DOI: 10.1016/j.scitotenv.2022.155090] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 05/08/2023]
Abstract
The usage of quaternary ammonium compounds (QACs) as disinfectants has increased dramatically since the outbreak of COVID-19 pandemic, leading to potentially accelerated emergence of antibiotic resistance. Long-term exposure to subinhibitory level QACs can lead to multidrug resistance, but the contribution of mutagenesis to resistance evolution is obscure. In this study, we subcultured E. coli K-12 under subinhibitory (0.25 × and 0.5 × Minimum Inhibitory Concentration, MIC) or inhibitory (1 × and 2 × MIC) concentrations of benzalkonium chloride (BAC, mono-chained) or didecyldimethylammonium chloride (DDAC, twin-chained) for 60 days. The sensitivity of QAC-adapted cells to five typical antibiotics decreased significantly, and in particular, the MIC of rifampicin increased by 85 times. E. coli adapted faster to BAC but developed 20-167% higher antibiotic resistance with 56% more mutations under DDAC exposure. The broader mutations induced by QACs, including negative regulators (acrR, marR, soxR, and crp), outer membrane proteins and transporters (mipA and sbmA), and RNA polymerase (rpoB and rpoC), potentially contributed to the high multi-drug resistance. After QACs stresses were removed, the phenotypic resistance induced by subinhibitory concentrations of QACs was reversible, whereas that induced by inhibitory concentrations of QACs was irreversible. The different patterns and molecular mechanism of antibiotic resistance induced by BAC and DDAC is informative to estimating the risks of broader QACs present at varied concentrations in the environment.
Collapse
Affiliation(s)
- Yin Jia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
11
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
12
|
Waturuocha UW, P. J. A, Singh KK, Malhotra V, Krishna MS, Saini DK. A high-frequency single nucleotide polymorphism in the MtrB sensor kinase in clinical strains of Mycobacterium tuberculosis alters its biochemical and physiological properties. PLoS One 2021; 16:e0256664. [PMID: 34529706 PMCID: PMC8445491 DOI: 10.1371/journal.pone.0256664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The DNA polymorphisms found in clinical strains of Mycobacterium tuberculosis drive altered physiology, virulence, and pathogenesis in them. Although the lineages of these clinical strains can be traced back to common ancestor/s, there exists a plethora of difference between them, compared to those that have evolved in the laboratory. We identify a mutation present in ~80% of clinical strains, which maps in the HATPase domain of the sensor kinase MtrB and alters kinase and phosphatase activities, and affects its physiological role. The changes conferred by the mutation were probed by in-vitro biochemical assays which revealed changes in signaling properties of the sensor kinase. These changes also affect bacterial cell division rates, size and membrane properties. The study highlights the impact of DNA polymorphisms on the pathophysiology of clinical strains and provides insights into underlying mechanisms that drive signal transduction in pathogenic bacteria.
Collapse
Affiliation(s)
- Uchenna Watson Waturuocha
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Athira P. J.
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Krishna Kumar Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - M. S. Krishna
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
13
|
Schaffner SH, Lee AV, Pham MTN, Kassaye BB, Li H, Tallada S, Lis C, Lang M, Liu Y, Ahmed N, Galbraith LG, Moore JP, Bischof KM, Menke CC, Slonczewski JL. Extreme Acid Modulates Fitness Trade-Offs of Multidrug Efflux Pumps MdtEF-TolC and AcrAB-TolC in Escherichia coli K-12. Appl Environ Microbiol 2021; 87:e0072421. [PMID: 34085861 PMCID: PMC8315180 DOI: 10.1128/aem.00724-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial genomes encode various multidrug efflux pumps (MDR) whose specific conditions for fitness advantage are unknown. We show that the efflux pump MdtEF-TolC, in Escherichia coli, confers a fitness advantage during exposure to extreme acid (pH 2). Our flow cytometry method revealed pH-dependent fitness trade-offs between bile acids (a major pump substrate) and salicylic acid, a membrane-permeant aromatic acid that induces a drug resistance regulon but depletes proton motive force (PMF). The PMF drives MdtEF-TolC and related pumps such as AcrAB-TolC. Deletion of mdtE (with loss of the pump MdtEF-TolC) increased the strain's relative fitness during growth with or without salicylate or bile acids. However, when the growth cycle included a 2-h incubation at pH 2 (below the pH growth range), MdtEF-TolC conferred a fitness advantage. The fitness advantage required bile salts but was decreased by the presence of salicylate, whose uptake is amplified by acid. For comparison, AcrAB-TolC, the primary efflux pump for bile acids, conferred a PMF-dependent fitness advantage with or without acid exposure in the growth cycle. A different MDR pump, EmrAB-TolC, conferred no selective benefit during growth in the presence of bile acids. Without bile acids, all three MDR pumps incurred a large fitness cost with salicylate when exposed at pH 2. These results are consistent with the increased uptake of salicylate at low pH. Overall, we showed that MdtEF-TolC is an MDR pump adapted for transient extreme-acid exposure and that low pH amplifies the salicylate-dependent fitness cost for drug pumps. IMPORTANCE Antibiotics and other drugs that reach the gut must pass through stomach acid. However, little is known of how extreme acid modulates the effect of drugs on gut bacteria. We find that extreme-acid exposure leads to a fitness advantage for a multidrug pump that otherwise incurs a fitness cost. At the same time, extreme acid amplifies the effect of salicylate selection against multidrug pumps. Thus, organic acids and stomach acid could play important roles in regulating multidrug resistance in the gut microbiome. Our flow cytometry assay provides a way to measure the fitness effects of extreme-acid exposure to various membrane-soluble organic acids, including plant-derived nutrients and pharmaceutical agents. Therapeutic acids might be devised to control the prevalence of multidrug pumps in environmental and host-associated habitats.
Collapse
Affiliation(s)
| | - Abigail V. Lee
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | - Cassandra Lis
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mark Lang
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Nafeez Ahmed
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sun J, Dong H, Peng X, Liu Y, Jiang H, Feng Y, Li Q, Zhu L, Qin Y, Ding J. Deletion of the Transcriptional Regulator MucR in Brucella canis Affects Stress Responses and Bacterial Virulence. Front Vet Sci 2021; 8:650942. [PMID: 34250056 PMCID: PMC8267065 DOI: 10.3389/fvets.2021.650942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
The transcriptional regulator MucR is related to normal growth, stress responses and Brucella virulence, and affects the expression of various virulence-related genes in smooth-type Brucella strains. However, the function of MucR in the rough-type Brucella canis remains unknown. In this study, we discovered that MucR protein was involved in resistance to heat stress, iron-limitation, and various antibiotics in B. canis. In addition, the expression level of various bacterial flagellum-related genes was altered in mucR mutant strain. Deletion of this transcriptional regulator in B. canis significantly affected Brucella virulence in RAW264.7 macrophage and mice infection model. To gain insight into the genetic basis for distinctive phenotypic properties exhibited by mucR mutant strain, RNA-seq was performed and the result showed that various genes involved in translation, ribosomal structure and biogenesis, signal transduction mechanisms, energy production, and conversion were significantly differently expressed in ΔmucR strain. Overall, these studies have not only discovered the phenotype of mucR mutant strain but also preliminarily uncovered the molecular mechanism between the transcriptional regulator MucR, stress response and bacterial virulence in B. canis.
Collapse
Affiliation(s)
- Jiali Sun
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Hao Dong
- Veterinary Diagnostic Laboratory, China Animal Disease Control Center, Beijing, China.,Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaowei Peng
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Yufu Liu
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Hui Jiang
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Yu Feng
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Qiaoling Li
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Liangquan Zhu
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Yuming Qin
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiabo Ding
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
15
|
Ray S, Da Costa R, Thakur S, Nandi D. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. MICROBIOLOGY-SGM 2021; 166:460-473. [PMID: 32159509 DOI: 10.1099/mic.0.000900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of bacteria to form biofilms increases their survival under adverse environmental conditions. Biofilms have enormous medical and environmental impact; consequently, the factors that influence biofilm formation are an important area of study. In this investigation, the roles of two cold shock proteins (CSP) during biofilm formation were investigated in Salmonella Typhimurium, which is a major foodborne pathogen. Among all CSP transcripts studied, the expression of cspE (STM14_0732) was higher during biofilm growth. The cspE deletion strain (ΔcspE) did not form biofilms on a cholesterol coated glass surface; however, complementation with WT cspE, but not the F30V mutant, was able to rescue this phenotype. Transcript levels of other CSPs demonstrated up-regulation of cspA (STM14_4399) in ΔcspE. The cspA deletion strain (ΔcspA) did not affect biofilm formation; however, ΔcspEΔcspA exhibited higher biofilm formation compared to ΔcspE. Most likely, the higher cspA amounts in ΔcspE reduced biofilm formation, which was corroborated using cspA over-expression studies. Further functional studies revealed that ΔcspE and ΔcspEΔcspA exhibited slow swimming but no swarming motility. Although cspA over-expression did not affect motility, cspE complementation restored the swarming motility of ΔcspE. The transcript levels of the major genes involved in motility in ΔcspE demonstrated lower expression of the class III (fliC, motA, cheY), but not class I (flhD) or class II (fliA, fliL), flagellar regulon genes. Overall, this study has identified the interplay of two CSPs in regulating two biological processes: CspE is essential for motility in a CspA-independent manner whereas biofilm formation is CspA-dependent.
Collapse
Affiliation(s)
- Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rochelle Da Costa
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Samriddhi Thakur
- Department of Undergraduate Studies, Indian Insitute of Science, Bangalore-560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
16
|
Varghese A, Ray S, Verma T, Nandi D. Multicellular String-Like Structure Formation by Salmonella Typhimurium Depends on Cellulose Production: Roles of Diguanylate Cyclases, YedQ and YfiN. Front Microbiol 2021; 11:613704. [PMID: 33381103 PMCID: PMC7769011 DOI: 10.3389/fmicb.2020.613704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bacteria face diverse stresses in the environment and, sometimes, respond by forming multi-cellular structures, e.g., biofilms. Here, we report a novel macroscopic and multi-cellular structure formed by Salmonella Typhimurium, which resembles small strings. These string-like structures, ∼1 cm long, are induced under some stress conditions: iron deprivation by 2,2-Bipyridyl or low amounts of antibiotics or ethanol in minimal media. However, cells in strings revert back to planktonic growth upon return to nutrient rich media. Compared to planktonic cells, strings are more resistant to antibiotics and oxidative stress. Also, strains lacking csgD or rpoS, which are defective in the classical rdar biofilm formation, form strings. Furthermore, some biofilm inducing conditions do not result in strings and vice-versa, demonstrating that strings are not related to classical CsgD-dependent biofilms. Cells in a string are held together by cellulose and a strain lacking bcsA, which is defective in cellulose production, does not form strings. In addition, reductive stress conditions such as dithiothreitol (DTT) or mutations in the Disulfide bonding system (DSB) also give rise to strings. The amounts of c-di-GMP are increased upon string formation and studies with single and double deletion strains of the diguanylate cyclases, yedQ (STM1987) primarily and yfiN (STM2672) partly, revealed their importance for string formation. This is the first study showcasing the ability of Salmonella to produce high amounts of cellulose in liquid culture, instead of an interface, in a CsgD-independent manner. The relevance and possible applications of strings in the production of bacterial cellulose and bioremediation are discussed.
Collapse
Affiliation(s)
- Alan Varghese
- Undergraduate program, Indian Institute of Science, Bengaluru, India
| | - Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Taru Verma
- Centre for Biosystems science and engineering, Indian Institute of Science, Bengaluru, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
17
|
Verma T, Annappa H, Singh S, Umapathy S, Nandi D. Profiling antibiotic resistance in Escherichia coli strains displaying differential antibiotic susceptibilities using Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000231. [PMID: 32981183 DOI: 10.1002/jbio.202000231] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The rapid identification of antibiotic resistant bacteria is important for public health. In the environment, bacteria are exposed to sub-inhibitory antibiotic concentrations which has implications in the generation of multi-drug resistant strains. To better understand these issues, Raman spectroscopy was employed coupled with partial least squares-discriminant analysis to profile Escherichia coli strains treated with sub-inhibitory concentrations of antibiotics. Clear differences were observed between cells treated with bacteriostatic (tetracycline and rifampicin) and bactericidal (ampicillin, ciprofloxacin, and ceftriaxone) antibiotics for 6 hr: First, atomic force microscopy revealed that bactericidal antibiotics cause extensive cell elongation whereas short filaments are observed with bacteriostatic antibiotics. Second, Raman spectral analysis revealed that bactericidal antibiotics lower nucleic acid to protein (I812 /I830 ) and nucleic acid to lipid ratios (I1483 /I1452 ) whereas the opposite is seen with bacteriostatic antibiotics. Third, the protein to lipid ratio (I2936 /I2885 and I2936 /I2850 ) is a Raman stress signature common to both the classes. These signatures were validated using two mutants, Δlon and ΔacrB, that exhibit relatively high and low resistance towards antibiotics, respectively. In addition, these spectral markers correlated with the emergence of phenotypic antibiotic resistance. Overall, this study demonstrates the efficacy of Raman spectroscopy to identify resistance in bacteria to sub-lethal concentrations of antibiotics.
Collapse
Affiliation(s)
- Taru Verma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Harshitha Annappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saumya Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Siva Umapathy
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
18
|
Cattoir V, Pourbaix A, Magnan M, Chau F, de Lastours V, Felden B, Fantin B, Guérin F. Novel Chromosomal Mutations Responsible for Fosfomycin Resistance in Escherichia coli. Front Microbiol 2020; 11:575031. [PMID: 33193186 PMCID: PMC7607045 DOI: 10.3389/fmicb.2020.575031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Fosfomycin resistance in Escherichia coli results from chromosomal mutations or acquisition of plasmid-mediated genes. Because these mechanisms may be absent in some resistant isolates, we aimed at decipher the genetic basis of fosfomycin resistance in E. coli. Different groups of isolates were studied: fosfomycin-resistant mutants selected in vitro from E. coli CFT073 (MIC = 1 mg/L) and two groups (wildtype and non-wildtype) of E. coli clinical isolates. Single-nucleotide allelic replacement was performed to confirm the implication of novel mutations into resistance. Induction of uhpT expression by glucose-6-phosphate (G6P) was assessed by RT-qPCR. The genome of all clinical isolates was sequenced by MiSeq (Illumina). Two first-step mutants were obtained in vitro from CFT073 (MICs, 128 mg/L) with single mutations: G469R in uhpB (M3); F384L in uhpC (M4). Second-step mutants (MICs, 256 mg/L) presented additional mutations: R282V in galU (M7 from M3); Q558∗ in lon (M8 from M4). Introduction of uhpB or uhpC mutations by site-directed mutagenesis conferred a 128-fold increase in fosfomycin MICs, whereas single mutations in galU or lon were only responsible for a 2-fold increase. Also, these mutations abolished the induction of uhpT expression by G6P. All 14 fosfomycin-susceptible clinical isolates (MICs, 0.5-8 mg/L) were devoid of any mutation. At least one genetic change was detected in all but one fosfomycin-resistant clinical isolates (MICs, 32 - >256 mg/L) including 8, 17, 18, 5, and 8 in uhpA, uhpB, uhpC, uhpT, and glpT genes, respectively. In conclusion, novel mutations in uhpB and uhpC are associated with fosfomycin resistance in E. coli clinical isolates.
Collapse
Affiliation(s)
- Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France.,Centre National de Référence sur la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France.,Inserm, Bacterial Regulatory RNAs and Medicine - UMR_S 1230, Rennes, France
| | | | - Mélanie Magnan
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France
| | - Françoise Chau
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France
| | - Victoire de Lastours
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine - UMR_S 1230, Rennes, France
| | - Bruno Fantin
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - François Guérin
- CHU de Caen, Service de Microbiologie, Caen, France.,Université de Caen Normandie, EA4655, Caen, France
| |
Collapse
|
19
|
Mukherjee R, Verma T, Nandi D, Umapathy S. Identification of a resonance Raman marker for cytochrome to monitor stress responses in Escherichia coli. Anal Bioanal Chem 2020; 412:5379-5388. [PMID: 32548767 DOI: 10.1007/s00216-020-02753-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022]
Abstract
Raman spectroscopy and resonance Raman spectroscopy are widely used to study bacteria and their responses to different environmental conditions. In the present study, the identification of a novel resonance Raman peak for Escherichia coli, recorded with 633 nm laser excitation is discussed. A peak at 740 cm-1 is observed exclusively with 633 nm excitation but not with 514 nm or 785 nm excitation. This peak is absent in the lag phase but appears in the log phase of bacterial growth. The intensity of the peak increases at high temperature (45 °C) compared with growth at low temperature (25 °C) or the physiological temperature (37 °C). Although osmotic stress lowered bacterial growth, the intensity of this peak was unaffected. However, treatment with chemical uncouplers of oxidative phosphorylation resulted in significantly lower intensity of this Raman band, indicating its possible involvement in respiration. Cytochromes, a component of bacterial respiration' can show resonance enhancement at 633 nm due to the presence of a shoulder in that region depending on the type and conformation of cytochrome. Therefore, the peak intensity was monitored in different genetic mutants of E. coli lacking cytochromes. This peak is absent in the Escherichia coli mutant lacking cydB, but not ccmE, demonstrating the contribution of cytochrome bd subunit II in the peak's origin. In future, this newly found cytochrome marker can be used for biochemical assessment of bacteria exposed to various conditions. Overall, this finding opens the scope for use of red laser excitation in resonance Raman in monitoring stress and respiration in bacteria. Graphical abstract.
Collapse
Affiliation(s)
- Ria Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Taru Verma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Dipankar Nandi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, 560012, India. .,Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India. .,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, 560012, India. .,Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
20
|
Vashishtha K, Mahadevan S. Catabolism of aromatic β-glucosides by bacteria can lead to antibiotics resistance. Arch Microbiol 2020; 202:1301-1315. [PMID: 32130434 DOI: 10.1007/s00203-020-01836-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is a serious public health threat worldwide today. Escherichia coli is known to resist low doses of antibiotics in the presence of sodium salicylate and related compounds by mounting non-heritable transient phenotypic antibiotic resistance (PAR). In the present study, we demonstrate that Bgl+ bacterial strains harboring a functional copy of the β-glucoside (bgl) operon and are actively hydrolyzing plant-derived aromatic β-glucosides such as salicin show PAR to low doses of antibiotics. The aglycone released during metabolism of aromatic β-glucosides is responsible for conferring this phenotype by de-repressing the multiple antibiotics resistance (mar) operon. We also show that prolonged exposure of Bgl+ bacteria to aromatic β-glucosides in the presence of sub-lethal doses of antibiotics can lead to a significant increase in the frequency of mutants that show heritable resistance to higher doses of antibiotics. Although heritable drug resistance in many cases is known to reduce the fitness of the carrier strain, we did not see a cost associated with resistance in the mutants, most of which carry clinically relevant mutations. These findings indicate that the presence of the activated form of the bgl operon in the genome facilitates the survival of bacteria in environments in which both aromatic β-glucosides and antibiotics are present.
Collapse
Affiliation(s)
- Kartika Vashishtha
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - S Mahadevan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
21
|
Highly Contingent Phenotypes of Lon Protease Deficiency in Escherichia coli upon Antibiotic Challenge. J Bacteriol 2020; 202:JB.00561-19. [PMID: 31740490 DOI: 10.1128/jb.00561-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Evolutionary trajectories and mutational landscapes of drug-resistant bacteria are influenced by cell-intrinsic and extrinsic factors. In this study, I demonstrated that loss of the Lon protease altered susceptibility of Escherichia coli to trimethoprim and that these effects were strongly contingent on the drug concentration and genetic background. Lon, an AAA+ ATPase, is a bacterial master regulator protease involved in cytokinesis, suppression of transposition events, and clearance of misfolded proteins. I show that Lon deficiency enhances intrinsic drug tolerance at sub-MIC levels of trimethoprim. As a result, loss of Lon, though disadvantageous under drug-free conditions, has a selective advantage at low concentrations of trimethoprim. At high drug concentrations, however, Lon deficiency is detrimental for E. coli I show that the former is explained by suppression of drug efflux by Lon, while the latter can be attributed to SulA-dependent hyperfilamentation. On the other hand, deletion of lon in a trimethoprim-resistant mutant E. coli strain (harboring the Trp30Gly dihydrofolate reductase [DHFR] allele) directly potentiates resistance by enhancing the in vivo stability of mutant DHFR. Using extensive mutational analysis at 3 hot spots of resistance, I show that many resistance-conferring mutations render DHFR prone to proteolysis. This trade-off between gaining resistance and losing in vivo stability limits the number of mutations in DHFR that can confer trimethoprim resistance. Loss of Lon expands the mutational capacity for acquisition of trimethoprim resistance. This paper identifies the multipronged action of Lon in trimethoprim resistance in E. coli and provides mechanistic insight into how genetic backgrounds and drug concentrations may alter the potential for antimicrobial resistance evolution.IMPORTANCE Understanding the evolutionary dynamics of antimicrobial resistance is vital to curb its emergence and spread. Being fundamentally similar to natural selection, the fitness of resistant mutants is a key parameter to consider in the evolutionary dynamics of antimicrobial resistance (AMR). Various intrinsic and extrinsic factors modulate the fitness of resistant bacteria. This study demonstrated that Lon, a bacterial master regulator protease, influences drug tolerance and resistance. Lon is a key regulator of several fundamental processes in bacteria, including cytokinesis. I demonstrated that Lon deficiency produces highly contingent phenotypes in E. coli challenged with trimethoprim and can expand the mutational repertoire available to E. coli to evolve resistance. This multipronged influence of Lon on drug resistance provides an illustrative instance of how master regulators shape the response of bacteria to antibiotics.
Collapse
|
22
|
Mukherjee R, Verma T, Nandi D, Umapathy S. Understanding the effects of culture conditions in bacterial growth: A biochemical perspective using Raman microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201900233. [PMID: 31444944 DOI: 10.1002/jbio.201900233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Rapid, sensitive and label-free methods to probe bacterial growth irrespective of the culture conditions can shed light on the mechanisms by which bacteria adapt to different environmental stimuli. Raman spectroscopy can rapidly and continuously monitor the growth of bacteria under varied conditions. In this study, the growth of Escherichia coli in Luria broth (nutrient rich conditions) and minimal media with either glucose or glycerol as carbon source (nutrient limiting conditions) is profiled using Raman spectroscopy. Moreover, the study also gives insights into the altered bacterial biochemistry upon exposure to low- (25°C) and high-temperature (45°C) stress. Raman spectral measurement was performed on bulk bacteria cultured under laboratory conditions. A detailed analysis of the spectra as a function of bacterial growth reveals changes in Raman band intensities/area of biomolecules such as DNA, proteins and lipids. We also report five novel ratiometric markers (I830 /I810 , I1126 /I1100 , I1340 /I1440 , I1207 /I1240 and I1580 /I1440 ) that can identify the phase of growth, independent of the culture condition. Unsupervised multivariate methods like Principal Component Analysis also corroborate the aforementioned markers of growth. Altogether, our findings highlight the potential of Raman spectroscopy in yielding universal biochemical signatures that may be indicative of stress and aging in a growth milieu.
Collapse
Affiliation(s)
- Ria Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Taru Verma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipankar Nandi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| |
Collapse
|
23
|
Verma T, Podder S, Mehta M, Singh S, Singh A, Umapathy S, Nandi D. Raman spectroscopy reveals distinct differences between two closely related bacterial strains, Mycobacterium indicus pranii and Mycobacterium intracellulare. Anal Bioanal Chem 2019; 411:7997-8009. [PMID: 31732785 DOI: 10.1007/s00216-019-02197-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
A common technique used to differentiate bacterial species and to determine evolutionary relationships is sequencing their 16S ribosomal RNA genes. However, this method fails when organisms exhibit high similarity in these sequences. Two such strains that have identical 16S rRNA sequences are Mycobacterium indicus pranii (MIP) and Mycobacterium intracellulare. MIP is of significance as it is used as an adjuvant for protection against tuberculosis and leprosy; in addition, it shows potent anti-cancer activity. On the other hand, M. intracellulare is an opportunistic pathogen and causes severe respiratory infections in AIDS patients. It is important to differentiate these two bacterial species as they co-exist in immuno-compromised individuals. To unambiguously distinguish these two closely related bacterial strains, we employed Raman and resonance Raman spectroscopy in conjunction with multivariate statistical tools. Phenotypic profiling for these bacterial species was performed in a kinetic manner. Differences were observed in the mycolic acid profile and carotenoid pigments to show that MIP is biochemically distinct from M. intracellulare. Resonance Raman studies confirmed that carotenoids were produced by both MIP as well as M. intracellulare, though the latter produced higher amounts. Overall, this study demonstrates the potential of Raman spectroscopy in differentiating two closely related mycobacterial strains. Graphical abstract.
Collapse
Affiliation(s)
- Taru Verma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Santosh Podder
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mansi Mehta
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Sarman Singh
- All India Institute of Medical Sciences, Bhopal, 462020, India
| | - Amit Singh
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Siva Umapathy
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Dipankar Nandi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India.
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
24
|
Moore JP, Li H, Engmann ML, Bischof KM, Kunka KS, Harris ME, Tancredi AC, Ditmars FS, Basting PJ, George NS, Bhagwat AA, Slonczewski JL. Inverted Regulation of Multidrug Efflux Pumps, Acid Resistance, and Porins in Benzoate-Evolved Escherichia coli K-12. Appl Environ Microbiol 2019; 85:e00966-19. [PMID: 31175192 PMCID: PMC6677852 DOI: 10.1128/aem.00966-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/30/2019] [Indexed: 01/23/2023] Open
Abstract
Benzoic acid, a partial uncoupler of the proton motive force (PMF), selects for sensitivity to chloramphenicol and tetracycline during the experimental evolution of Escherichia coli K-12. Transcriptomes of E. coli isolates evolved with benzoate showed the reversal of benzoate-dependent regulation, including the downregulation of multidrug efflux pump genes, the gene for the Gad acid resistance regulon, the nitrate reductase genes narHJ, and the gene for the acid-consuming hydrogenase Hyd-3. However, the benzoate-evolved strains had increased expression of OmpF and other large-hole porins that admit fermentable substrates and antibiotics. Candidate genes identified from benzoate-evolved strains were tested for their roles in benzoate tolerance and in chloramphenicol sensitivity. Benzoate or salicylate tolerance was increased by deletion of the Gad activator ariR or of the acid fitness island from slp to the end of the gadX gene encoding Gad regulators and the multidrug pump genes mdtEF Benzoate tolerance was also increased by deletion of multidrug component gene emrA, RpoS posttranscriptional regulator gene cspC, adenosine deaminase gene add, hydrogenase gene hyc (Hyd-3), and the RNA chaperone/DNA-binding regulator gene hfq Chloramphenicol resistance was decreased by mutations in genes for global regulators, such as RNA polymerase alpha subunit gene rpoA, the Mar activator gene rob, and hfq Deletion of lipopolysaccharide biosynthetic kinase gene rfaY decreased the rate of growth in chloramphenicol. Isolates from experimental evolution with benzoate had many mutations affecting aromatic biosynthesis and catabolism, such as aroF (encoding tyrosine biosynthesis) and apt (encoding adenine phosphoribosyltransferase). Overall, benzoate or salicylate exposure selects for the loss of multidrug efflux pumps and of hydrogenases that generate a futile cycle of PMF and upregulates porins that admit fermentable nutrients and antibiotics.IMPORTANCE Benzoic acid is a common food preservative, and salicylic acid (2-hydroxybenzoic acid) is the active form of aspirin. At high concentrations, benzoic acid conducts a proton across the membrane, depleting the proton motive force. In the absence of antibiotics, benzoate exposure selects against proton-driven multidrug efflux pumps and upregulates porins that admit fermentable substrates but that also allow the entry of antibiotics. Thus, evolution with benzoate and related molecules, such as salicylates, requires a trade-off for antibiotic sensitivity, a trade-off that could help define a stable gut microbiome. Benzoate and salicylate are naturally occurring plant signal molecules that may modulate the microbiomes of plants and animal digestive tracts so as to favor fermenters and exclude drug-resistant pathogens.
Collapse
Affiliation(s)
- Jeremy P Moore
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Karina S Kunka
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mary E Harris
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Nadja S George
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Arvind A Bhagwat
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | | |
Collapse
|
25
|
Liu Y, Dong H, Peng X, Gao Q, Jiang H, Xu G, Qin Y, Niu J, Sun S, Li P, Ding J, Chen R. RNA-seq reveals the critical role of Lon protease in stress response and Brucella virulence. Microb Pathog 2019; 130:112-119. [DOI: 10.1016/j.micpath.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
|
26
|
Abstract
Functional ZnO nanostructured surfaces are important in a wide range of applications. Here we report the simple fabrication of ZnO surface structures at near room temperature with morphology resembling that of sea urchins, with densely packed, μm-long, tapered nanoneedles radiating from the urchin center. The ZnO urchin structures were successfully formed on several different substrates with high surface density and coverage, including silicon (Si), glass, polydimethylsiloxane (PDMS), and copper (Cu) sheets, as well as Si seeded with ZnO nanocrystals. Time-resolved SEM revealed growth kinetics of the ZnO nanostructures on Si, capturing the emergence of “infant” urchins at the early growth stage and subsequent progressive increases in the urchin nanoneedle length and density, whilst the spiky nanoneedle morphology was retained throughout the growth. ε-Zn(OH)2 orthorhombic crystals were also observed alongside the urchins. The crystal structures of the nanostructures at different growth times were confirmed by synchrotron X-ray diffraction measurements. On seeded Si substrates, a two-stage growth mechanism was identified, with a primary growth step of vertically aligned ZnO nanoneedle arrays preceding the secondary growth of the urchins atop the nanoneedle array. The antibacterial, anti-reflective, and wetting functionality of the ZnO urchins—with spiky nanoneedles and at high surface density—on Si substrates was demonstrated. First, bacteria colonization was found to be suppressed on the surface after 24 h incubation in gram-negative Escherichia coli (E. coli) culture, in contrast to control substrates (bare Si and Si sputtered with a 20 nm ZnO thin film). Secondly, the ZnO urchin surface, exhibiting superhydrophilic property with a water contact angle ~ 0°, could be rendered superhydrophobic with a simple silanization step, characterized by an apparent water contact angle θ of 159° ± 1.4° and contact angle hysteresis ∆θ < 7°. The dynamic superhydrophobicity of the surface was demonstrated by the bouncing-off of a falling 10 μL water droplet, with a contact time of 15.3 milliseconds (ms), captured using a high-speed camera. Thirdly, it was shown that the presence of dense spiky ZnO nanoneedles and urchins on the seeded Si substrate exhibited a reflectance R < 1% over the wavelength range λ = 200–800 nm. The ZnO urchins with a unique morphology fabricated via a simple route at room temperature, and readily implementable on different substrates, may be further exploited for multifunctional surfaces and product formulations.
Collapse
|
27
|
Rossi NA, Mora T, Walczak AM, Dunlop MJ. Active degradation of MarA controls coordination of its downstream targets. PLoS Comput Biol 2018; 14:e1006634. [PMID: 30589845 PMCID: PMC6307708 DOI: 10.1371/journal.pcbi.1006634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023] Open
Abstract
Several key transcription factors have unusually short half-lives compared to other cellular proteins. Here, we explore the utility of active degradation in shaping how the multiple antibiotic resistance activator MarA coordinates its downstream targets. MarA controls a variety of stress response genes in Escherichia coli. We modify its half-life either by knocking down the protease that targets it via CRISPRi or by engineering MarA to protect it from degradation. Our experimental and analytical results indicate that active degradation can impact both the rate of coordination and the maximum coordination that downstream genes can achieve. In the context of multi-gene regulation, trade-offs between these properties show that perfect information fidelity and instantaneous coordination cannot coexist.
Collapse
Affiliation(s)
- Nicholas A. Rossi
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
| | - Thierry Mora
- Laboratoire de Physique Statistique, CNRS, Sorbonne Université, Université Paris-Diderot, and École Normale Supérieure (PSL), Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de Physique Théorique, CNRS, Sorbonne Université, and École Normale Supérieure (PSL), Paris, France
| | - Mary J. Dunlop
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Tripathy A, Kumar A, Sreedharan S, Muralidharan G, Pramanik A, Nandi D, Sen P. Fabrication of Low-Cost Flexible Superhydrophobic Antibacterial Surface with Dual-Scale Roughness. ACS Biomater Sci Eng 2018; 4:2213-2223. [PMID: 33435043 DOI: 10.1021/acsbiomaterials.8b00209] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we report a large-area fabrication of a flexible superhydrophobic bactericidal surface decorated with copper hydroxide nanowires. This involves a simple two-step method which involves growth followed by transfer of the nanowires onto the polydimethylsiloxane (PDMS) surface by mechanical peeling. Additional roughness in PDMS is obtained through incomplete wetting of the nanoscale gaps which leads to dual-scale roughness and superhydrophobicity with a contact angle of 169° and hysteresis of less than 2°. The simplicity of the process makes it low-cost and easily scalable. The process allows fabrication of nonplanar 3D surfaces. The surface shows blood repellence and antibacterial activity against Escherichia coli with more than 5 log reductions in bacterial colony. The surface also shows hemocompatible behavior, making it suitable for healthcare applications. The fabricated surface is found to be extremely robust against stretching, twisting, sandpaper abrasion, solid weight impact, and tape peel test. The surface is found to withstand human weight multiple times without losing its hydrophobicity, making it suitable for several practical scenarios in healthcare and household applications.
Collapse
Affiliation(s)
- Abinash Tripathy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Arvind Kumar
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Syama Sreedharan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Amitava Pramanik
- Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
29
|
Tripathy A, Sreedharan S, Bhaskarla C, Majumdar S, Peneti SK, Nandi D, Sen P. Enhancing the Bactericidal Efficacy of Nanostructured Multifunctional Surface Using an Ultrathin Metal Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12569-12579. [PMID: 29017327 DOI: 10.1021/acs.langmuir.7b02291] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Insects and plants exhibit bactericidal behavior through nanostructures, which leads to physical contact killing that does not require antibiotics or chemicals. Also, certain metallic ions (e.g., Ag+ and Cu2+) are well-known to kill bacteria by disrupting their cellular functionalities. The aim of this study is to explore the improvement in bactericidal activity by combining extreme physical structure with surface chemistry. We have fabricated tall (8-9 μm high) nanostructures on silicon surfaces (NSS) having sharp tips (35-110 nm) using a single-step, maskless deep reactive ion etching technique inspired by dragonfly wing. Bactericidal efficacy of the nanostructured surfaces coated with a thin layer of silver (NSS_Ag) or copper (NSS_Cu) was measured quantitatively using standard viability plate-count method and flow cytometry. NSS_Cu surfaces kill bacteria very efficiently (killing 97% within 30 min) when compared to the uncoated NSS. This can be attributed to the addition of a surface chemistry to the nanostructures. The antibacterial activity of NSS_Cu is further indicated by the morphological differences of the dying/dead bacteria observed in the SEM images. The nanostructured surfaces demonstrate excellent superhydrophobic behavior, even with an ultrathin layer of metal (Ag/Cu) coating. The nanostructured surfaces exhibit static contact angle greater than 150° and contact hysteresis less than 10°. Moreover, reflectance is found to be <1% (for NSS_Cu < 0.5%) for all the nanostructured surfaces in the wavelength range 250-800 nm. The results obtained suggest that the fabricated nanostructured surfaces are multifunctional and can be used in various practical applications.
Collapse
Affiliation(s)
- Abinash Tripathy
- Centre for Nano Science and Engineering and ‡Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - Syama Sreedharan
- Centre for Nano Science and Engineering and ‡Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - Chetana Bhaskarla
- Centre for Nano Science and Engineering and ‡Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - Shamik Majumdar
- Centre for Nano Science and Engineering and ‡Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - Sudheer Kumar Peneti
- Centre for Nano Science and Engineering and ‡Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - Dipankar Nandi
- Centre for Nano Science and Engineering and ‡Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering and ‡Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|