1
|
Chaurasia R, Kamaraju S, Thresiamma KC, Jayaprakash C, Eapen CK, Sritharan M. Urinary leptospiral sphingomyelinases as diagnostic markers of leptospirosis in dengue patients co-infected with leptospirosis. Diagn Microbiol Infect Dis 2025; 111:116647. [PMID: 39671978 DOI: 10.1016/j.diagmicrobio.2024.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
The study aims to evaluate the diagnostic potential of pathogen-specific leptospiral sphingomyelinases, LipL32, LipL41, and HbpA in human patients with dengue-leptospirosis coinfection. Patients (n-86), upon clinical evaluation, were categorized into Group I (n-37; leptospirosis), Group II (n-39; dengue-leptospirosis coinfection), and Group III (n-10; negative for both dengue and leptospirosis). ELISA identified significant levels of the four leptospiral antigens in the urine of Group I and II, but not in Group III patients. Immunoblot analysis of the urinary proteins with specific antibodies identified the tissue-damaging true sphingomyelinases Sph2 and pore-forming SphH. Urinary leptospiral antigens identified patients with leptospirosis and with dengue-leptospirosis coinfection. Patients with renal damage and proteinuria showed high urinary excretion of anti-leptospiral antibodies, with markedly low values in the serum. Proteinuria resulted in the loss of the circulating proteins, reflected by the low levels of anti-leptospiral antibodies in serum, with urine showing albumin and high levels of anti-leptospiral antibodies. IMPORTANCE: The study highlights the diagnostic potential of all four leptospiral antigens. Since early detection of urinary sphingomyelinases is possible, their diagnostic and prognostic potential can be evaluated on a larger sample size. Non-invasive, point-of-care diagnostic devices can be developed for use in endemic regions, particularly during monsoon seasons.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad 500 046, India; Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States
| | - Saipriya Kamaraju
- Molecular Diagnostics and Biomarkers Lab, Global Hospitals, Hyderabad, 500004, India
| | - K C Thresiamma
- Departments of Biochemistry, Microbiology and Medicine, MOSC Medical College, Kerala, India
| | - Chithra Jayaprakash
- Departments of Biochemistry, Microbiology and Medicine, MOSC Medical College, Kerala, India
| | - C K Eapen
- Departments of Biochemistry, Microbiology and Medicine, MOSC Medical College, Kerala, India
| | - Manjula Sritharan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad 500 046, India.
| |
Collapse
|
2
|
Sonam A, Hameed A, Rekha PD, Stothard P, Tellis RC, Arun AB. Ketone body oxidation and susceptibility to ethyl acetoacetate in a novel hemolytic multidrug-resistant strain Leptospira interrogans KeTo originated from sewage water. Sci Rep 2024; 14:25198. [PMID: 39448678 PMCID: PMC11502798 DOI: 10.1038/s41598-024-76546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Terrestrial and aquatic environments contaminated with animal urine may contribute to the transmission of Leptospira, a causative agent of leptospirosis in humans and wild/domesticated animals. Although enormous amounts of work have been done decoding the ecophysiology, the factors governing the cell growth and virulence in Leptospires derived from environmental samples still remain elusive. Here, we show oxidation of a wide array of organic acids including acetoacetate by a new strain of Leptospira interrogans designated as KeTo, isolated from a sewage sample originating from a wildlife enclosure located at Mangalore, India. We further demonstrate the susceptibility of KeTo to ethyl ester of acetoacetate (ethyl acetoacetate, EA). A 4.7 Mbp genome of KeTo shared the highest relatedness to pathogenic L. interrogans RGAT (99.3%), followed by L. kirschneri 3522CT (91.3%) and other related species of Leptospira (80.8‒74.3%), and harbored genes encoding acetoacetyl-CoA synthetase and acetoacetate decarboxylase respectively involved in the acetoacetate utilization and acetone formation. In line with this, strain KeTo oxidized acetoacetate when supplied as a sole carbon. Aqueous EA suppressed biofilm formation (p < 0.0001) of KeTo in basal Ellinghausen-McCullough-Johnson-Harris (EMJH) medium. Similarly, significant inhibition in the growth/biofilm of Leptospira was recorded in semisolid EMJH with/without blood supplementation when exposed to volatile EA. The extent of ketone body oxidation and susceptibility to EA was found to vary with strain as evident through the analysis of L. interrogans serogroup Australis sv. Australis strain Ballico and L. interrogans serogroup Icterohaemorrhagiae sv. Lai Like strain AF61. In conclusion, our study demonstrated the ketone body metabolic ability and susceptibility to an esterified derivative of a major ketone body in the tested strains of L. interrogans. Molecular aspects governing EA-driven growth inhibition warrant further investigations to develop optimal therapeutics for leptospirosis.
Collapse
Affiliation(s)
- Amin Sonam
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to be University), Yenepoya Research Centre, University Road, Deralakatte, Mangalore, 575018, India
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to be University), Yenepoya Research Centre, University Road, Deralakatte, Mangalore, 575018, India.
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to be University), Yenepoya Research Centre, University Road, Deralakatte, Mangalore, 575018, India
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | | | - Ananthapadmanabha Bhagwath Arun
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to be University), Yenepoya Research Centre, University Road, Deralakatte, Mangalore, 575018, India.
- Yenepoya Institute of Arts, Science, Commerce and Management, Balmatta, Mangalore, 575002, India.
| |
Collapse
|
3
|
Chaurasia R, Vinetz JM. In silico prediction of molecular mechanisms of toxicity mediated by the leptospiral PF07598 gene family-encoded virulence-modifying proteins. Front Mol Biosci 2023; 9:1092197. [PMID: 36756251 PMCID: PMC9900628 DOI: 10.3389/fmolb.2022.1092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Mechanisms of leptospirosis pathogenesis remain unclear despite the identification of a number of potential leptospiral virulence factors. We recently demonstrated potential mechanisms by which the virulence-modifying (VM) proteins-defined as containing a Domain of Unknown function (DUF1561), encoded by the PF07598 gene family-found only in group 1 pathogenic Leptospira-might mediate the clinical pathogenesis of leptospirosis. VM proteins belongs to classical AB toxin paradigm though have a unique AB domain architecture, unlike other AB toxins such as diphtheria toxin, pertussis toxin, shiga toxin, or ricin toxin which are typically encoded by two or more genes and self-assembled into a multi-domain holotoxin. Leptospiral VM proteins are secreted R-type lectin domain-containing exotoxins with discrete N-terminal ricin B-like domains involved in host cell surface binding, and a C-terminal DNase/toxin domain. Here we use the artificial intelligence-based AlphaFold algorithm and other computational tools to predict and elaborate on details of the VM protein structure-function relationship. Comparative AlphaFold and CD-spectroscopy defined the consistent secondary structure (Helix and ß-sheet) content, and the stability of the functional domains were further supported by molecular dynamics simulation. VM proteins comprises distinctive lectic family (QxW)3 motifs, the Mycoplasma CARDS toxin (D3 domain, aromatic patches), C-terminal similarity with mammalian DNase I. In-silico study proposed that Gln412, Gln523, His533, Thr59 are the high binding energy or ligand binding residues plausibly anticipates in the functional activities. Divalent cation (Mg+2-Gln412) and phosphate ion (PO4]-3-Arg615) interaction further supports the functional activities driven by C-terminal domain. Computation-driven structure-function studies of VM proteins will guide experimentation towards mechanistic understandings of leptospirosis pathogenesis, which underlie development of new therapeutic and preventive measures for this devastating disease.
Collapse
|
4
|
Lauretti-Ferreira F, Teixeira AAR, Giordano RJ, da Silva JB, Abreu PAE, Barbosa AS, Akamatsu MA, Ho PL. Characterization of a virulence-modifying protein of Leptospira interrogans identified by shotgun phage display. Front Microbiol 2022; 13:1051698. [PMID: 36519163 PMCID: PMC9742253 DOI: 10.3389/fmicb.2022.1051698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
Pathogenic species of Leptospira are etiologic agents of leptospirosis, an emerging zoonotic disease of worldwide extent and endemic in tropical regions. The growing number of identified leptospiral species sheds light to their genetic diversity and unique virulence mechanisms, many of them still remain unknown. Toxins and adhesins are important virulence factors in several pathogens, constituting promising antigens for the development of vaccines with cross-protection and long-lasting effect against leptospirosis. For this aim, we used the shotgun phage display technique to unravel new proteins with adhesive properties. A shotgun library was constructed using fragmented genomic DNA from Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 and pG8SAET phagemid vector. Selection of phages bearing new possible cell-binding antigens was performed against VERO cells, using BRASIL biopanning methodology. Analysis of selected clones revealed the hypothetical protein LIC10778, a potentially exposed virulence factor that belongs to the virulence-modifying (VM) protein family (PF07598), composed of 13 members in the leptospiral strain Fiocruz L1-130. Prediction of LIC10778 tertiary structure indicates that the protein contains a cellular-binding domain (N-terminal portion) and an unknown domain of no assigned activity (C-terminal portion). The predicted N-terminal domain shared structural similarities with the cell-binding and internalization domain of toxins like Ricin and Abrin, as well as to the Community-Acquired Respiratory Distress Syndrome (CARDS) toxin in Mycoplasma pneumoniae. Interestingly, recombinant portions of the N-terminal region of LIC10778 protein showed binding to laminin, collagens I and IV, vitronectin, and plasma and cell fibronectins using overlay blotting technique, especially regarding the binding site identified by phage display. These data validate our preliminary phage display biopanning and support the predicted three-dimensional models of LIC10778 protein and other members of PF07598 protein family, confirming the identification of the N-terminal cell-binding domains that are similar to ricin-like toxins. Moreover, fluorescent fused proteins also confirmed that N-terminal region of LIC10778 is capable of binding to VERO and A549 cell lines, further highlighting its virulence role during host-pathogen interaction in leptospirosis probably mediated by its C-terminal domain. Indeed, recent results in the literature confirmed this assumption by demonstrating the cytotoxicity of a closely related PF07598 member.
Collapse
Affiliation(s)
- Fabiana Lauretti-Ferreira
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Paulo Lee Ho
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Chaurasia R, Marroquin AS, Vinetz JM, Matthias MA. Pathogenic Leptospira Evolved a Unique Gene Family Comprised of Ricin B-Like Lectin Domain-Containing Cytotoxins. Front Microbiol 2022; 13:859680. [PMID: 35422779 PMCID: PMC9002632 DOI: 10.3389/fmicb.2022.859680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Leptospirosis is a globally important neglected zoonotic disease. Previous data suggest that a family of virulence-modifying (VM) proteins (PF07598) is a distinctive feature of group I pathogenic Leptospira that evolved as important virulence determinants. Here, we show that one such VM protein, LA3490 (also known as Q8F0K3), is expressed by Leptospira interrogans serovar Lai, as a secreted genotoxin that is potently cytotoxic to human cells. Structural homology searches using Phyre2 suggested that VM proteins are novel R-type lectins containing tandem N-terminal ricin B-chain-like β-trefoil domains. Recombinant LA3490 (rLA3490) and an N-terminal fragment, t3490, containing only the predicted ricin B domain, bound to the terminal galactose and N-acetyl-galactosamine residues, asialofetuin, and directly competed for asialofetuin-binding sites with recombinant ricin B chain. t3490 alone was sufficient for binding, both to immobilized asialofetuin and to the HeLa cell surface but was neither internalized nor cytotoxic. Treatment of HeLa cells with rLA3490 led to cytoskeleton disassembly, caspase-3 activation, and nuclear fragmentation, and was rapidly cytolethal. rLA3490 had DNase activity on mammalian and bacterial plasmid DNA. The combination of cell surface binding, internalization, nuclear translocation, and DNase functions indicate that LA3490 and other VM proteins evolved as novel forms of the bacterial AB domain-containing toxin paradigm.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Alan S Marroquin
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Michael A Matthias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|