1
|
Krajnc M, Fei C, Košmrlj A, Kalin M, Stopar D. Mechanical constraints to unbound expansion of B. subtilis on semi-solid surfaces. Microbiol Spectr 2024; 12:e0274023. [PMID: 38047692 PMCID: PMC10783106 DOI: 10.1128/spectrum.02740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE How bacterial cells colonize new territory is a problem of fundamental microbiological and biophysical interest and is key to the emergence of several phenomena of biological, ecological, and medical relevance. Here, we demonstrate how bacteria stuck in a colony of finite size can resume exploration of new territory by aquaplaning and how they fine tune biofilm viscoelasticity to surface material properties that allows them differential mobility. We show how changing local interfacial forces and colony viscosity results in a plethora of bacterial morphologies on surfaces with different physical and mechanical properties.
Collapse
Affiliation(s)
- Mojca Krajnc
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Carl C. Icahn Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA
- Princeton Materials Institute, Princeton University, Princeton, New Jersey, USA
| | - Mitjan Kalin
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - David Stopar
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Dergham Y, Le Coq D, Nicolas P, Bidnenko E, Dérozier S, Deforet M, Huillet E, Sanchez-Vizuete P, Deschamps J, Hamze K, Briandet R. Direct comparison of spatial transcriptional heterogeneity across diverse Bacillus subtilis biofilm communities. Nat Commun 2023; 14:7546. [PMID: 37985771 PMCID: PMC10661151 DOI: 10.1038/s41467-023-43386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Bacillus subtilis can form various types of spatially organised communities on surfaces, such as colonies, pellicles and submerged biofilms. These communities share similarities and differences, and phenotypic heterogeneity has been reported for each type of community. Here, we studied spatial transcriptional heterogeneity across the three types of surface-associated communities. Using RNA-seq analysis of different regions or populations for each community type, we identified genes that are specifically expressed within each selected population. We constructed fluorescent transcriptional fusions for 17 of these genes, and observed their expression in submerged biofilms using time-lapse confocal laser scanning microscopy (CLSM). We found mosaic expression patterns for some genes; in particular, we observed spatially segregated cells displaying opposite regulation of carbon metabolism genes (gapA and gapB), indicative of distinct glycolytic or gluconeogenic regimes coexisting in the same biofilm region. Overall, our study provides a direct comparison of spatial transcriptional heterogeneity, at different scales, for the three main models of B. subtilis surface-associated communities.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MAIAGE, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sandra Dérozier
- Université Paris-Saclay, INRAE, MAIAGE, Jouy-en-Josas, France
| | - Maxime Deforet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Eugénie Huillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, Beirut, Lebanon.
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Dergham Y, Sanchez-Vizuete P, Le Coq D, Deschamps J, Bridier A, Hamze K, Briandet R. Comparison of the Genetic Features Involved in Bacillus subtilis Biofilm Formation Using Multi-Culturing Approaches. Microorganisms 2021; 9:microorganisms9030633. [PMID: 33803642 PMCID: PMC8003051 DOI: 10.3390/microorganisms9030633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Surface-associated multicellular assemblage is an important bacterial trait to withstand harsh environmental conditions. Bacillus subtilis is one of the most studied Gram-positive bacteria, serving as a model for the study of genetic pathways involved in the different steps of 3D biofilm formation. B. subtilis biofilm studies have mainly focused on pellicle formation at the air-liquid interface or complex macrocolonies formed on nutritive agar. However, only few studies focus on the genetic features of B. subtilis submerged biofilm formation and their link with other multicellular models at the air interface. NDmed, an undomesticated B. subtilis strain isolated from a hospital, has demonstrated the ability to produce highly structured immersed biofilms when compared to strains classically used for studying B. subtilis biofilms. In this contribution, we have conducted a multi-culturing comparison (between macrocolony, swarming, pellicle, and submerged biofilm) of B. subtilis multicellular communities using the NDmed strain and mutated derivatives for genes shown to be required for motility and biofilm formation in pellicle and macrocolony models. For the 15 mutated NDmed strains studied, all showed an altered phenotype for at least one of the different culture laboratory assays. Mutation of genes involved in matrix production (i.e., tasA, epsA-O, cap, ypqP) caused a negative impact on all biofilm phenotypes but favored swarming motility on semi-solid surfaces. Mutation of bslA, a gene coding for an amphiphilic protein, affected the stability of the pellicle at the air-liquid interface with no impact on the submerged biofilm model. Moreover, mutation of lytF, an autolysin gene required for cell separation, had a greater effect on the submerged biofilm model than that formed at aerial level, opposite to the observation for lytABC mutant. In addition, B. subtilis NDmed with sinR mutation formed wrinkled macrocolony, less than that formed by the wild type, but was unable to form neither thick pellicle nor structured submerged biofilm. The results are discussed in terms of the relevancy to determine whether genes involved in colony and pellicle formation also govern submerged biofilm formation, by regarding the specificities in each model.
Collapse
Affiliation(s)
- Yasmine Dergham
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Faculty of Science, Lebanese University, 1003 Beirut, Lebanon;
| | - Pilar Sanchez-Vizuete
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
| | - Dominique Le Coq
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Centre National de la Recherche Scientifique (CNRS), Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Julien Deschamps
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300 Fougères, France;
| | - Kassem Hamze
- Faculty of Science, Lebanese University, 1003 Beirut, Lebanon;
| | - Romain Briandet
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Correspondence:
| |
Collapse
|
4
|
Novel Modifications of Nonribosomal Peptides from Brevibacillus laterosporus MG64 and Investigation of Their Mode of Action. Appl Environ Microbiol 2020; 86:AEM.01981-20. [PMID: 32978140 DOI: 10.1128/aem.01981-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Nonribosomal peptides (NRPs) are a class of secondary metabolites usually produced by microorganisms. They are of paramount importance in different applications, including biocontrol and pharmacy. Brevibacillus spp. are a rich source of NRPs yet have received little attention. In this study, we characterize four novel bogorol variants (bogorols I to L, cationic linear lipopeptides) and four succilins (succilins I to L, containing a succinyl group that is attached to the Orn3/Lys3 in bogorols I to L) from the biocontrol strain Brevibacillus laterosporus MG64. Further investigation revealed that the bogorol family of peptides employs an adenylation pathway for lipoinitiation, different from the usual pattern, which is based on an external ligase and coenzyme A. Moreover, the formation of valinol was proven to be mediated by a terminal reductase domain and a reductase encoded by the bogI gene. Furthermore, succinylation, which is a novel type of modification in the family of bogorols, was discovered. Its occurrence requires a high concentration of the substrate (bogorols), but its responsible enzyme remains unknown. Bogorols display potent activity against both Gram-positive and Gram-negative bacteria. Investigation of their mode of action reveals that bogorols form pores in the cell membrane of both Gram-positive and Gram-negative bacteria. The combination of bogorols and relacidines, another class of NRPs produced by B. laterosporus MG64, displays a synergistic effect on different pathogens, suggesting the great potential of both peptides as well as their producer B. laterosporus MG64 for broad applications. Our study provides a further understanding of the bogorol family of peptides as well as their applications.IMPORTANCE NRPs form a class of secondary metabolites with biocontrol and pharmaceutical potential. This work describes the identification of novel bogorol variants and succinylated bogorols (namely, succilins) and further investigates their biosynthetic pathway and mode of action. Adenylation domain-mediated lipoinitiation of bogorols represents a novel pathway by which NRPs incorporate fatty acid tails. This pathway provides the possibility to engineer the lipid tail of NRPs without identifying a fatty acid coenzyme ligase, which is usually not present in the biosynthetic gene cluster. The terminal reductase domain (TD) and BogI-mediated valinol formation and their effect on the biological activity of bogorols are revealed. Succinylation, which is rarely reported in NRPs, was discovered in the bogorol family of peptides. We demonstrate that bogorols combat bacterial pathogens by forming pores in the cell membrane. We also report the synergistic effect of two natural products (relacidine B and bogorol K) produced by the same strain, which is relevant for competition for a niche.
Collapse
|
5
|
Abstract
All living organisms must degrade mRNA to adapt gene expression to changing environments. In bacteria, initiation of mRNA decay generally occurs through an endonucleolytic cleavage. In the Gram-positive model organism Bacillus subtilis and probably many other bacteria, the key enzyme for this task is RNase Y, which is anchored at the inner cell membrane. While this pseudocompartmentalization appears coherent with translation occurring primarily at the cell periphery, our knowledge on the distribution and dynamics of RNase Y in living cells is very scarce. Here, we show that RNase Y moves rapidly along the membrane in the form of dynamic short-lived foci. These foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. This contrasts with RNase E, the major decay-initiating RNase in E. coli, where it was shown that formation of foci is dependent on the presence of RNA substrates. We also show that a protein complex (Y-complex) known to influence the specificity of RNase Y activity in vivo is capable of shifting the assembly status of RNase Y toward fewer and smaller complexes. This highlights fundamental differences between RNase E- and RNase Y-based degradation machineries. Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism Bacillus subtilis. This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells. We find that RNase Y diffuses rapidly at the membrane in the form of dynamic short-lived foci. Unlike RNase E, the major decay-initiating RNase in Escherichia coli, the formation of foci is not dependent on the presence of RNA substrates. On the contrary, RNase Y foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. The Y-complex of three proteins (YaaT, YlbF, and YmcA) has previously been shown to play an important role for RNase Y activity in vivo. We demonstrate that Y-complex mutations have an effect similar to but much stronger than that of depletion of RNA in increasing the number and size of RNase Y foci at the membrane. Our data suggest that the Y-complex shifts the assembly status of RNase Y toward fewer and smaller complexes, thereby increasing cleavage efficiency of complex substrates like polycistronic mRNAs.
Collapse
|
6
|
Active depinning of bacterial droplets: The collective surfing of Bacillus subtilis. Proc Natl Acad Sci U S A 2017; 114:5958-5963. [PMID: 28536199 DOI: 10.1073/pnas.1703997114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How systems are endowed with migration capacity is a fascinating question with implications ranging from the design of novel active systems to the control of microbial populations. Bacteria, which can be found in a variety of environments, have developed among the richest set of locomotion mechanisms both at the microscopic and collective levels. Here, we uncover, experimentally, a mode of collective bacterial motility in humid environment through the depinning of bacterial droplets. Although capillary forces are notoriously enormous at the bacterial scale, even capable of pinning water droplets of millimetric size on inclined surfaces, we show that bacteria are able to harness a variety of mechanisms to unpin contact lines, hence inducing a collective slipping of the colony across the surface. Contrary to flagella-dependent migration modes like swarming, we show that this much faster "colony surfing" still occurs in mutant strains of Bacillus subtilis lacking flagella. The active unpinning seen in our experiments relies on a variety of microscopic mechanisms, which could each play an important role in the migration of microorganisms in humid environment.
Collapse
|
7
|
Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants. mBio 2017; 8:mBio.02102-16. [PMID: 28174308 PMCID: PMC5296600 DOI: 10.1128/mbio.02102-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion. Swarming motility enables rapid coordinated surface translocation of a microbial community, preceding the formation of a biofilm. This movement occurs in thin films and involves specialized swarmer cells localized to a narrow zone at the extreme swarm edge. In the B. subtilis system, using a synthetic medium, the swarm front remains as a cellular monolayer for up to 1.5 cm. Swarmers display high-velocity whirls and vortexing and are often assumed to drive community expansion at the expense of cell growth. Surprisingly, little attention has been paid to which cells in a swarm are actually growing and contributing to the overall biomass. Here, we show that swarmers not only lead the population forward but continue to multiply as a source of all cells in the community. We present a model that explains how exponential growth of only a few cells is compatible with the linear expansion rate of the swarm.
Collapse
|
8
|
Rodríguez-Torres MD, Islas-Robles Á, Gómez-Lunar Z, Delaye L, Hernández-González I, Souza V, Travisano M, Olmedo-Álvarez G. Phenotypic Microdiversity and Phylogenetic Signal Analysis of Traits Related to Social Interaction in Bacillus spp. from Sediment Communities. Front Microbiol 2017; 8:29. [PMID: 28194138 PMCID: PMC5276817 DOI: 10.3389/fmicb.2017.00029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
Understanding the relationship between phylogeny and predicted traits is important to uncover the dimension of the predictive power of a microbial composition approach. Numerous works have addressed the taxonomic composition of bacteria in communities, but little is known about trait heterogeneity in closely related bacteria that co-occur in communities. We evaluated a sample of 467 isolates from the Churince water system of the Cuatro Cienegas Basin (CCB), enriched for Bacillus spp. The 16S rRNA gene revealed a random distribution of taxonomic groups within this genus among 11 sampling sites. A subsample of 141 Bacillus spp. isolates from sediment, with seven well-represented species was chosen to evaluate the heterogeneity and the phylogenetic signal of phenotypic traits that are known to diverge within small clades, such as substrate utilization, and traits that are conserved deep in the lineage, such as prototrophy, swarming and biofilm formation. We were especially interested in evaluating social traits, such as swarming and biofilm formation, for which cooperation is needed to accomplish a multicellular behavior and for which there is little information from natural communities. The phylogenetic distribution of traits, evaluated by the Purvis and Fritz’s D statistics approached a Brownian model of evolution. Analysis of the phylogenetic relatedness of the clusters of members sharing the trait using consenTRAIT algorithm, revealed more clustering and deeper phylogenetic signal for prototrophy, biofilm and swimming compared to the data obtained for substrate utilization. The explanation to the observed Brownian evolution of social traits could be either loss due to complete dispensability or to compensated trait loss due to the availability of public goods. Since many of the evaluated traits can be considered to be collective action traits, such as swarming, motility and biofilm formation, the observed microdiversity within taxonomic groups might be explained by distributed functions in structured communities.
Collapse
Affiliation(s)
- María Dolores Rodríguez-Torres
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - África Islas-Robles
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - Zulema Gómez-Lunar
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - Luis Delaye
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - Ismael Hernández-González
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - Valeria Souza
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología Universidad Nacional Autónoma de México Mexico City, México
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul MN, USA
| | - Gabriela Olmedo-Álvarez
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| |
Collapse
|
9
|
An in-depth characterization of the entomopathogenic strain Bacillus pumilus 15.1 reveals that it produces inclusion bodies similar to the parasporal crystals of Bacillus thuringiensis. Appl Microbiol Biotechnol 2016; 100:3637-54. [PMID: 26782747 DOI: 10.1007/s00253-015-7259-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
In the present work, the local isolate Bacillus pumilus 15.1 has been morphologically and biochemically characterized in order to gain a better understanding of this novel entomopathogenic strain active against Ceratitis capitata. This strain could represent an interesting biothechnological tool for the control of this pest. Here, we report on its nutrient preferences, extracellular enzyme production, motility mechanism, biofilm production, antibiotic suceptibility, natural resistance to chemical and physical insults, and morphology of the vegetative cells and spores. The pathogen was found to be β-hemolytic and susceptible to penicillin, ampicillin, chloramphenicol, gentamicin, kanamycin, rifampicin, tetracycline, and streptomycin. We also report a series of biocide, thermal, and UV treatments that reduce the viability of B. pumilus 15.1 by several orders of magnitude. Heat and chemical treatments kill at least 99.9 % of vegetative cells, but spores were much more resistant. Bleach was the only chemical that was able to completely eliminate B. pumilus 15.1 spores. Compared to the B. subtilis 168 spores, B. pumilus 15.1 spores were between 2.67 and 350 times more resistant to UV radiation while the vegetative cells of B. pumilus 15.1 were almost up to 3 orders of magnitude more resistant than the model strain. We performed electron microscopy for morphological characterization, and we observed geometric structures resembling the parasporal crystal inclusions synthesized by Bacillus thuringiensis. Some of the results obtained here such as the parasporal inclusion bodies produced by B. pumilus 15.1 could potentially represent virulence factors of this novel and potentially interesting strain.
Collapse
|
10
|
Ke WJ, Hsueh YH, Cheng YC, Wu CC, Liu ST. Water surface tension modulates the swarming mechanics of Bacillus subtilis. Front Microbiol 2015; 6:1017. [PMID: 26557106 PMCID: PMC4616241 DOI: 10.3389/fmicb.2015.01017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.
Collapse
Affiliation(s)
- Wan-Ju Ke
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan ; Research Center for Bacterial Pathogenesis, Chang Gung University Taoyuan, Taiwan
| | - Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University Taoyuan, Taiwan
| | - Yu-Chieh Cheng
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science Proteomic Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan ; Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch Chiayi, Taiwan
| |
Collapse
|
11
|
Debois D, Fernandez O, Franzil L, Jourdan E, de Brogniez A, Willems L, Clément C, Dorey S, De Pauw E, Ongena M. Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:570-582. [PMID: 25731631 DOI: 10.1111/1758-2229.12286] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Some plant-associated bacteria such as Bacillus sp. can protect their host from pathogen ingress and this biocontrol activity correlates with their potential to form multiple antibiotics upon in vitro growth. However, our knowledge on antibiotic production by soil bacilli evolving on roots in natural conditions is still limited. In this work, antibiome imaging first revealed that the lipopeptide surfactin is the main bacterial ingredient produced in planta within the first hours of interaction with root tissues. We further demonstrated that surfactin synthesis is specifically stimulated upon perception of plant cell wall polymers such as xylan or arabinogalactan, leading to fast accumulation of micromolar amounts in the root environment. At such concentrations, the lipopeptide may not only favour the ecological fitness of the producing strain in term of root colonization, but also triggers systemic resistance in the host plant. This surfactin-induced immunity primes the plant to better resist further pathogen ingress, and involves only limited expression of defence-related molecular events and does not provoke seedling growth inhibition. By contrast with the strong response mounted upon perception of pathogens, this strongly attenuated defensive reaction induced by surfactin in plant tissues should help Bacillus to be tolerated as saprophytic partner by its host.
Collapse
Affiliation(s)
- Delphine Debois
- Mass Spectrometry Laboratory (LSM/GIGA-R), Chemistry Department, University of Liège, Liège, 4000, Belgium
| | - Olivier Fernandez
- URVVC-EA 4707, Stress, Défenses et Reproduction des Plantes, Université de Champagne-Ardenne, Reims, BP 1039, France
| | - Laurent Franzil
- Wallon Center for Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Emmanuel Jourdan
- Wallon Center for Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Alix de Brogniez
- Molecular Biology (GxABT), Molecular and Cellular Epigenetics (GIGA), University of Liège, Gembloux, 5030, Belgium
| | - Luc Willems
- Molecular Biology (GxABT), Molecular and Cellular Epigenetics (GIGA), University of Liège, Gembloux, 5030, Belgium
| | - Christophe Clément
- URVVC-EA 4707, Stress, Défenses et Reproduction des Plantes, Université de Champagne-Ardenne, Reims, BP 1039, France
| | - Stephan Dorey
- URVVC-EA 4707, Stress, Défenses et Reproduction des Plantes, Université de Champagne-Ardenne, Reims, BP 1039, France
| | - Edwin De Pauw
- Mass Spectrometry Laboratory (LSM/GIGA-R), Chemistry Department, University of Liège, Liège, 4000, Belgium
| | - Marc Ongena
- Wallon Center for Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| |
Collapse
|
12
|
Qian S, Lu H, Meng P, Zhang C, Lv F, Bie X, Lu Z. Effect of inulin on efficient production and regulatory biosynthesis of bacillomycin D in Bacillus subtilis fmbJ. BIORESOURCE TECHNOLOGY 2015; 179:260-267. [PMID: 25545095 DOI: 10.1016/j.biortech.2014.11.086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
The effect of inulin on the production of bacillomycin D and the levels of mRNA of bacillomycin D synthetase genes: bmyA (BYA), bmyB (BYB), bmyC (BYC), the thioesterase gene (TE) and regulating genes: AbrB, ComA, DegU, PhrC, SigmaH and Spo0A in Bacillus subtilis fmbJ were investigated. The production of bacillomycin D was enhanced with the increase of biomass concentration. The maximum production and productivity of bacillomycin D were found to be 1227.49 mg/L and 10.23 mg/L h. Inulin significantly improved the expression of bacillomycin D synthetase genes: bmyA (BYA), bmyB (BYB), bmyC (BYC) and the thioesterase gene (TE). Also, inulin up-regulated ComA, DegU, SigmaH and Spo0A and therefore promoted the high production of bacillomycin D. Our results provided a practical approach for efficient production of bacillomycin D and a meaningful explanation for regulatory mechanism of bacillomycin D biosynthesis.
Collapse
Affiliation(s)
- Shiquan Qian
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Department of Bioengineering and Food, Bengbu University, Bengbu 233030, China
| | - Hedong Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Panpan Meng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
13
|
New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis. J Bacteriol 2014; 197:699-709. [PMID: 25448819 DOI: 10.1128/jb.02501-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed.
Collapse
|
14
|
Debois D, Jourdan E, Smargiasso N, Thonart P, De Pauw E, Ongena M. Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 2014; 86:4431-8. [PMID: 24712753 DOI: 10.1021/ac500290s] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some soil Bacilli living in association with plant roots can protect their host from infection by pathogenic microbes and are therefore being developed as biological agents to control plant diseases. The plant-protective activity of these bacteria has been correlated with the potential to secrete a wide array of antibiotic compounds upon growth as planktonic cells in isolated cultures under laboratory conditions. However, in situ expression of these antibiotics in the rhizosphere where bacterial cells naturally colonize root tissues is still poorly understood. In this work, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to examine spatiotemporal changes in the secreted antibiome of Bacillus amyloliquefaciens developing as biofilms on roots. Nonribosomal lipopeptides such as the plant immunity elicitor surfactin or the highly fungitoxic iturins and fengycins were readily produced albeit in different time frames and quantities in the surrounding medium. Interestingly, tandem mass spectrometry (MS/MS) experiments performed directly from the gelified culture medium also allowed us to identify a new variant of surfactins released at later time points. However, no other bioactive compounds such as polyketides were detected at any time, strongly suggesting that the antibiome expressed in planta by B. amyloliquefaciens does not reflect the vast genetic arsenal devoted to the formation of such compounds. This first dynamic study reveals the power of MALDI MSI as tool to identify and map antibiotics synthesized by root-associated bacteria and, more generally, to investigate plant-microbe interactions at the molecular level.
Collapse
Affiliation(s)
- Delphine Debois
- Mass Spectrometry Laboratory, Chemistry Department, University of Liege , 4000 Liege, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M. Plant defense stimulation by natural isolates of bacillus depends on efficient surfactin production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:87-100. [PMID: 24156767 DOI: 10.1094/mpmi-09-13-0262-r] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some plant-associated Bacillus strains produce induced systemic resistance (ISR) in the host, which contributes to their protective effect against phytopathogens. Little is known about the variety of elicitors responsible for ISR that are produced by Bacillus strains. Working with a particular strain, we have previously identified the surfactin lipopeptide as a main compound stimulating plant immune-related responses. However, with the perspective of developing Bacillus strains as biocontrol agents, it is important to establish whether a central role of surfactin is generally true for isolates belonging to the B. subtilis/amyloliquefaciens complex. To that end, we set up a comparative study involving a range of natural strains. Their secretomes were first tested for triggering early defense events in cultured tobacco cells. Six isolates with contrasting activities were further evaluated for ISR in plants, based both on macroscopic disease reduction and on stimulation of the oxylipin pathway as defense mechanism. A strong correlation was found between defense-inducing activity and the amount of surfactin produced by the isolates. These results support the idea of a widespread role for surfactin as a nonvolatile elicitor formed by B. subtilis/amyloliquefaciens, and screening for strong surfactin producers among strains naturally secreting multiple antibiotics could be an efficient approach to select good candidates as biopesticides.
Collapse
|
16
|
Pertot I, Puopolo G, Hosni T, Pedrotti L, Jourdan E, Ongena M. Limited impact of abiotic stress on surfactin productionin plantaand on disease resistance induced byBacillus amyloliquefaciensS499 in tomato and bean. FEMS Microbiol Ecol 2013; 86:505-19. [DOI: 10.1111/1574-6941.12177] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 01/28/2023] Open
Affiliation(s)
- Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources; Research and Innovation Centre; Fondazione Edmund Mach (FEM); S. Michele all'Adige Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources; Research and Innovation Centre; Fondazione Edmund Mach (FEM); S. Michele all'Adige Italy
| | - Taha Hosni
- Department of Sustainable Agro-Ecosystems and Bioresources; Research and Innovation Centre; Fondazione Edmund Mach (FEM); S. Michele all'Adige Italy
| | - Lorenzo Pedrotti
- Department of Sustainable Agro-Ecosystems and Bioresources; Research and Innovation Centre; Fondazione Edmund Mach (FEM); S. Michele all'Adige Italy
| | - Emmanuel Jourdan
- Walloon Centre for Industrial Biology; Bioindustry Unit; Gembloux Agro-Bio Tech; University of Liège; Gembloux Belgium
| | - Marc Ongena
- Walloon Centre for Industrial Biology; Bioindustry Unit; Gembloux Agro-Bio Tech; University of Liège; Gembloux Belgium
| |
Collapse
|
17
|
Krzyzanowska D, Obuchowski M, Bikowski M, Rychlowski M, Jafra S. Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. SENSORS 2012; 12:17608-19. [PMID: 23250280 PMCID: PMC3571856 DOI: 10.3390/s121217608] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 11/24/2022]
Abstract
The ability to colonize the host plants’ rhizospheres is a crucial feature to study in the case of Plant Growth Promoting Rhizobacteria (PGPRs) with potential agricultural applications. In this work, we have created GFP-tagged derivatives of three candidate PGPRs: Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44. The presence of these strains in the rhizosphere of soil-grown potato (Solanum tuberosum L.) was detected with a classical fluorescence microscope and a confocal laser scanning microscope (CLSM). In this work, we have used a broad-field-of-view CLMS device, dedicated to in vivo analysis of macroscopic objects, equipped with an automated optical zoom system and tunable excitation and detection spectra. We show that features of this type of CLSM microscopes make them particularly well suited to study root colonization by microorganisms. To facilitate the detection of small and scattered bacterial populations, we have developed a fast and user-friendly enrichment method for root sample preparation. The described method, thanks to the in situ formation of mini-colonies, enables visualization of bacterial colonization sites on large root fragments. This approach can be easily modified to study colonization patterns of other fluorescently tagged strains. Additionally, dilution plating of the root extracts was performed to estimate the cell number of MB73/2, P482 and A44 in the rhizosphere of the inoculated plants.
Collapse
Affiliation(s)
- Dorota Krzyzanowska
- Laboratory of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland; E-Mail:
| | - Michal Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG&MUG, Medical University of Gdansk, 80-822 Gdansk, Poland; E-Mails: (M.O.); (M.B.)
| | - Mariusz Bikowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG&MUG, Medical University of Gdansk, 80-822 Gdansk, Poland; E-Mails: (M.O.); (M.B.)
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland; E-Mail:
| | - Sylwia Jafra
- Laboratory of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +48-58-523-63-15; Fax: +48-58-523-64-26
| |
Collapse
|
18
|
Zafra O, Lamprecht-Grandío M, de Figueras CG, González-Pastor JE. Extracellular DNA release by undomesticated Bacillus subtilis is regulated by early competence. PLoS One 2012; 7:e48716. [PMID: 23133654 PMCID: PMC3487849 DOI: 10.1371/journal.pone.0048716] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/27/2012] [Indexed: 12/02/2022] Open
Abstract
Extracellular DNA (eDNA) release is a widespread capacity described in many microorganisms. We identified and characterized lysis-independent eDNA production in an undomesticated strain of Bacillus subtilis. DNA fragments are released during a short time in late-exponential phase. The released eDNA corresponds to whole genome DNA, and does not harbour mutations suggesting that is not the result of error prone DNA synthesis. The absence of eDNA was linked to a spread colony morphology, which allowed a visual screening of a transposon library to search for genes involved in its production. Transposon insertions in genes related to quorum sensing and competence (oppA, oppF and comXP) and to DNA metabolism (mfd and topA) were impaired in eDNA release. Mutants in early competence genes such as comA and srfAA were also defective in eDNA while in contrast mutations in late competence genes as those for the DNA uptake machinery had no effect. A subpopulation of cells containing more DNA is present in the eDNA producing strains but absent from the eDNA defective strain. Finally, competent B. subtilis cells can be transformed by eDNA suggesting it could be used in horizontal gene transfer and providing a rationale for the molecular link between eDNA release and early-competence in B. subtilis that we report.
Collapse
Affiliation(s)
- Olga Zafra
- Department of Molecular Evolution, Center of Astrobiology (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - María Lamprecht-Grandío
- Department of Molecular Evolution, Center of Astrobiology (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | | | - José Eduardo González-Pastor
- Department of Molecular Evolution, Center of Astrobiology (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
- * E-mail:
| |
Collapse
|
19
|
Hamze K, Autret S, Hinc K, Laalami S, Julkowska D, Briandet R, Renault M, Absalon C, Holland IB, Putzer H, Séror SJ. Single-cell analysis in situ in a Bacillus subtilis swarming community identifies distinct spatially separated subpopulations differentially expressing hag (flagellin), including specialized swarmers. MICROBIOLOGY-SGM 2011; 157:2456-2469. [PMID: 21602220 DOI: 10.1099/mic.0.047159-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The non-domesticated Bacillus subtilis strain 3610 displays, over a wide range of humidity, hyper-branched, dendritic, swarming-like migration on a minimal agar medium. At high (70 %) humidity, the laboratory strain 168 sfp+ (producing surfactin) behaves very similarly, although this strain carries a frameshift mutation in swrA, which another group has shown under their conditions (which include low humidity) is essential for swarming. We reconcile these different results by demonstrating that, while swrA is essential for dendritic migration at low humidity (30-40 %), it is dispensable at high humidity. Dendritic migration (flagella- and surfactin-dependent) of strains 168 sfp+ swrA and 3610 involves elongation of dendrites for several hours as a monolayer of cells in a thin fluid film. This enabled us to determine in situ the spatiotemporal pattern of expression of some key players in migration as dendrites develop, using gfp transcriptional fusions for hag (encoding flagellin), comA (regulation of surfactin synthesis) as well as eps (exopolysaccharide synthesis). Quantitative (single-cell) analysis of hag expression in situ revealed three spatially separated subpopulations or cell types: (i) networks of chains arising early in the mother colony (MC), expressing eps but not hag; (ii) largely immobile cells in dendrite stems expressing intermediate levels of hag; and (iii) a subpopulation of cells with several distinctive features, including very low comA expression but hyper-expression of hag (and flagella). These specialized cells emerge from the MC to spearhead the terminal 1 mm of dendrite tips as swirling and streaming packs, a major characteristic of swarming migration. We discuss a model for this swarming process, emphasizing the importance of population density and of the complementary roles of packs of swarmers driving dendrite extension, while non-mobile cells in the stems extend dendrites by multiplication.
Collapse
Affiliation(s)
- Kassem Hamze
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Sabine Autret
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Krzysztof Hinc
- Medical University of Gdansk, Debinki 1, 80-211, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, Gdansk, Poland.,Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Soumaya Laalami
- CNRS UPR9273, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Daria Julkowska
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | | | | | - Cédric Absalon
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - I Barry Holland
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Harald Putzer
- CNRS UPR9273, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Simone J Séror
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| |
Collapse
|
20
|
Nagorska K, Ostrowski A, Hinc K, Holland IB, Obuchowski M. Importance of eps genes from Bacillus subtilis in biofilm formation and swarming. J Appl Genet 2011; 51:369-81. [PMID: 20720312 DOI: 10.1007/bf03208867] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Unicellular organisms naturally form multicellular communities, differentiate into specialized cells, and synchronize their behaviour under certain conditions. Swarming, defined as a movement of a large mass of bacteria on solid surfaces, is recognized as a preliminary step in the formation of biofilms. The main aim of this work was to study the role of a group of genes involved in exopolysaccharide biosynthesis during pellicle formation and swarming in Bacillus subtilis strain 168. To assess the role of particular proteins encoded by the group of epsI-epsO genes that form the eps operon, we constructed a series of insertional mutants. The results obtained showed that mutations in epsJ-epsN, but not in the last gene of the eps operon (epsO), have a severe effect on pellicle formation under all tested conditions. Moreover, the inactivation of 5 out of the 6 genes analysed caused total inhibition of swarming in strain 168 (that does not produce surfactin) on LB medium. Following restoration of the sfp gene (required for production of surfactin, which is essential for swarming of the wild-type bacteria), the sfp+ strains defective in eps genes (except epsO) generated significantly different patterns during swarming on synthetic B medium, as compared to the parental strain 168 sfp+.
Collapse
Affiliation(s)
- K Nagorska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | | | | | | | | |
Collapse
|
21
|
Bridier A, Le Coq D, Dubois-Brissonnet F, Thomas V, Aymerich S, Briandet R. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging. PLoS One 2011; 6:e16177. [PMID: 21267464 PMCID: PMC3022735 DOI: 10.1371/journal.pone.0016177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022] Open
Abstract
The formation of multicellular communities known as biofilms is the part of bacterial life cycle in which bacteria display cooperative behaviour and differentiated phenotypes leading to specific functions. Bacillus subtilis is a Gram-positive bacterium that has served for a decade as a model to study the molecular pathways that control biofilm formation. Most of the data on B. subtilis biofilms have come from studies on the formation of pellicles at the air-liquid interface, or on the complex macrocolonies that develop on semi-solid nutritive agar. Here, using confocal laser scanning microcopy, we show that B. subtilis strains of different origins are capable of forming biofilms on immersed surfaces with dramatically protruding "beanstalk-like" structures with certain strains. Indeed, these structures can reach a height of more than 300 µm with one undomesticated strain from a medical environment. Using 14 GFP-labeled mutants previously described as affecting pellicle or complex colony formation, we have identified four genes whose inactivation significantly impeded immersed biofilm development, and one mutation triggering hyperbiofilm formation. We also identified mutations causing the three-dimensional architecture of the biofilm to be altered. Taken together, our results reveal that B. subtilis is able to form specific biofilm features on immersed surfaces, and that the development of these multicellular surface-associated communities involves regulation pathways that are common to those governing the formation of pellicle and/or complex colonies, and also some specific mechanisms. Finally, we propose the submerged surface-associated biofilm as another relevant model for the study of B. subtilis multicellular communities.
Collapse
|
22
|
Zarrineh P, Fierro AC, Sánchez-Rodríguez A, De Moor B, Engelen K, Marchal K. COMODO: an adaptive coclustering strategy to identify conserved coexpression modules between organisms. Nucleic Acids Res 2010; 39:e41. [PMID: 21149270 PMCID: PMC3074154 DOI: 10.1093/nar/gkq1275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Increasingly large-scale expression compendia for different species are becoming available. By exploiting the modularity of the coexpression network, these compendia can be used to identify biological processes for which the expression behavior is conserved over different species. However, comparing module networks across species is not trivial. The definition of a biologically meaningful module is not a fixed one and changing the distance threshold that defines the degree of coexpression gives rise to different modules. As a result when comparing modules across species, many different partially overlapping conserved module pairs across species exist and deciding which pair is most relevant is hard. Therefore, we developed a method referred to as conserved modules across organisms (COMODO) that uses an objective selection criterium to identify conserved expression modules between two species. The method uses as input microarray data and a gene homology map and provides as output pairs of conserved modules and searches for the pair of modules for which the number of sharing homologs is statistically most significant relative to the size of the linked modules. To demonstrate its principle, we applied COMODO to study coexpression conservation between the two well-studied bacteria Escherichia coli and Bacillus subtilis. COMODO is available at: http://homes.esat.kuleuven.be/∼kmarchal/Supplementary_Information_Zarrineh_2010/comodo/index.html.
Collapse
Affiliation(s)
- Peyman Zarrineh
- Department of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides fromBacillusandPseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 2010; 34:1037-62. [DOI: 10.1111/j.1574-6976.2010.00221.x] [Citation(s) in RCA: 719] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
24
|
Abstract
The Lia system, a cell envelope stress response module of Bacillus subtilis, is comprised of the LiaRS two-component system and a membrane-anchored inhibitor protein, LiaF. It is highly conserved in the Firmicutes bacteria, and all orthologs investigated so far are activated by cell wall antibiotics. In response to envelope stress, the systems in Firmicutes cocci induce the expression of a number of genes that are involved in conferring resistance against its inducers. In contrast, a complete picture of the LiaR regulon of B. subtilis is still missing and no phenotypes could be associated with mutants lacking LiaRS. Here, we performed genome-wide transcriptomic, proteomic, and in-depth phenotypic profiling of constitutive "Lia ON" and "Lia OFF" mutants to obtain a comprehensive picture of the Lia response of Bacillus subtilis. In addition to the known targets liaIH and yhcYZ-yhdA, we identified ydhE as a novel gene affected by LiaR-dependent regulation. The results of detailed follow-up gene expression studies, together with proteomic analysis, demonstrate that the liaIH operon represents the only relevant LiaR target locus in vivo. It encodes a small membrane protein (LiaI) and a phage shock protein homolog (LiaH). LiaH forms large oligomeric rings reminiscent of those described for Escherichia coli PspA or Arabidopsis thaliana Vipp1. The results of comprehensive phenotype studies demonstrated that the gene products of the liaIH operon are involved in protecting the cell against oxidative stress and some cell wall antibiotics. Our data suggest that the LiaFSR system of B. subtilis and, presumably, other Firmicutes bacilli coordinates a phage shock protein-like response.
Collapse
|
25
|
Coutte F, Leclère V, Béchet M, Guez JS, Lecouturier D, Chollet-Imbert M, Dhulster P, Jacques P. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol 2010; 109:480-491. [PMID: 20148996 DOI: 10.1111/j.1365-2672.2010.04683.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS To analyse the effects of plipastatin operon disruption and constitutive expression of surfactin operon in Bacillus subtilis 168 on surfactin productivity, in vitro invasive growth and antagonism against fungi. METHODS AND RESULTS The srfA native promoter was replaced by the constitutive promoter P(repU) in B. subtilis 168 after integration of a functional sfp gene. Moreover, the plipastatin synthesis was further disrupted in the B. subtilis 168 derivatives. In liquid media, an earlier and higher expression of P(repU), than that found with P(srfA), led to a specific surfactin production fivefold higher after 6 h of culture. On solid media, not only the invasive growth and the haemolytic activity but also the antifungal activity of the constitutive strains were improved when compared to the parental strain BBG111. As expected, the disruption of the plipastatin operon strongly reduced in vitro antifungal properties but, interestingly, enhanced specific surfactin production (1.47 g g(-1) of biomass), spreading behaviour and haemolytic activity of the strains. CONCLUSIONS This work demonstrates for the first time the interdependency of surfactin and plipastatin regarding their biosynthesis as well as their influence on the biological activities of the producing strain. SIGNIFICANCE AND IMPACT OF THE STUDY The constitutive overproduction of surfactin enhances the invasive growth and the in vitro antagonistic activity of the mutant strain. Both properties are known to play an important role in the biocontrol of plant diseases. Plipastatin operon disruption increases the surfactin productivity of mutant strains. These mutants are interesting for use in continuous bioprocesses for surfactin production or in bioremediation.
Collapse
Affiliation(s)
- F Coutte
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech'Lille, IUT A, Université des Sciences et Technologies de Lille, Boulevard Paul, Villeneuve d'Ascq Cedex, France
| | - V Leclère
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech'Lille, IUT A, Université des Sciences et Technologies de Lille, Boulevard Paul, Villeneuve d'Ascq Cedex, France
| | - M Béchet
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech'Lille, IUT A, Université des Sciences et Technologies de Lille, Boulevard Paul, Villeneuve d'Ascq Cedex, France
| | - J-S Guez
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech'Lille, IUT A, Université des Sciences et Technologies de Lille, Boulevard Paul, Villeneuve d'Ascq Cedex, France
| | - D Lecouturier
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech'Lille, IUT A, Université des Sciences et Technologies de Lille, Boulevard Paul, Villeneuve d'Ascq Cedex, France
| | - M Chollet-Imbert
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech'Lille, IUT A, Université des Sciences et Technologies de Lille, Boulevard Paul, Villeneuve d'Ascq Cedex, France
| | - P Dhulster
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech'Lille, IUT A, Université des Sciences et Technologies de Lille, Boulevard Paul, Villeneuve d'Ascq Cedex, France
| | - P Jacques
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM, UPRES EA 1026), Polytech'Lille, IUT A, Université des Sciences et Technologies de Lille, Boulevard Paul, Villeneuve d'Ascq Cedex, France
| |
Collapse
|
26
|
Abstract
We redemonstrate that SwrA is essential for swarming motility in Bacillus subtilis, and we reassert that laboratory strains of B. subtilis do not swarm. Additionally, we find that a number of other genes, previously reported to be required for swarming in laboratory strains, are dispensable for robust swarming motility in an undomesticated strain. We attribute discrepancies in the literature to a lack of reproducible standard experimental conditions, selection for spontaneous swarming suppressors, inadvertent genetic linkage to swarming mutations, and auxotrophy.
Collapse
|