1
|
Walsh BJC, Costa SS, Edmonds KA, Trinidad JC, Issoglio FM, Brito JA, Giedroc DP. Metabolic and Structural Insights into Hydrogen Sulfide Mis-Regulation in Enterococcus faecalis. Antioxidants (Basel) 2022; 11:1607. [PMID: 36009332 PMCID: PMC9405070 DOI: 10.3390/antiox11081607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S) is implicated as a cytoprotective agent that bacteria employ in response to host-induced stressors, such as oxidative stress and antibiotics. The physiological benefits often attributed to H2S, however, are likely a result of downstream, more oxidized forms of sulfur, collectively termed reactive sulfur species (RSS) and including the organic persulfide (RSSH). Here, we investigated the metabolic response of the commensal gut microorganism Enterococcus faecalis to exogenous Na2S as a proxy for H2S/RSS toxicity. We found that exogenous sulfide increases protein abundance for enzymes responsible for the biosynthesis of coenzyme A (CoA). Proteome S-sulfuration (persulfidation), a posttranslational modification implicated in H2S signal transduction, is also widespread in this organism and is significantly elevated by exogenous sulfide in CstR, the RSS sensor, coenzyme A persulfide (CoASSH) reductase (CoAPR) and enzymes associated with de novo fatty acid biosynthesis and acetyl-CoA synthesis. Exogenous sulfide significantly impacts the speciation of fatty acids as well as cellular concentrations of acetyl-CoA, suggesting that protein persulfidation may impact flux through these pathways. Indeed, CoASSH is an inhibitor of E. faecalis phosphotransacetylase (Pta), suggesting that an important metabolic consequence of increased levels of H2S/RSS may be over-persulfidation of this key metabolite, which, in turn, inhibits CoA and acyl-CoA-utilizing enzymes. Our 2.05 Å crystallographic structure of CoA-bound CoAPR provides new structural insights into CoASSH clearance in E. faecalis.
Collapse
Affiliation(s)
- Brenna J. C. Walsh
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Sofia Soares Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | | - Federico M. Issoglio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET and Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - José A. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7003, USA
| |
Collapse
|
2
|
Smithers L, Olatunji S, Caffrey M. Bacterial Lipoprotein Posttranslational Modifications. New Insights and Opportunities for Antibiotic and Vaccine Development. Front Microbiol 2021; 12:788445. [PMID: 34950121 PMCID: PMC8689077 DOI: 10.3389/fmicb.2021.788445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoproteins are some of the most abundant proteins in bacteria. With a lipid anchor to the cell membrane, they function as enzymes, inhibitors, transporters, structural proteins, and as virulence factors. Lipoproteins activate the innate immune system and have biotechnological applications. The first lipoprotein was described by Braun and Rehn in 1969. Up until recently, however, work on lipoproteins has been sluggish, in part due to the challenges of handling proteins that are anchored to membranes by covalently linked lipids or are membrane integral. Activity in the area has quickened of late. In the past 5 years, high-resolution structures of the membrane enzymes of the canonical lipoprotein synthesis pathway have been determined, new lipoprotein types have been discovered and the enzymes responsible for their synthesis have been characterized biochemically. This has led to a flurry of activity aimed at developing novel antibiotics targeting these enzymes. In addition, surface exposed bacterial lipoproteins have been utilized as candidate vaccine antigens, and their potential to act as self-adjuvanting antigens is increasingly recognized. A summary of the latest developments in lipoproteins and their synthesis, as well as how this information is being exploited for therapeutic purposes is presented here.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Samir Olatunji
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Martin Caffrey
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Payen S, Roy D, Boa A, Okura M, Auger JP, Segura M, Gottschalk M. Role of Maturation of Lipoproteins in the Pathogenesis of the Infection Caused by Streptococcus suis Serotype 2. Microorganisms 2021; 9:microorganisms9112386. [PMID: 34835511 PMCID: PMC8621357 DOI: 10.3390/microorganisms9112386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen associated with multiple pathologies in piglets. Bacterial lipoproteins (LPPs) have been described as playing important roles in the pathogenesis of the infection of other Gram-positive bacteria as adhesins, pro-inflammatory cell activators and/or virulence factors. In the current study, we aimed to evaluate the role of the prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) enzymes, which are responsible for LPP maturation, on the pathogenesis of the infection caused by two different sequence types (STs) of S. suis serotype 2 strains (virulent ST1 and highly virulent ST7). Through the use of isogenic Δlgt, Δlsp and double Δlgt/Δlsp mutants, it was shown that lack of these enzymes did not influence S. suis adhesion/invasion to porcine respiratory epithelial cells. However, in the absence of the Lsp and/or Lgt, a significant reduction in the capacity of S. suis to activate phagocytic cells and induce pro-inflammatory mediators (in vitro and in vivo) was observed. In general, results obtained with the double mutant did not differ in comparison to single mutants, indicating lack of an additive effect. Finally, our data suggest that these enzymes play a differential role in virulence, depending on the genetic background of the strain and being more important for the highly virulent ST7 strain.
Collapse
Affiliation(s)
- Servane Payen
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Anaïs Boa
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba 305-0856, Japan;
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
- Correspondence:
| |
Collapse
|
4
|
Reuschel E, Toelge M, Haeusler S, Deml L, Seelbach-Goebel B, Solano ME. Perinatal Gram-Positive Bacteria Exposure Elicits Distinct Cytokine Responses In Vitro. Int J Mol Sci 2020; 22:E332. [PMID: 33396944 PMCID: PMC7795300 DOI: 10.3390/ijms22010332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/31/2023] Open
Abstract
During pregnancy, infections caused by the gram-positive bacteria Enterococcus faecalis (E. faecalis), Streptococcus agalacticae (S. agalacticae), and Staphylococcus aureus (S. aureus) are major reasons for preterm labor, neonatal prematurity, meningitis, or sepsis. Here, we propose cytokine responses to bacterial infections by the immature perinatal immune system as central players in the pathogenesis of preterm birth and neonatal sepsis. We aimed to close the gap in knowledge about such cytokine responses by stimulating freshly isolated umbilical blood mononuclear cells (UBMC) with lysates of E. faecalis, S. agalacticae, and S. aureus collected from pregnant women in preterm labor. Bacterial lysates and, principally, S. aureus and S. agalacticae distinctly triggered most of the eleven inflammatory, anti-inflammatory, TH1/TH2 cytokines, and chemokines quantified in UBMC culture media. Chemokines depicted the most robust induction. Among them, MIP-1β was further enhanced in UBMC from female compered to male newborn infants. Due to its stability and high levels, we investigated the diagnostic value of IL-8. IL-8 was critically upregulated in cord blood of preterm neonates suffering from infections compared to gestational age-matched controls. Our results provide novel clues about perinatal immunity, underscoring a potential value of IL-8 for the timely detection of infections and suggesting that MIP-1β constitutes an early determinant of sex-specific immunity, which may contribute, e.g., to male's vulnerability to preterm birth.
Collapse
Affiliation(s)
- Edith Reuschel
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (L.D.)
| | - Sebastian Haeusler
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Ludwig Deml
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (L.D.)
| | - Birgit Seelbach-Goebel
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Maria Emilia Solano
- Department of Obstetrics and Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Forrest S, Welch M. Arming the troops: Post-translational modification of extracellular bacterial proteins. Sci Prog 2020; 103:36850420964317. [PMID: 33148128 PMCID: PMC10450907 DOI: 10.1177/0036850420964317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein secretion is almost universally employed by bacteria. Some proteins are retained on the cell surface, whereas others are released into the extracellular milieu, often playing a key role in virulence. In this review, we discuss the diverse types and potential functions of post-translational modifications (PTMs) occurring to extracellular bacterial proteins.
Collapse
Affiliation(s)
- Suzanne Forrest
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Abstract
Over the past decade the number and variety of protein post-translational modifications that have been detected and characterized in bacteria have rapidly increased. Most post-translational protein modifications occur in a relatively low number of bacterial proteins in comparison with eukaryotic proteins, and most of the modified proteins carry low, substoichiometric levels of modification; therefore, their structural and functional analysis is particularly challenging. The number of modifying enzymes differs greatly among bacterial species, and the extent of the modified proteome strongly depends on environmental conditions. Nevertheless, evidence is rapidly accumulating that protein post-translational modifications have vital roles in various cellular processes such as protein synthesis and turnover, nitrogen metabolism, the cell cycle, dormancy, sporulation, spore germination, persistence and virulence. Further research of protein post-translational modifications will fill current gaps in the understanding of bacterial physiology and open new avenues for treatment of infectious diseases.
Collapse
|
7
|
Jang AY, Ahn KB, Zhi Y, Ji HJ, Zhang J, Han SH, Guo H, Lim S, Song JY, Lim JH, Seo HS. Serotype-Independent Protection Against Invasive Pneumococcal Infections Conferred by Live Vaccine With lgt Deletion. Front Immunol 2019; 10:1212. [PMID: 31191555 PMCID: PMC6549034 DOI: 10.3389/fimmu.2019.01212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae is the most common respiratory bacterial pathogen among cases of community-acquired infection in young children, older adults, and individuals with underlying medical conditions. Although capsular polysaccharide-based pneumococcal vaccines have contributed to significant decrease in invasive pneumococcal infections, these vaccines have some limitations, including limited serotype coverage, lack of effective mucosal antibody responses, and high costs. In this study, we investigated the safety and immunogenicity of a live, whole-cell pneumococcal vaccine constructed by deleting the gene for prolipoprotein diacylglyceryl transferase (lgt) from the encapsulated pneumococcal strain TIGR4 (TIGR4Δlgt) for protection against heterologous pneumococcal strains. Pneumococcal strain TIGR4 was successfully attenuated by deletion of lgt, resulting in the loss of inflammatory activity and virulence. TIGR4Δlgt colonized the nasopharynx long enough to induce strong mucosal IgA and IgG2b-dominant systemic antibody responses that were cross-reactive to heterologous pneumococcal serotypes. Finally, intranasal immunization with TIGR4Δlgt provided serotype-independent protection against pneumococcal challenge in mice. Taken together, our results suggest that TIGR4Δlgt is an avirulent and attractive broad-spectrum pneumococcal vaccine candidate. More broadly, we assert that modulation of such "master" metabolic genes represents an emerging strategy for developing more effective vaccines against numerous infectious agents.
Collapse
Affiliation(s)
- A-Yeung Jang
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ki Bum Ahn
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Yong Zhi
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Hyun-Jung Ji
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,DRI and BK21 Plus Program, Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jing Zhang
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seung Hyun Han
- DRI and BK21 Plus Program, Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Joon Yong Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
8
|
Shahmirzadi SV, Nguyen MT, Götz F. Evaluation of Staphylococcus aureus Lipoproteins: Role in Nutritional Acquisition and Pathogenicity. Front Microbiol 2016; 7:1404. [PMID: 27679612 PMCID: PMC5020093 DOI: 10.3389/fmicb.2016.01404] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/24/2016] [Indexed: 01/22/2023] Open
Abstract
Bacterial lipoproteins (Lpp) represent a major class of membrane proteins. They are distinguished by a lipid moiety at the N-terminus by which they are anchored either in the outer leaflet of the cytoplasmic membrane or, in Gram-negative bacteria, also in the inner leaflet of the outer membrane. In Gram-positive bacteria Lpp significantly contribute to nutrient transport, Toll-like receptor 2 activation and pathogenicity. Here we examine the Lpp of Staphylococcus aureus USA300, as a prototype for a multiple antibiotic resistant and community-acquired pathogen that is rapidly spreading worldwide. The compiled Lpp were grouped according to the postulated function and dissemination of homologs in the genus Staphylococcus and beyond. Based on this evaluation we also point out Lpp as promising vaccine candidates.
Collapse
Affiliation(s)
- Shideh V Shahmirzadi
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Tübingen, Germany
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Tübingen, Germany
| |
Collapse
|
9
|
Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence. Microbiol Mol Biol Rev 2016; 80:891-903. [PMID: 27512100 DOI: 10.1128/mmbr.00028-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the discovery in 1973 of the first of the bacterial lipoproteins (Lpp) in Escherichia coli, Braun's lipoprotein, the ever-increasing number of publications indicates the importance of these proteins. Bacterial Lpp belong to the class of lipid-anchored proteins that in Gram-negative bacteria are anchored in both the cytoplasmic and outer membranes and in Gram-positive bacteria are anchored only in the cytoplasmic membrane. In contrast to the case for Gram-negative bacteria, in Gram-positive bacteria lipoprotein maturation and processing are not vital. Physiologically, Lpp play an important role in nutrient and ion acquisition, allowing particularly pathogenic species to better survive in the host. Bacterial Lpp are recognized by Toll-like receptor 2 (TLR2) of the innate immune system. The important role of Lpp in Gram-positive bacteria, particularly in the phylum Firmicutes, as key players in the immune response and pathogenicity has emerged only in recent years. In this review, we address the role of Lpp in signaling and modulating the immune response, in inflammation, and in pathogenicity. We also address the potential of Lpp as promising vaccine candidates.
Collapse
|
10
|
Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics 2013; 97:265-86. [PMID: 23994099 DOI: 10.1016/j.jprot.2013.08.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/12/2022]
Abstract
The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Joel A Cain
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Nestor Solis
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia.
| |
Collapse
|
11
|
Segawa T, Saeki A, Hasebe A, Arimoto T, Kataoka H, Yokoyama A, Kawanami M, Shibata KI. Differences in recognition of wild-type and lipoprotein-deficient strains of oralStreptococci in vitroandin vivo. Pathog Dis 2013; 68:65-77. [DOI: 10.1111/2049-632x.12049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - Ayumi Saeki
- Division of Oral Molecular Microbiology; Department of Oral Pathobiological Science; Hokkaido University Graduate School of Dental Medicine; Kita-ku; Sapporo; Japan
| | - Akira Hasebe
- Division of Oral Molecular Microbiology; Department of Oral Pathobiological Science; Hokkaido University Graduate School of Dental Medicine; Kita-ku; Sapporo; Japan
| | - Takafumi Arimoto
- Department of Oral Microbiology; Showa University School of Dentistry; Shinagawa-ku; Tokyo; Japan
| | - Hideo Kataoka
- Department of Oral Microbiology; Showa University School of Dentistry; Shinagawa-ku; Tokyo; Japan
| | - Atsuro Yokoyama
- Division of Oral Functional Science; Department of Oral Functional Prosthodontics; Hokkaido University Graduate School of Dental Medicine; Kita-ku; Sapporo; Japan
| | - Masamitsu Kawanami
- Division of Oral Health Science; Department of Periodontology and Endodontology; Hokkaido University Graduate School of Dental Medicine; Kita-ku; Sapporo; Japan
| | - Ken-ichiro Shibata
- Division of Oral Molecular Microbiology; Department of Oral Pathobiological Science; Hokkaido University Graduate School of Dental Medicine; Kita-ku; Sapporo; Japan
| |
Collapse
|
12
|
Sharma P, Lata H, Arya DK, Kashyap AK, Kumar H, Dua M, Ali A, Johri AK. Role of pilus proteins in adherence and invasion of Streptococcus agalactiae to the lung and cervical epithelial cells. J Biol Chem 2012; 288:4023-34. [PMID: 23209289 DOI: 10.1074/jbc.m112.425728] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus agalactiae, or group B Streptococcus (GBS), is an important opportunistic pathogen that causes pneumonia, sepsis, and meningitis in neonates and severe diseases in immunocompromised adults. We have performed comparative genomics of prevalent GBS serotypes of Indian origin (i.e. Ia, III, V, and VII). Pilus-proteins were commonly found up-regulated, and their expression was studied by using antiserum for GBS80 (backbone protein of pilus island-I), GBS67 (ancillary protein of PI-2a), and SAN1518 (backbone protein of PI-2b) by whole cell and Western blot analysis. To check the role of pilus proteins in adherence and invasion, an inhibition assay was performed. Comparative immunoblotting experiments revealed that expression of pili proteins does not differ in geographically different selected serotypes, Ia and V, of India and the United States. In the case of A549 cells, we found that GBS VII invasion and adherence was inhibited by pilus protein-specific antiserum SAN1518 significantly (p < 0.001) by 88.5 and 91%, respectively. We found that mutant strains, deficient in the pilus proteins (Δgbs80 and Δsan1518) exhibit a significant decrease in adherence in the case of type Ia, III, and VII. In the case of type VII, we have found a 95% reduction in invasion when Δsan1518 was used with A549 cells. Because the pilus proteins were identified previously as vaccine candidates against GBS serotypes of developed countries, we also found their role in the attachment and invasion of GBS of Indian origin. Thus, the present work supports the idea of making a more effective pilus protein-based vaccine that can be used universally.
Collapse
Affiliation(s)
- Puja Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chimalapati S, Cohen JM, Camberlein E, MacDonald N, Durmort C, Vernet T, Hermans PWM, Mitchell T, Brown JS. Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo. PLoS One 2012; 7:e41393. [PMID: 22911788 PMCID: PMC3404074 DOI: 10.1371/journal.pone.0041393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/21/2012] [Indexed: 12/14/2022] Open
Abstract
Lipoproteins are an important class of surface associated proteins that have diverse roles and frequently are involved in the virulence of bacterial pathogens. As prolipoproteins are attached to the cell membrane by a single enzyme, prolipoprotein diacylglyceryl transferase (Lgt), deletion of the corresponding gene potentially allows the characterisation of the overall importance of lipoproteins for specific bacterial functions. We have used a Δlgt mutant strain of Streptococcus pneumoniae to investigate the effects of loss of lipoprotein attachment on cation acquisition, growth in media containing specific carbon sources, and virulence in different infection models. Immunoblots of triton X-114 extracts, flow cytometry and immuno-fluorescence microscopy confirmed the Δlgt mutant had markedly reduced lipoprotein expression on the cell surface. The Δlgt mutant had reduced growth in cation depleted medium, increased sensitivity to oxidative stress, reduced zinc uptake, and reduced intracellular levels of several cations. Doubling time of the Δlgt mutant was also increased slightly when grown in medium with glucose, raffinose and maltotriose as sole carbon sources. These multiple defects in cation and sugar ABC transporter function for the Δlgt mutant were associated with only slightly delayed growth in complete medium. However the Δlgt mutant had significantly reduced growth in blood or bronchoalveolar lavage fluid and a marked impairment in virulence in mouse models of nasopharyngeal colonisation, sepsis and pneumonia. These data suggest that for S. pneumoniae loss of surface localisation of lipoproteins has widespread effects on ABC transporter functions that collectively prevent the Δlgt mutant from establishing invasive infection.
Collapse
Affiliation(s)
- Suneeta Chimalapati
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Jonathan M. Cohen
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
- Infectious Diseases & Microbiology Unit, UCL Institute of Child Health, London, United Kingdom
| | - Emilie Camberlein
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Nathanael MacDonald
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Claire Durmort
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
- Université Joseph Fourier – Grenoble 1, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | - Thierry Vernet
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
- Université Joseph Fourier – Grenoble 1, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Timothy Mitchell
- Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow, United Kingdom
| | - Jeremy S. Brown
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
14
|
Reffuveille F, Serror P, Chevalier S, Budin-Verneuil A, Ladjouzi R, Bernay B, Auffray Y, Rincé A. The prolipoprotein diacylglyceryl transferase (Lgt) of Enterococcus faecalis contributes to virulence. MICROBIOLOGY-SGM 2011; 158:816-825. [PMID: 22135097 DOI: 10.1099/mic.0.055319-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enterococcus faecalis is an opportunistic pathogen responsible for nosocomial infections. Lipoproteins in Gram-positive bacteria are translocated across the plasma membrane and anchored by the fatty acid group. They perform critical roles, with some described as virulence determinants. The aim of this study was to explore the roles of E. faecalis lipoproteins in the stress response and virulence. We constructed a mutant affected in the predicted prolipoprotein diacylglyceryl transferase gene lgt, and examined the role of Lgt in membrane anchoring, growth, the stress response and virulence. Inactivation of lgt enhanced growth in a high concentration of Mn(2+) or under oxidative stress in vitro, and significantly decreased virulence.
Collapse
Affiliation(s)
- Fany Reffuveille
- USC INRA 2017, Microbiologie de l'Environnement, EA956, Université de Caen, France
| | - Pascale Serror
- AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, UPRES EA4312, Université de Rouen, France
| | | | - Rabia Ladjouzi
- USC INRA 2017, Microbiologie de l'Environnement, EA956, Université de Caen, France
| | - Benoit Bernay
- Plateforme Proteogen IFR ICORE 146, Université de Caen, France
| | - Yanick Auffray
- USC INRA 2017, Microbiologie de l'Environnement, EA956, Université de Caen, France
| | - Alain Rincé
- USC INRA 2017, Microbiologie de l'Environnement, EA956, Université de Caen, France
| |
Collapse
|
15
|
Abstract
Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism.
Collapse
|
16
|
Yang Q, Zhang M, Harrington DJ, Black GW, Sutcliffe IC. A proteomic investigation of Streptococcus agalactiae grown under conditions associated with neonatal exposure reveals the upregulation of the putative virulence factor C protein β antigen. Int J Med Microbiol 2010; 300:331-7. [DOI: 10.1016/j.ijmm.2010.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/30/2009] [Accepted: 01/06/2010] [Indexed: 12/14/2022] Open
|