1
|
Novel Probiotic Mechanisms of the Oral Bacterium Streptococcus sp. A12 as Explored with Functional Genomics. Appl Environ Microbiol 2019; 85:AEM.01335-19. [PMID: 31420345 DOI: 10.1128/aem.01335-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Health-associated biofilms in the oral cavity are composed of a diverse group of microbial species that can foster an environment that is less favorable for the outgrowth of dental caries pathogens, like Streptococcus mutans A novel oral bacterium, designated Streptococcus A12, was previously isolated from supragingival dental plaque of a caries-free individual and was shown to interfere potently with the growth and virulence properties of S. mutans In this study, we applied functional genomics to begin to identify molecular mechanisms used by A12 to antagonize, and to resist the antagonistic factors of, S. mutans Using bioinformatics, genes that could encode factors that enhance the ability of A12 to compete with S. mutans were identified. Selected genes, designated potential competitive factors (pcf), were deleted. Certain mutant derivatives showed a reduced capacity to compete with S. mutans compared to that of the parental strain. The A12 pcfO mutant lost the ability to inhibit comX -inducing peptide (XIP) signaling by S. mutans, while mutants with changes in the pcfFEG locus were impaired in sensing of, and were more sensitive to, the lantibiotic nisin. Loss of PcfV, annotated as a colicin V biosynthetic protein, resulted in diminished antagonism of S. mutans Collectively, the data provide new insights into the complexities and variety of factors that affect biofilm ecology and virulence. Continued exploration of the genomic and physiological factors that distinguish commensals from truly beneficial members of the oral microbiota will lead to a better understanding of the microbiome and new approaches to promote oral health.IMPORTANCE Advances in defining the composition of health-associated biofilms have highlighted the important role of beneficial species in maintaining health. Comparatively little, however, has been done to address the genomic and physiological bases underlying the probiotic mechanisms of beneficial commensals. In this study, we explored the ability of a novel oral bacterial isolate, Streptococcus A12, to compete with the dental pathogen Streptococcus mutans using various gene products with diverse functions. A12 displayed enhanced competitiveness by (i) disrupting intercellular communication pathways of S. mutans, (ii) sensing and resisting antimicrobial peptides, and (iii) producing factors involved in the production of a putative antimicrobial compound. Research on the probiotic mechanisms employed by Streptococcus A12 is providing essential insights into how beneficial bacteria may help maintain oral health, which will aid in the development of biomarkers and therapeutics that can improve the practice of clinical dentistry.
Collapse
|
2
|
Underhill SAM, Shields RC, Burne RA, Hagen SJ. Carbohydrate and PepO control bimodality in competence development by Streptococcus mutans. Mol Microbiol 2019; 112:1388-1402. [PMID: 31403729 DOI: 10.1111/mmi.14367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 01/17/2023]
Abstract
In Streptococcus mutans, the alternative sigma factor ComX controls entry into genetic competence. Competence stimulating peptide (CSP) induces bimodal expression of comX, with only a fraction of the population becoming transformable. Curiously, the bimodality of comX is affected by peptides in the growth medium and by carbohydrate source. CSP elicits bimodal expression of comX in media rich in small peptides, but CSP elicits no response in defined media lacking small peptides. In addition, growth on certain sugars increases the proportion of the population that activates comX in response to CSP. By investigating the connection between media and comX bimodality, we find evidence for two mechanisms that modulate transcriptional positive feedback in the ComRS system, where comX bimodality originates. We find that the endopeptidase PepO suppresses the ComRS feedback loop, most likely by degrading the XIP/ComS feedback signal. Deletion of pepO eliminates comX bimodality, leading to a unimodal comX response to CSP in both defined and complex media. We also find that CSP stimulates the ComRS feedback system by upregulating comR in a carbohydrate source-dependent fashion. Our data provide mechanistic insight into how S. mutans regulates bimodality and explain the puzzle of growth medium effects on competence induction by CSP.
Collapse
Affiliation(s)
- Simon A M Underhill
- Department of Physics, University of Florida, 2001 Museum Road, Gainesville, FL, 32611, USA
| | - Robert C Shields
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - Stephen J Hagen
- Department of Physics, University of Florida, 2001 Museum Road, Gainesville, FL, 32611, USA
| |
Collapse
|
3
|
Endopeptidase PepO Regulates the SpeB Cysteine Protease and Is Essential for the Virulence of Invasive M1T1 Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00654-17. [PMID: 29378883 DOI: 10.1128/jb.00654-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide range of human infections. The pathogenesis of GAS infections is dependent on the temporal expression of numerous secreted and surface-associated virulence factors that interact with host proteins. Streptococcal pyrogenic exotoxin B (SpeB) is one of the most extensively studied toxins produced by GAS, and the coordinate growth phase-dependent regulation of speB expression is linked to disease severity phenotypes. Here, we identified the endopeptidase PepO as a novel growth phase-dependent regulator of SpeB in the invasive GAS M1 serotype strain 5448. By using transcriptomics followed by quantitative reverse transcriptase PCR and Western blot analyses, we demonstrate through targeted mutagenesis that PepO influences growth phase-dependent induction of speB gene expression. Compared to wild-type and complemented mutant strains, we demonstrate that the 5448ΔpepO mutant strain is more susceptible to killing by human neutrophils and is attenuated in virulence in a murine model of invasive GAS infection. Our results expand the complex regulatory network that is operating in GAS to control SpeB production and suggest that PepO is a virulence requirement during GAS M1T1 strain 5448 infections.IMPORTANCE Despite the continuing susceptibility of S. pyogenes to penicillin, this bacterial pathogen remains a leading infectious cause of global morbidity and mortality. A particular subclone of the M1 serotype (M1T1) has persisted globally for decades as the most frequently isolated serotype from patients with invasive and noninvasive diseases in Western countries. One of the key GAS pathogenicity factors is the potent broad-spectrum cysteine protease SpeB. Although there has been extensive research interest on the regulatory mechanisms that control speB gene expression, its genetic regulation is not fully understood. Here, we identify the endopeptidase PepO as a new regulator of speB gene expression in the globally disseminated M1T1 clone and as being essential for virulence.
Collapse
|
4
|
Huang X, Browngardt CM, Jiang M, Ahn SJ, Burne RA, Nascimento MM. Diversity in Antagonistic Interactions between Commensal Oral Streptococci and Streptococcus mutans. Caries Res 2017; 52:88-101. [PMID: 29258070 PMCID: PMC5828942 DOI: 10.1159/000479091] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Arginine metabolism via the arginine deiminase system (ADS) of oral bacteria generates ammonia, which can increase the pH of oral biofilms and decrease the risk for dental caries. Antagonistic interactions between ADS-positive and cariogenic bacteria in oral biofilms may be an important ecological determinant of caries. This study investigated the antagonistic potential and mechanisms of clinical isolates of arginolytic streptococci on and by Streptococcus mutans UA159, a well-characterized cariogenic human isolate. Low-passage isolates of Streptococcus gordonii, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus australis, and Streptococcus cristatus inhibited the growth of S. mutans to various degrees when they were inoculated on growth media first or simultaneously with S. mutans. The antagonistic effects of arginolytic strains against S. mutans and the production of H2O2 by these strains were enhanced during growth in a less-rich medium or when galactose was substituted for glucose as the primary carbohydrate source. Pyruvate oxidase was the dominant pathway for H2O2 production by arginolytic strains, but lactate oxidase activity was also detected in some strains of S. gordonii and S. cristatus. UA159 inhibited the growth of all tested arginolytic strains when inoculated first, especially in aerobic conditions. However, the antagonistic effects of S. mutans on certain strains of S. gordonii and S. australis were not observed during anaerobic growth in the presence of arginine. Thus, arginolytic commensal streptococci may have a synergistically positive impact on the ecology of oral biofilms by moderating biofilm pH while antagonizing the growth and virulence of caries pathogens.
Collapse
Affiliation(s)
- Xuelian Huang
- Division of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | | | - Min Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Marcelle M. Nascimento
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics Antimicrob Proteins 2016; 3:68. [PMID: 26781572 DOI: 10.1007/s12602-011-9076-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dental caries is a multifactorial disease that is a growing and costly global health concern. The onset of disease is a consequence of an ecological imbalance within the dental plaque biofilm that favors specific acidogenic and aciduric caries pathogens, namely Streptococcus mutans and Streptococcus sobrinus. It is now recognized by the scientific and medical community that it is neither possible nor desirable to totally eliminate dental plaque. Conversely, the chemical biocides most commonly used for caries prevention and treatment indiscriminately attack all plaque microorganisms. These treatments also suffer from other drawbacks such as bad taste, irritability, and staining. Furthermore, the public demand for safe and natural personal hygiene products continues to rise. Therefore, there are opportunities that exist to develop new strategies for the treatment of this disease. As an alternative to conventional antibiotics, antibacterial peptides have been explored greatly over the last three decades for many different therapeutic uses. There are currently tens of hundreds of antibacterial peptides characterized across the evolutionary spectrum, and among these, many demonstrate physical and/or biological properties that may be suitable for a more targeted approach to the selective control or elimination of putative caries pathogens. Additionally, many peptides, such as nisin, are odorless, colorless, and tasteless and do not cause irritation or staining. This review focuses on antibacterial peptides for their potential role in the treatment and prevention of dental caries and suggests candidates that need to be explored further. Practical considerations for the development of antibacterial peptides as oral treatments are also discussed.
Collapse
|
6
|
Abstract
The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry.
Collapse
Affiliation(s)
- Lorraine A Draper
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Conrads G, de Soet JJ, Song L, Henne K, Sztajer H, Wagner-Döbler I, Zeng AP. Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level. J Oral Microbiol 2014; 6:26189. [PMID: 25475081 PMCID: PMC4256546 DOI: 10.3402/jom.v6.26189] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 02/03/2023] Open
Abstract
Background Two closely related species of mutans streptococci, namely Streptococcus mutans and Streptococcus sobrinus, are associated with dental caries in humans. Their acidogenic and aciduric capacity is directly associated with the cariogenic potential of these bacteria. To survive acidic and temporarily harsh conditions in the human oral cavity with hundreds of other microbial co-colonizers as competitors, both species have developed numerous mechanisms for adaptation. Objectives The recently published novel genome information for both species is used to elucidate genetic similarities but especially differences and to discuss the impact on cariogenicity of the corresponding phenotypic properties including adhesion, carbohydrate uptake and fermentation, acid tolerance, signaling by two component systems, competence, and oxidative stress resistance. Conclusions S. sobrinus can down-regulate the SpaA-mediated adherence to the pellicle. It has a smaller number of two-component signaling systems and bacteriocin-related genes than S. mutans, but all or even more immunity proteins. It lacks the central competence genes comC, comS, and comR. There are more genes coding for glucosyltransferases and a novel energy production pathway formed by lactate oxidase, which is not found in S. mutans. Both species show considerable differences in the regulation of fructan catabolism. However, both S. mutans and S. sobrinus share most of these traits and should therefore be considered as equally virulent with regard to dental caries.
Collapse
Affiliation(s)
- Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany;
| | - Johannes J de Soet
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Lifu Song
- Institute of Bioprocess and Biosystems, Technical University Hamburg, Harburg, Germany
| | - Karsten Henne
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Helena Sztajer
- Helmholtz-Centre for Infection Research, Group Microbial Communication, Division of Microbial Pathogenesis, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Centre for Infection Research, Group Microbial Communication, Division of Microbial Pathogenesis, Braunschweig, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems, Technical University Hamburg, Harburg, Germany
| |
Collapse
|
8
|
Cheng X, Xu X, Chen J, Zhou X, Cheng L, Li M, Li J, Wang R, Jia W, Li YQ. Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure. FEMS Microbiol Lett 2014; 359:94-101. [PMID: 25109245 DOI: 10.1111/1574-6968.12573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barbour A, Philip K. Variable characteristics of bacteriocin-producing Streptococcus salivarius strains isolated from Malaysian subjects. PLoS One 2014; 9:e100541. [PMID: 24941127 PMCID: PMC4062538 DOI: 10.1371/journal.pone.0100541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Salivaricins are bacteriocins produced by Streptococcus salivarius, some strains of which can have significant probiotic effects. S. salivarius strains were isolated from Malaysian subjects showing variable antimicrobial activity, metabolic profile, antibiotic susceptibility and lantibiotic production. METHODOLOGY/PRINCIPAL FINDINGS In this study we report new S. salivarius strains isolated from Malaysian subjects with potential as probiotics. Safety assessment of these strains included their antibiotic susceptibility and metabolic profiles. Genome sequencing using Illumina's MiSeq system was performed for both strains NU10 and YU10 and demonstrating the absence of any known streptococcal virulence determinants indicating that these strains are safe for subsequent use as probiotics. Strain NU10 was found to harbour genes encoding salivaricins A and 9 while strain YU10 was shown to harbour genes encoding salivaricins A3, G32, streptin and slnA1 lantibiotic-like protein. Strain GT2 was shown to harbour genes encoding a large non-lantibiotic bacteriocin (salivaricin-MPS). A new medium for maximum biomass production buffered with 2-(N-morpholino)ethanesulfonic acid (MES) was developed and showed better biomass accumulation compared with other commercial media. Furthermore, we extracted and purified salivaricin 9 (by strain NU10) and salivaricin G32 (by strain YU10) from S. salivarius cells grown aerobically in this medium. In addition to bacteriocin production, S. salivarius strains produced levan-sucrase which was detected by a specific ESI-LC-MS/MS method which indicates additional health benefits from the developed strains. CONCLUSION The current study established the bacteriocin, levan-sucrase production and basic safety features of S. salivarius strains isolated from healthy Malaysian subjects demonstrating their potential for use as probiotics. A new bacteriocin-production medium was developed with potential scale up application for pharmaceuticals and probiotics from S. salivarius generating different lantibiotics. This is relevant for the clinical management of oral cavity and upper respiratory tract in the human population.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Institute of Biological Sciences, Microbiology Division, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Koshy Philip
- Institute of Biological Sciences, Microbiology Division, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Song L, Wang W, Conrads G, Rheinberg A, Sztajer H, Reck M, Wagner-Döbler I, Zeng AP. Genetic variability of mutans streptococci revealed by wide whole-genome sequencing. BMC Genomics 2013; 14:430. [PMID: 23805886 PMCID: PMC3751929 DOI: 10.1186/1471-2164-14-430] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/12/2013] [Indexed: 01/09/2023] Open
Abstract
Background Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood. Results Genomes of 6 clinical S. mutans isolates of different origins, one isolate of S. sobrinus (DSM 20742) and one isolate of S. ratti (DSM 20564) were sequenced and comparatively analyzed. Genome alignment revealed a mosaic-like structure of genome arrangement. Genes related to pathogenicity are found to have high variations among the strains, whereas genes for oxidative stress resistance are well conserved, indicating the importance of this trait in the dental biofilm community. Analysis of genome-scale metabolic networks revealed significant differences in 42 pathways. A striking dissimilarity is the unique presence of two lactate oxidases in S. sobrinus DSM 20742, probably indicating an unusual capability of this strain in producing H2O2 and expanding its ecological niche. In addition, lactate oxidases may form with other enzymes a novel energetic pathway in S. sobrinus DSM 20742 that can remedy its deficiency in citrate utilization pathway. Using 67 S. mutans genomes currently available including the strains sequenced in this study, we estimates the theoretical core genome size of S. mutans, and performed modeling of S. mutans pan-genome by applying different fitting models. An “open” pan-genome was inferred. Conclusions The comparative genome analyses revealed diversities in the mutans streptococci group, especially with respect to the virulence related genes and metabolic pathways. The results are helpful for better understanding the evolution and adaptive mechanisms of these oral pathogen microorganisms and for combating them.
Collapse
Affiliation(s)
- Lifu Song
- Institute of Bioprocess and Biosystems, Technical University Hamburg Harburg, Hamburg Harburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Evans AS, Pybus C, Hansen EJ. Development of a LacZ-based transcriptional reporter system for use with Moraxella catarrhalis. Plasmid 2012; 69:180-5. [PMID: 23219721 DOI: 10.1016/j.plasmid.2012.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/20/2012] [Indexed: 01/13/2023]
Abstract
The lack of a transcriptional reporter system for use in Moraxella catarrhalis has hindered studies of gene regulation in this pathogen. PCR and recombinant DNA methods were used to insert a multicloning site (MCS) and promoterless full-length Escherichia coli lacZ gene, flanked by transcriptional terminators both immediately upstream and downstream, into the M. catarrhalis recombinant plasmid pWW115. Insertion into the MCS in the newly constructed plasmid pASE222 of M. catarrhalis promoter regions controlled by either a repressor (i.e., NsrR) or activator (i.e., PhoB) yielded transcriptional fusion constructs that were appropriately responsive to signal inputs dependent on the host strain genotype, as measured quantitatively by means of a Miller β-galactosidase assay. The transcriptional reporter plasmid pASE222 should prove to be a useful tool for rapid screening of factors affecting gene expression in M. catarrhalis.
Collapse
Affiliation(s)
- Amanda S Evans
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
12
|
Hossain MS, Biswas I. An extracelluar protease, SepM, generates functional competence-stimulating peptide in Streptococcus mutans UA159. J Bacteriol 2012; 194:5886-96. [PMID: 22923597 PMCID: PMC3486099 DOI: 10.1128/jb.01381-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 02/04/2023] Open
Abstract
Cell-cell communication in Gram-positive bacteria often depends on the production of extracellular peptides. The cariogenic bacterium Streptococcus mutans employs so-called competence-stimulating peptide (CSP) to stimulate mutacin (bacteriocin) production and competence development through the activation of the ComDE two-component pathway. In S. mutans, CSP is secreted as a 21-residue peptide; however, mass spectrometric analysis of culture supernatant indicates the presence of an 18-residue proteolytically cleaved species. In this study, using a transposon mutagenesis screening, we identified a cell surface protease that is involved in the processing of 21-residue CSP to generate the 18-residue CSP. We named this protease SepM for streptococcal extracellular protease required for mutacin production. We showed that the truncated 18-residue peptide is the biologically active form and that the specific postexport cleavage is a prerequisite to activate the ComDE two-component signal transduction pathway. We also showed that the CSP and the mutacins are exported outside the cell by the same ABC transporter, NlmTE. Our study further confirmed that the ComDE two-component system is absolutely necessary for mutacin production in S. mutans.
Collapse
|
13
|
Abstract
Streptococcus mutans is generally recognized as a causative agent of human dental caries. The production of mutacins (bacteriocins) by S. mutans is considered to be an important factor in the colonization and establishment of S. mutans in the dental biofilm. Two types of mutacins have been characterized: the lantibiotics and the non-lantibiotics. The lantibiotics generally have a wider spectrum of activity than the non-lantibiotics, which make them attractive targets for development into new antimicrobial modalities. The non-lantibiotics are much more prevalent among strains of S. mutans and play a significant role in both community-level and population-level interactions in the dental biofilm. These interactions are directly mediated through the ComCDE two-component system and the newly characterized LytTR Regulation Systems HdrRM and BrsRM. These systems coordinate natural competence development and mutacin production as a means to acquire transforming DNA either by killing closely related streptococcal species in the vicinity of S. mutans, or through an altruistic suicide mechanism among a subpopulation of competent cells within the S. mutans community. As more S. mutans strains are sequenced, it is anticipated that additional mutacins with novel functions will be discovered, which may yield further insights into the ecological role of mutacins within the oral biofilm.
Collapse
Affiliation(s)
- J Merritt
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
14
|
Kamiya RU, Taiete T, Gonçalves RB. Mutacins of Streptococcus mutans. Braz J Microbiol 2011; 42:1248-58. [PMID: 24031748 PMCID: PMC3768731 DOI: 10.1590/s1517-83822011000400001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 03/21/2011] [Accepted: 05/30/2011] [Indexed: 11/22/2022] Open
Abstract
The colonization and accumulation of Streptococcus mutans are influenced by various factors in the oral cavity, such as nutrition and hygiene conditions of the host, salivary components, cleaning power and salivary flow and characteristics related with microbial virulence factors. Among these virulence factors, the ability to synthesize glucan of adhesion, glucan-binding proteins, lactic acid and bacteriocins could modify the infection process and pathogenesis of this species in the dental biofilm. This review will describe the role of mutacins in transmission, colonization, and/or establishment of S. mutans, the major etiological agent of human dental caries. In addition, we will describe the method for detecting the production of these inhibitory substances in vitro (mutacin typing), classification and diversity of mutacins and the regulatory mechanisms related to its synthesis.
Collapse
Affiliation(s)
- Regianne Umeko Kamiya
- Instituto de Ciências Biológicas e da Saúde da Universidade Federal de Alagoas , Maceió, AL , Brasil
| | | | | |
Collapse
|
15
|
Genome-wide characterization of the SloR metalloregulome in Streptococcus mutans. J Bacteriol 2009; 192:1433-43. [PMID: 19915021 DOI: 10.1128/jb.01161-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Streptococcus mutans is the primary causative agent of human dental caries, a ubiquitous infectious disease for which effective treatment strategies remain elusive. We investigated a 25-kDa SloR metalloregulatory protein in this oral pathogen, along with its target genes that contribute to cariogenesis. Previous studies have demonstrated manganese- and SloR-dependent repression of the sloABCR metal ion transport operon in S. mutans. In the present study, we demonstrate that S. mutans coordinates this repression with that of certain virulence attributes. Specifically, we noted virulence gene repression in a manganese-containing medium when SloR binds to promoter-proximal sequence palindromes on the S. mutans chromosome. We applied a genome-wide approach to elucidate the sequences to which SloR binds and to reveal additional "class I" genes that are subject to SloR- and manganese-dependent repression. These analyses identified 204 S. mutans genes that are preceded by one or more conserved palindromic SloR recognition elements (SREs). We cross-referenced these genes with those that we had identified previously as SloR and/or manganese modulated in microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) experiments. From this analysis, we identified a number of S. mutans virulence genes that are subject to transcriptional upregulation by SloR and noted that such "class II"-type regulation is dependent on direct SloR binding to promoter-distal SREs. These observations are consistent with a bifunctional role for the SloR metalloregulator and implicate it as a target for the development of therapies aimed at alleviating S. mutans-induced caries formation.
Collapse
|
16
|
Abstract
Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.
Collapse
Affiliation(s)
- K Hojo
- Food Science Institute, Meiji Dairies Co., 540 Naruda, Odawara, Kanagawa 250-0862, Japan.
| | | | | | | |
Collapse
|