1
|
Jiménez-Leiva A, Cabrera JJ, Torres MJ, Richardson DJ, Bedmar EJ, Gates AJ, Delgado MJ, Mesa S. Haem is involved in the NO-mediated regulation by Bradyrhizobium diazoefficiens NnrR transcription factor. Microbiol Res 2025; 297:128151. [PMID: 40185027 DOI: 10.1016/j.micres.2025.128151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Nitric oxide (NO) and the greenhouse gas (GHG) nitrous oxide (N2O) contribute significantly to climate change. In rhizobia, the denitrifying enzyme c-type nitric oxide reductase (cNor), encoded by norCBQD genes, is crucial for maintaining a delicate balance of NO and N2O levels. In the soybean endosymbiont Bradyrhizobium diazoefficiens, maximal expression of norCBQD genes in response to NO is controlled by NnrR, which belongs to a distinct clade of the CRP/FNR family of bacterial transcription factors. This protein participates in the FixLJ-FixK2-NnrR regulatory cascade that induces denitrification genes expression in response to oxygen limitation and nitrogen oxides. However, the molecular mechanism underpinning NO sensing by B. diazoefficiens NnrR has remained elusive. Here, we revealed that NnrR induces norCBQD gene expression in response to NO uncoupled from the superimposed FixK2 control. Moreover, NO-mediated induction by NnrR is dependent on haem, as the expression of a norC-lacZ fusion was impaired in a hemN2 mutant defective in haem biosynthesis. In vitro studies showed that NnrR bound haem with a 1:1 stoichiometry (monomer:haem), according to titration experiments of recombinant NnrR protein with hemin performed under anaerobic conditions. Furthermore, the full UV-Visible spectra of haem-reconstituted NnrR showed a peak at 411 nm (ferric form), and at 425 nm (ferrous derivative). This latter complex was able to bind NO under anaerobic conditions. Finally, we performed a functional mutagenesis of specific residues in NnrR predicted as putative ligands for haem binding. While H11 was important for norC expression and Nor activity, a H11A-H56A protein variant showed a reduced affinity for haem binding. Taken together, our results identify haem as the cofactor for NnrR-mediated NO sensing in B. diazoefficiens denitrification, with H11 as a key residue for NnrR function, providing the first insight into the mechanism of an NnrR-type protein. These findings advance our understanding of how bacterial systems orchestrate the denitrification process and respond to environmental cues such as NO.
Collapse
Affiliation(s)
- Andrea Jiménez-Leiva
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Juan J Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - María J Torres
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - Eulogio J Bedmar
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - María J Delgado
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| |
Collapse
|
2
|
Balsam SS, Mould DL, Jean-Pierre F, Hogan DA. Role of Pseudomonas aeruginosa Dnr-regulated denitrification in oxic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646406. [PMID: 40236165 PMCID: PMC11996506 DOI: 10.1101/2025.03.31.646406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pseudomonas aeruginosa causes acute and chronic infections such as those that occur in the lungs of people with cystic fibrosis (CF). In infection environments, oxygen (O 2 ) concentrations are often low. The transcription factor Anr responds to low O 2 by upregulating genes necessary for P. aeruginosa fitness in microoxic and anoxic conditions. Anr regulates dnr , a gene encoding a transcriptional regulator that promotes the expression of genes required for using nitrate as an alternative electron acceptor during denitrification. In CF sputum, transcripts involved in denitrification are highly expressed. While Dnr is necessary for the anoxic growth of P. aeruginosa in CF sputum and artificial sputum media (ASMi), the contribution of denitrification to P. aeruginosa fitness in oxic conditions has not been well described. Here we show that P. aeruginosa requires dnr for fitness in ASMi and the requirement for dnr is abolished when nitrate is excluded from the media. Additionally, we show that P. aeruginosa consumes nitrate in lysogeny broth (LB) under microoxic conditions. Furthermore, strains without a functioning quorum sensing regulator LasR, which leads to elevated Anr activity, consume nitrate in LB even in normoxia. There was no growth advantage for P. aeruginosa when nitrate was present at concentrations from 100 µM to 1600 µM. However, P. aeruginosa consumption of nitrate in oxic conditions created a requirement for Dnr and Dnr-regulated NorCB likely due to the need to detoxify nitric oxide. These studies suggest that Anr- and Dnr-regulated processes may impact P. aeruginosa physiology in many common culture conditions. Importance Pseudomonas aeruginosa is an opportunistic pathogen commonly isolated from low-oxygen environments such as the lungs of people with cystic fibrosis. While the importance of P. aeruginosa energy generation by denitrification is clear in anoxic environments, the effects of denitrification in oxic cultures is not clear. Here, we show that nitrate is consumed even in oxic environments and while it does not appear to stimulate growth, it does impact fitness. Further, we report that two regulators that are best known for their roles in anoxic conditions also contribute to P. aeruginosa fitness in commonly- used laboratory media in presence of oxygen.
Collapse
|
3
|
Kellermann R, Kumar S, Gates AJ, Bakken L, Spiro S, Bergaust L. The Flavohemoglobin Hmp and Nitric Oxide Reductase Restrict Initial nir Expression in the Bet-Hedging Denitrifier Paracoccus denitrificans by Curtailing Hypoxic NO Signalling. Environ Microbiol 2025; 27:e70079. [PMID: 40102690 DOI: 10.1111/1462-2920.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
In denitrifying bacteria, nitric oxide (NO) is an electron acceptor and a free intermediate produced during anaerobic respiration. NO is also a signal for transcriptional regulation of the genes encoding nitrite (Nir), nitric oxide (Nor) and nitrous oxide reductases (N2OR). We hypothesise that the timing and strength of the NO signal necessary for full nir expression are key factors in the bet-hedging strategy of Paracoccus denitrificans, and that systems scavenging NO under hypoxia reduce the probability of nir induction. We show that the flavohemoglobin Hmp scavenges NO in aerobic cultures and that hmp is regulated by an NsrR-type repressor. Using a strain with an mCherry-nirS fusion, we found a clear, negative effect of Hmp on initial nir expression. Deletion of norCB eliminated bet-hedging, but the elevated NO levels in co-cultures with the wild type did not abolish bet-hedging in the wild type cells. Our results demonstrate clear roles for Hmp and Nor in regulating the expression of nirS through NO scavenging, while suggesting that the trigger for nir induction is not NO itself, but rather an intracellularly generated derivative. Our findings have important implications for understanding the regulatory network controlling the transition to anaerobic respiration.
Collapse
Affiliation(s)
- Ricarda Kellermann
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Santosh Kumar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Andrew J Gates
- Centre for Advanced Microbiology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Lars Bakken
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Stephen Spiro
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Linda Bergaust
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
4
|
Belvin BR, Musayev FN, Escalante CR, Lewis JP. Full-length structure and heme binding in the transcriptional regulator HcpR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611725. [PMID: 39282349 PMCID: PMC11398531 DOI: 10.1101/2024.09.06.611725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
HcpR is a CRP-family transcriptional regulator found in many Gram-negative anaerobic bacteria. In the perio-pathogen Porphyromonas gingivalis, HcpR is crucial for the response to reactive nitrogen species such as nitric oxide (NO). Binding of NO to the heme group of HcpR leads to transcription of the redox enzyme Hcp. However, the molecular mechanisms of heme binding to HcpR remain unknown. In this study we present the 2.3 Å structure of the P. gingivalis HcpR. Interdomain interactions present in the structure help to form a hydrophobic pocket in the N-terminal sensing domain. A comparison analysis with other CRP-family members reveals that the molecular mechanisms of HcpR-mediated regulation may be distinct from other family members. Using docking studies, we identify a putative heme binding site in the sensing domain. In vitro complementation and mutagenesis studies verify Met68 as an important residue in activation of HcpR. Finally, heme binding studies with purified forms of recombinant HcpR support Met68 and His149 residues as important for proper heme coordination in HcpR.
Collapse
|
5
|
Cai Z, Yang F, Shao X, Yue Z, Li Z, Song Y, Pan X, Jin Y, Cheng Z, Ha UH, Feng J, Yang L, Deng X, Wu W, Bai F. ECF Sigma Factor HxuI Is Critical for In Vivo Fitness of Pseudomonas aeruginosa during Infection. Microbiol Spectr 2022; 10:e0162021. [PMID: 35044199 PMCID: PMC8768829 DOI: 10.1128/spectrum.01620-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa often adapts to its host environment and causes recurrent nosocomial infections. The extracytoplasmic function (ECF) sigma factor enables bacteria to alter their gene expression in response to host environmental stimuli. Here, we report an ECF sigma factor, HxuI, which is rapidly induced once P. aeruginosa encounters the host. Host stresses such as iron limitation, oxidative stress, low oxygen, and nitric oxide induce the expression of hxuI. By combining RNA-seq and promoter-lacZ reporter fusion analysis, we reveal that HxuI can activate the expression of diverse metabolic and virulence pathways which are critical to P. aeruginosa infections, including iron acquisition, denitrification, pyocyanin synthesis, and bacteriocin production. Most importantly, overexpression of the hxuI in the laboratory strain PAO1 promotes its colonization in both murine lung and subcutaneous infections. Together, our findings show that HxuI, a key player in host stress-response, controls the in vivo adaptability and virulence of P. aeruginosa during infection. IMPORTANCE P. aeruginosa has a strong ability to adapt to diverse environments, making it capable of causing recurrent and multisite infections in clinics. Understanding host adaptive mechanisms plays an important guiding role in the development of new anti-infective agents. Here, we demonstrate that an ECFσ factor of P. aeruginosa response to the host-inflicted stresses, which promotes the bacterial in vivo fitness and pathogenicity. Furthermore, our findings may help explain the emergence of highly transmissible strains of P. aeruginosa and the acute exacerbations during chronic infections.
Collapse
Affiliation(s)
- Zeqiong Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenpeng Li
- School of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology (SUSTec), Shenzhen, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Lichtenberg M, Line L, Schrameyer V, Jakobsen TH, Rybtke ML, Toyofuku M, Nomura N, Kolpen M, Tolker-Nielsen T, Kühl M, Bjarnsholt T, Jensen PØ. Nitric-oxide-driven oxygen release in anoxic Pseudomonas aeruginosa. iScience 2021; 24:103404. [PMID: 34849468 PMCID: PMC8608891 DOI: 10.1016/j.isci.2021.103404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Denitrification supports anoxic growth of Pseudomonas aeruginosa in infections. Moreover, denitrification may provide oxygen (O2) resulting from dismutation of the denitrification intermediate nitric oxide (NO) as seen in Methylomirabilis oxyfera. To examine the prevalence of NO dismutation we studied O2 release by P. aeruginosa in airtight vials. P. aeruginosa rapidly depleted O2 but NO supplementation generated peaks of O2 at the onset of anoxia, and we demonstrate a direct role of NO in the O2 release. However, we were not able to detect genetic evidence for putative NO dismutases. The supply of endogenous O2 at the onset of anoxia could play an adaptive role when P. aeruginosa enters anaerobiosis. Furthermore, O2 generation by NO dismutation may be more widespread than indicated by the reports on the distribution of homologues genes. In general, NO dismutation may allow removal of nitrate by denitrification without release of the very potent greenhouse gas, nitrous oxide. Pseudomonas aeruginosa was found to release O2 at the onset of anoxia Peaks of O2 were amplified in a nitric oxide reductase (NOR) mutant The O2 release was mediated by nitric oxide (NO)
Collapse
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Laura Line
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Verena Schrameyer
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Levin Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Masanori Toyofuku
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8577 Tsukuba, Japan
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8577 Tsukuba, Japan
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
- Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Rigshospitalet, 2100 Copenhagen, Denmark
- Corresponding author
| |
Collapse
|
7
|
Spizzichino S, Boi D, Boumis G, Lucchi R, Liberati FR, Capelli D, Montanari R, Pochetti G, Piacentini R, Parisi G, Paone A, Rinaldo S, Contestabile R, Tramonti A, Paiardini A, Giardina G, Cutruzzolà F. Cytosolic localization and in vitro assembly of human de novo thymidylate synthesis complex. FEBS J 2021; 289:1625-1649. [PMID: 34694685 PMCID: PMC9299187 DOI: 10.1111/febs.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5‐fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein–protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Lucchi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Piacentini
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
8
|
Phenn J, Pané-Farré J, Meukow N, Klein A, Troitzsch A, Tan P, Fuchs S, Wagner GE, Lichtenegger S, Steinmetz I, Kohler C. RegAB Homolog of Burkholderia pseudomallei is the Master Regulator of Redox Control and involved in Virulence. PLoS Pathog 2021; 17:e1009604. [PMID: 34048488 PMCID: PMC8191878 DOI: 10.1371/journal.ppat.1009604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/10/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022] Open
Abstract
Burkholderia pseudomallei, the etiological agent of melioidosis in humans and animals, often occupies environmental niches and infection sites characterized by limited concentrations of oxygen. Versatile genomic features enable this pathogen to maintain its physiology and virulence under hypoxia, but the crucial regulatory networks employed to switch from oxygen dependent respiration to alternative terminal electron acceptors (TEA) like nitrate, remains poorly understood. Here, we combined a Tn5 transposon mutagenesis screen and an anaerobic growth screen to identify a two-component signal transduction system with homology to RegAB. We show that RegAB is not only essential for anaerobic growth, but also for full virulence in cell lines and a mouse infection model. Further investigations of the RegAB regulon, using a global transcriptomic approach, identified 20 additional regulators under transcriptional control of RegAB, indicating a superordinate role of RegAB in the B. pseudomallei anaerobiosis regulatory network. Of the 20 identified regulators, NarX/L and a FNR homolog were selected for further analyses and a role in adaptation to anaerobic conditions was demonstrated. Growth experiments identified nitrate and intermediates of the denitrification process as the likely signal activateing RegAB, NarX/L, and probably of the downstream regulators Dnr or NsrR homologs. While deletions of individual genes involved in the denitrification process demonstrated their important role in anaerobic fitness, they showed no effect on virulence. This further highlights the central role of RegAB as the master regulator of anaerobic metabolism in B. pseudomallei and that the complete RegAB-mediated response is required to achieve full virulence. In summary, our analysis of the RegAB-dependent modulon and its interconnected regulons revealed a key role for RegAB of B. pseudomallei in the coordination of the response to hypoxic conditions and virulence, in the environment and the host.
Collapse
Affiliation(s)
- Julia Phenn
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nikolai Meukow
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Annelie Klein
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Anne Troitzsch
- Department for Microbial Physiology and Molecular Biology, University Greifswald, Greifswald, Germany
| | - Patrick Tan
- Genome Institute of Singapore, Singapore, Republic of Singapore
- Duke-NUS Medical School Singapore, Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Sabine Lichtenegger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Ivo Steinmetz
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa. mSystems 2021; 6:6/1/e00933-20. [PMID: 33531406 PMCID: PMC7857532 DOI: 10.1128/msystems.00933-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub “Met-Seq” (metabolite-coupled Tn sequencing). Heme is an essential metabolite for most life on earth. Bacterial pathogens almost universally require iron to infect a host, often acquiring this nutrient in the form of heme. The Gram-negative pathogen Pseudomonas aeruginosa is no exception, where heme acquisition and metabolism are known to be crucial for both chronic and acute infections. To unveil unknown genes and pathways that could play a role with heme metabolic flux in this pathogen, we devised an omic-based approach we dubbed “Met-Seq,” for metabolite-coupled transposon sequencing. Met-Seq couples a biosensor with fluorescence-activated cell sorting (FACS) and massively parallel sequencing, allowing for direct identification of genes associated with metabolic changes. In this work, we first construct and validate a heme biosensor for use with P. aeruginosa and exploit Met-Seq to identify 188 genes that potentially influence intracellular heme levels. Identified genes largely consisted of metabolic pathways not previously associated with heme, including many secreted virulence effectors, as well as 11 predicted small RNAs (sRNAs) and riboswitches whose functions are not currently understood. We verify that five Met-Seq hits affect intracellular heme levels; a predicted extracytoplasmic function (ECF) factor, a phospholipid acquisition system, heme biosynthesis regulator Dnr, and two predicted antibiotic monooxygenase (ABM) domains of unknown function (PA0709 and PA3390). Finally, we demonstrate that PA0709 and PA3390 are novel heme-binding proteins. Our data suggest that Met-Seq could be extrapolated to other biological systems and metabolites for which there is an available biosensor, and provides a new template for further exploration of iron/heme regulation and metabolism in P. aeruginosa and other pathogens. IMPORTANCE The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub “Met-Seq” (metabolite-coupled Tn sequencing). Met-Seq uses the powerful combination of fluorescent biosensors, fluorescence-activated cell sorting (FACS), and next-generation sequencing (NGS) to rapidly identify genes that influence the levels of specific intracellular metabolites. For proof of concept, we create and test a heme biosensor and then exploit Met-Seq to identify novel genes involved in the regulation of heme in the pathogen Pseudomonas aeruginosa. Met-Seq-generated data were largely comprised of genes which have not previously been reported to influence heme levels in this pathogen, two of which we verify as novel heme-binding proteins. As heme is a required metabolite for host infection in P. aeruginosa and most other pathogens, our studies provide a new list of targets for potential antimicrobial therapies and shed additional light on the balance between infection, heme uptake, and heme biosynthesis.
Collapse
|
10
|
Rinaldo S, Giardina G, Mantoni F, Paone A, Cutruzzolà F. Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiol Lett 2019; 365:4834012. [PMID: 29401255 DOI: 10.1093/femsle/fny029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
The nitrogen cycle pathways are responsible for the circulation of inorganic and organic N-containing molecules in nature. Among these pathways, those involving amino acids, N-oxides and in particular nitric oxide (NO) play strategic roles in the metabolism of microorganisms in natural environments and in host-pathogen interactions. Beyond their role in the N-cycle, amino acids and NO are also signalling molecules able to influence group behaviour in microorganisms and cell-cell communication in multicellular organisms, including humans. In this minireview, we summarise the role of these compounds in the homeostasis of the bacterial communities called biofilms, commonly found in environmental, industrial and medical settings. Biofilms are difficult to eradicate since they are highly resistant to antimicrobials and to the host immune system. We highlight the effect of amino acids such as glutamate, glutamine and arginine and of NO on the signalling pathways involved in the metabolism of 3',5'-cyclic diguanylic acid (c-di-GMP), a master regulator of motility, attachment and group behaviour in bacteria. The study of the metabolic routes involving these N-containing compounds represents an attractive topic to identify targets for biofilm control in both natural and medical settings.
Collapse
Affiliation(s)
- Serena Rinaldo
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Federico Mantoni
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Joshi C, Patel P, Palep H, Kothari V. Validation of the anti-infective potential of a polyherbal 'Panchvalkal' preparation, and elucidation of the molecular basis underlining its efficacy against Pseudomonas aeruginosa. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:19. [PMID: 30654785 PMCID: PMC6335721 DOI: 10.1186/s12906-019-2428-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/02/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND A Panchvalkal formulation (Pentaphyte P-5®) mentioned in ancient texts of Indian traditional medicine was investigated for its anti-infective potential against Pseudomonas aeruginosa. METHODS Effect of the test formulation on bacterial growth and pigment production was evaluated by broth dilution assay. In vivo efficacy was evaluated using Caenorhabditis elegans as the model host. Whole transcriptome approach was taken to study the effect of test formulation on bacterial gene expression. RESULTS This formulation in vitro was found to be capable of affecting quorum sensing (QS)-regulated traits (pyocyanin, pyoverdine, biofilm) of Pseudomonas aeruginosa. In combination with antibiotics, it enhanced susceptibility of the test bacterium to antibiotics like cephalexin and tetracycline. Effect of Panchvalkal formulation (PF) on QS-regulated traits of P. aeruginosa was not reversed even after repeated exposure of the bacterium to PF. In vivo efficacy of PF was demonstrated employing Caenorhabditis elegans as the model host, wherein PF-treated bacteria were able to kill lesser worms than their extract-unexposed counterparts. Whole transcriptome study revealed that approximately 14% of the P. aeruginosa genome was expressed differently under the influence of PF. CONCLUSIONS Major mechanisms through which Panchvalkal seems to exert its anti-virulence effect are generation of nitrosative and oxidative stress, and disturbing iron and molybdenum homeostasis, besides interfering with QS machinery. This study is a good demonstration of the therapeutic utility of the 'polyherbalism' concept, so common in ayurved. It also demonstrates utility of the modern 'omics' tools for validating the traditional medicine i.e. ayuromics.
Collapse
Affiliation(s)
- Chinmayi Joshi
- Institute of Science, Nirma University, Ahmedabad, 382481 India
| | - Pooja Patel
- Institute of Science, Nirma University, Ahmedabad, 382481 India
| | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad, 382481 India
| |
Collapse
|
12
|
Abstract
SIGNIFICANCE The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. CRITICAL ISSUES The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. FUTURE DIRECTIONS The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.
Collapse
Affiliation(s)
| | - Lisa-Marie Nisbett
- 2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York
| | - Bezalel Bacon
- 2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York
| | - Elizabeth Boon
- 1 Department of Chemistry, Stony Brook University , Stony Brook, New York.,2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York.,3 Institute of Chemical Biology and Drug Design, Stony Brook University , Stony Brook, New York
| |
Collapse
|
13
|
Williams DE, Boon EM. Towards Understanding the Molecular Basis of Nitric Oxide-Regulated Group Behaviors in Pathogenic Bacteria. J Innate Immun 2018; 11:205-215. [PMID: 30557874 DOI: 10.1159/000494740] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria have many strategies for causing disease in humans. One such strategy is the ability to live both as single-celled motile organisms or as part of a community of bacteria called a biofilm. Biofilms are frequently adhered to biotic or abiotic surfaces and are extremely antibiotic resistant. Upon biofilm dispersal, bacteria become more antibiotic susceptible but are also able to readily infect another host. Various studies have shown that low, nontoxic levels of nitric oxide (NO) may induce biofilm dispersal in many bacterial species. While the molecular details of this phenotype remain largely unknown, in several species, NO has been implicated in biofilm-to-planktonic cell transitions via ligation to 1 of 2 characterized NO sensors, NosP or H-NOX. Based on the data available to date, it appears that NO binding to H-NOX or NosP triggers a downstream response based on changes in cellular cyclic di-GMP concentrations and/or the modulation of quorum sensing. In order to develop applications for control of biofilm infections, the identification and characterization of biofilm dispersal mechanisms is vital. This review focuses on the efforts made to understand NO-mediated control of H-NOX and NosP pathways in the 3 pathogenic bacteria Legionella pneumophila, Vibrio cholerae, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Dominique E Williams
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, New York, USA,
| |
Collapse
|
14
|
Carreira C, Mestre O, Nunes RF, Moura I, Pauleta SR. Genomic organization, gene expression and activity profile of Marinobacter hydrocarbonoclasticus denitrification enzymes. PeerJ 2018; 6:e5603. [PMID: 30258713 PMCID: PMC6152468 DOI: 10.7717/peerj.5603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Denitrification is one of the main pathways of the N-cycle, during which nitrate is converted to dinitrogen gas, in four consecutive reactions that are each catalyzed by a different metalloenzyme. One of the intermediate metabolites is nitrous oxide, which has a global warming impact greater then carbon dioxide and which atmospheric concentration has been increasing in the last years. The four denitrification enzymes have been isolated and biochemically characterized from Marinobacter hydrocarbonoclasticus in our lab. Methods Bioinformatic analysis of the M. hydrocarbonoclasticus genome to identify the genes involved in the denitrification pathway. The relative gene expression of the gene encoding the catalytic subunits of those enzymes was analyzed during the growth under microoxic conditions. The consumption of nitrate and nitrite, and the reduction of nitric oxide and nitrous oxide by whole-cells was monitored during anoxic and microoxic growth in the presence of 10 mM sodium nitrate at pH 7.5. Results The bioinformatic analysis shows that genes encoding the enzymes and accessory factors required for each step of the denitrification pathway are clustered together. An unusual feature is the co-existence of genes encoding a q- and a c-type nitric oxide reductase, with only the latter being transcribed at similar levels as the ones encoding the catalytic subunits of the other denitrifying enzymes, when cells are grown in the presence of nitrate under microoxic conditions. Using either a batch- or a closed system, nitrate is completely consumed in the beginning of the growth, with transient formation of nitrite, and whole-cells can reduce nitric oxide and nitrous oxide from mid-exponential phase until being collected (time-point 50 h). Discussion M. hydrocarbonoclasticus cells can reduce nitric and nitrous oxide in vivo, indicating that the four denitrification steps are active. Gene expression profile together with promoter regions analysis indicates the involvement of a cascade regulatory mechanism triggered by FNR-type in response to low oxygen tension, with nitric oxide and nitrate as secondary effectors, through DNR and NarXL, respectively. This global characterization of the denitrification pathway of a strict marine bacterium, contributes to the understanding of the N-cycle and nitrous oxide release in marine environments.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Olga Mestre
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rute F Nunes
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
15
|
Abstract
This chapter provides an overview of current knowledge of how anaerobic bacteria protect themselves against nitrosative stress. Nitric oxide (NO) is the primary source of this stress. Aerobically its removal is an oxidative process, whereas reduction is required anaerobically. Mechanisms required to protect aerobic and anaerobic bacteria are therefore different. Several themes recur in the review. First, how gene expression is regulated often provides clues to the physiological function of the gene products. Second, the physiological significance of reports based upon experiments under extreme conditions that bacteria do not encounter in their natural environment requires reassessment. Third, responses to the primary source of stress need to be distinguished from secondary consequences of chemical damage due to failure of repair mechanisms to cope with extreme conditions. NO is generated by many mechanisms, some of which remain undefined. An example is the recent demonstration that the hybrid cluster protein combines with YtfE (or RIC protein, for repair of iron centres damaged by nitrosative stress) in a new pathway to repair key iron-sulphur proteins damaged by nitrosative stress. The functions of many genes expressed in response to nitrosative stress remain either controversial or are completely unknown. The concentration of NO that accumulates in the bacterial cytoplasm is essentially unknown, so dogmatic statements cannot be made that damage to transcription factors (Fur, FNR, SoxRS, MelR, OxyR) occurs naturally as part of a physiologically relevant signalling mechanism. Such doubts can be resolved by simple experiments to meet six proposed criteria.
Collapse
|
16
|
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is characterized by its versatility that enables persistent survival under adverse conditions. It can grow on diverse energy sources and readily acquire resistance to antimicrobial agents. As an opportunistic human pathogen, it also causes chronic infections inside the anaerobic mucus airways of cystic fibrosis patients. As a strict respirer, P. aeruginosa can grow by anaerobic nitrate ( [Formula: see text] ) respiration. Nitric oxide (NO) produced as an intermediate during anaerobic respiration exerts many important effects on the biological characteristics of P. aeruginosa. This review provides information regarding (i) how P. aeruginosa grows by anaerobic respiration, (ii) mechanisms by which NO is produced under such growth, and (iii) bacterial adaptation to NO. We also review the clinical relevance of NO in the fitness of P. aeruginosa and the use of NO as a potential therapeutic for treating P. aeruginosa infection.
Collapse
|
17
|
Alvarez L, Quintáns NG, Blesa A, Baquedano I, Mencía M, Bricio C, Berenguer J. Hierarchical Control of Nitrite Respiration by Transcription Factors Encoded within Mobile Gene Clusters of Thermus thermophilus. Genes (Basel) 2017; 8:genes8120361. [PMID: 29194386 PMCID: PMC5748679 DOI: 10.3390/genes8120361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
Denitrification in Thermus thermophilus is encoded by the nitrate respiration conjugative element (NCE) and nitrite and nitric oxide respiration (nic) gene clusters. A tight coordination of each cluster’s expression is required to maximize anaerobic growth, and to avoid toxicity by intermediates, especially nitric oxides (NO). Here, we study the control of the nitrite reductases (Nir) and NO reductases (Nor) upon horizontal acquisition of the NCE and nic clusters by a formerly aerobic host. Expression of the nic promoters PnirS, PnirJ, and PnorC, depends on the oxygen sensor DnrS and on the DnrT protein, both NCE-encoded. NsrR, a nic-encoded transcription factor with an iron–sulfur cluster, is also involved in Nir and Nor control. Deletion of nsrR decreased PnorC and PnirJ transcription, and activated PnirS under denitrification conditions, exhibiting a dual regulatory role never described before for members of the NsrR family. On the basis of these results, a regulatory hierarchy is proposed, in which under anoxia, there is a pre-activation of the nic promoters by DnrS and DnrT, and then NsrR leads to Nor induction and Nir repression, likely as a second stage of regulation that would require NO detection, thus avoiding accumulation of toxic levels of NO. The whole system appears to work in remarkable coordination to function only when the relevant nitrogen species are present inside the cell.
Collapse
Affiliation(s)
- Laura Alvarez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
- Current Address: Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.
| | - Nieves G Quintáns
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Alba Blesa
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Ignacio Baquedano
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Mario Mencía
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Carlos Bricio
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Bueno E, Robles EF, Torres MJ, Krell T, Bedmar EJ, Delgado MJ, Mesa S. Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide 2017; 68:137-149. [DOI: 10.1016/j.niox.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023]
|
19
|
Ebert M, Schweyen P, Bröring M, Laass S, Härtig E, Jahn D. Heme and nitric oxide binding by the transcriptional regulator DnrF from the marine bacterium Dinoroseobacter shibae increases napD promoter affinity. J Biol Chem 2017; 292:15468-15480. [PMID: 28765283 DOI: 10.1074/jbc.m117.798728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Indexed: 12/27/2022] Open
Abstract
Under oxygen-limiting conditions, the marine bacterium Dinoroseobacter shibae DFL12T generates energy via denitrification, a respiratory process in which nitric oxide (NO) is an intermediate. Accumulation of NO may cause cytotoxic effects. The response to this nitrosative (NO-triggered) stress is controlled by the Crp/Fnr-type transcriptional regulator DnrF. We analyzed the response to NO and the mechanism of NO sensing by the DnrF regulator. Using reporter gene fusions and transcriptomics, here we report that DnrF selectively repressed nitrate reductase (nap) genes, preventing further NO formation. In addition, DnrF induced the expression of the NO reductase genes (norCB), which promote NO consumption. We used UV-visible and EPR spectroscopy to characterize heme binding to DnrF and subsequent NO coordination. DnrF detects NO via its bound heme cofactor. We found that the dimeric DnrF bound one molecule of heme per subunit. Purified recombinant apo-DnrF bound its target promoter sequences (napD, nosR2, norC, hemA, and dnrE) in electromobility shift assays, and we identified a specific palindromic DNA-binding site 5'-TTGATN4ATCAA-3' in these target sequences via mutagenesis studies. Most importantly, successive addition of heme as well as heme and NO to purified recombinant apo-DnrF protein increased affinity of the holo-DnrF for its specific binding motif in the napD promoter. On the basis of these results, we propose a model for the DnrF-mediated NO stress response of this marine bacterium.
Collapse
Affiliation(s)
- Matthias Ebert
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig
| | - Peter Schweyen
- the Institute for Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig
| | - Martin Bröring
- the Institute for Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig
| | - Sebastian Laass
- the Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, and
| | - Elisabeth Härtig
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig,
| | - Dieter Jahn
- the Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| |
Collapse
|
20
|
Crespo A, Pedraz L, Astola J, Torrents E. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth. Front Microbiol 2016; 7:688. [PMID: 27242714 PMCID: PMC4860495 DOI: 10.3389/fmicb.2016.00688] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this complex growth pattern, essential for P. aeruginosa chronic infections.
Collapse
Affiliation(s)
- Anna Crespo
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Lucas Pedraz
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Josep Astola
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| |
Collapse
|
21
|
Abstract
The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal.
Collapse
|
22
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
23
|
Kuroki M, Igarashi Y, Ishii M, Arai H. Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:792-801. [PMID: 25186017 DOI: 10.1111/1758-2229.12212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Nitrite reductase (NIR) catalyses the reduction of nitrite to nitric oxide (NO) in the denitrification pathway. In Pseudomonas aeruginosa, expression of the gene encoding NIR (nirS) is induced by NO and is under control of the NO-sensing regulator DNR (dissimilatory nitrate respiration regulator). Because DNR is under control of the oxygen-sensing regulator ANR (anaerobic regulator of arginine deiminase and nitrate reductase), nirS is expressed only under low oxygen and anaerobic conditions. Both ANR and DNR are FNR (fumarate and nitrate reductase regulator)-type regulators and recognize the consensus FNR-binding motif. The motif of the nirS promoter is thought to be recognized only by DNR, and not by ANR. Here, mutant strains expressing either ANR or DNR were constructed and used to analyse the role of ANR and DNR in the activation of nirS expression. Analysis of transcriptional activity by microarray and quantitative reverse transcription polymerase chain reaction revealed that nirS is transcribed under low oxygen conditions in an ANR-dependent manner, although the expression level was 10-fold lower than that of the DNR-dependent expression. An artificial promoter containing the FNR-binding motif of the nirS promoter was also twofold upregulated by ANR. These results indicate that low-level expression of NIR in the presence of nitrite may provide NO as a trigger for the full expression of denitrification genes when oxygen is depleted.
Collapse
Affiliation(s)
- Miho Kuroki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
24
|
Jackson AA, Daniels EF, Hammond JH, Willger SD, Hogan DA. Global regulator Anr represses PlcH phospholipase activity in Pseudomonas aeruginosa when oxygen is limiting. MICROBIOLOGY-SGM 2014; 160:2215-2225. [PMID: 25073853 DOI: 10.1099/mic.0.081158-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemolytic phospholipase C (PlcH) is a potent virulence and colonization factor that is expressed at high levels by Pseudomonas aeruginosa within the mammalian host. The phosphorylcholine liberated from phosphatidylcholine and sphingomyelin by PlcH is further catabolized into molecules that both support growth and further induce plcH expression. We have shown previously that the catabolism of PlcH-released choline leads to increased activity of Anr, a global transcriptional regulator that promotes biofilm formation and virulence. Here, we demonstrated the presence of a negative feedback loop in which Anr repressed plcH transcription and we proposed that this regulation allowed for PlcH levels to be maintained in a way that promotes productive host-pathogen interactions. Evidence for Anr-mediated regulation of PlcH came from data showing that growth at low oxygen (1%) repressed PlcH abundance and plcH transcription in the WT, and that plcH transcription was enhanced in an Δanr mutant. The plcH promoter featured an Anr consensus sequence that was conserved across all P. aeruginosa genomes and mutation of conserved nucleotides within the Anr consensus sequence increased plcH expression under hypoxic conditions. The Anr-regulated transcription factor Dnr was not required for this effect. The loss of Anr was not sufficient to completely derepress plcH transcription as GbdR, a positive regulator of plcH, was required for expression. Overexpression of Anr was sufficient to repress plcH transcription even at 21 % oxygen. Anr repressed plcH expression and phospholipase C activity in a cell culture model for P. aeruginosa-epithelial cell interactions.
Collapse
Affiliation(s)
- Angelyca A Jackson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Emily F Daniels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Sven D Willger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| |
Collapse
|
25
|
Lobato L, Bouzhir-Sima L, Yamashita T, Wilson MT, Vos MH, Liebl U. Dynamics of the heme-binding bacterial gas-sensing dissimilative nitrate respiration regulator (DNR) and activation barriers for ligand binding and escape. J Biol Chem 2014; 289:26514-26524. [PMID: 25037216 DOI: 10.1074/jbc.m114.571398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
DNR (dissimilative nitrate respiration regulator) is a heme-binding transcription factor that is involved in the regulation of denitrification in Pseudomonas aeruginosa. In the ferrous deoxy state, the heme is 6-coordinate; external NO and CO can replace an internal ligand. Using fluorescence anisotropy, we show that high-affinity sequence-specific DNA binding occurs only when the heme is nitrosylated, consistent with the proposed function of DNR as NO sensor and transcriptional activator. This role is moreover supported by the NO "trapping" properties revealed by ultrafast spectroscopy that are similar to those of other heme-based NO sensor proteins. Dissociated CO-heme pairs rebind in an essentially barrierless way. This process competes with migration out of the heme pocket. The latter process is thermally activated (Ea ∼ 7 kJ/mol). This result is compared with other heme proteins, including the homologous CO sensor/transcription factor CooA, variants of the 5-coordinate mycobacterial sensor DosT and the electron transfer protein cytochrome c. This comparison indicates that thermal activation of ligand escape from the heme pocket is specific for systems where an external ligand replaces an internal one. The origin of this finding and possible implications are discussed.
Collapse
Affiliation(s)
- Laura Lobato
- Laboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, 91128 Palaiseau, France,; INSERM U696, 91128 Palaiseau, France
| | - Latifa Bouzhir-Sima
- Laboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, 91128 Palaiseau, France,; INSERM U696, 91128 Palaiseau, France
| | - Taku Yamashita
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester C04 3SQ, United Kingdom
| | - Marten H Vos
- Laboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, 91128 Palaiseau, France,; INSERM U696, 91128 Palaiseau, France,.
| | - Ursula Liebl
- Laboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, 91128 Palaiseau, France,; INSERM U696, 91128 Palaiseau, France,.
| |
Collapse
|
26
|
Distal-proximal crosstalk in the heme binding pocket of the NO sensor DNR. Biometals 2014; 27:763-73. [PMID: 25007853 DOI: 10.1007/s10534-014-9770-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 01/10/2023]
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa the denitrification process is triggered by nitric oxide (NO) and plays a crucial role for the survival in chronic infection sites as a microaerobic-anaerobic biofilm. This respiratory pathway is transcriptionally induced by DNR, an heme-based gas sensor which positively responds to NO. Molecular details of the NO sensing mechanism employed by DNR are now emerging: we recently reported an in vitro study which dissected, for the first time, the heme-iron environment and identified one of the heme axial ligand (i.e. His187), found to be crucial to respond to NO. Nevertheless, the identification of the second heme axial ligand has been unsuccessful, given that a peculiar phenomenon of ligand switching around the heme-iron presumably occurs in DNR. The unusual heme binding properties of DNR could be due to the remarkable flexibility in solution of DNR itself, which, in turns, is crucial for the sensing activity; protein flexibility and dynamics indeed represent a common strategy employed by heme-based redox sensors, which present features deeply different from those of "canonical" hemeproteins. The capability of DNR to deeply rearrange around the heme-iron as been here demonstrated by means of spectroscopic characterization of the H167A/H187A DNR double mutant, which shows unusual kinetics of binding of NO and CO. Moreover, we show that the alteration (such as histidines mutations) of the distal side of the heme pocket is perceived by the proximal one, possibly via the DNR protein chain.
Collapse
|
27
|
Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014; 4:82. [PMID: 24999454 PMCID: PMC4064291 DOI: 10.3389/fcimb.2014.00082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.
Collapse
Affiliation(s)
- Yuta Okkotsu
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Alexander S Little
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Michael J Schurr
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
28
|
Su S, Panmanee W, Wilson JJ, Mahtani HK, Li Q, VanderWielen BD, Makris TM, Rogers M, McDaniel C, Lipscomb JD, Irvin RT, Schurr MJ, Lancaster JR, Kovall RA, Hassett DJ. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa. PLoS One 2014; 9:e91813. [PMID: 24663218 PMCID: PMC3963858 DOI: 10.1371/journal.pone.0091813] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/14/2014] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of NO are approached.
Collapse
Affiliation(s)
- Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jeffrey J. Wilson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Harry K. Mahtani
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qian Li
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradley D. VanderWielen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Thomas M. Makris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Melanie Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cameron McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Randall T. Irvin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael J. Schurr
- Department of Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Jack R. Lancaster
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Martins dos Santos VAP, Fernández-García M, Ferrer M. Understanding the antimicrobial mechanism of TiO₂-based nanocomposite films in a pathogenic bacterium. Sci Rep 2014; 4:4134. [PMID: 24549289 PMCID: PMC3928576 DOI: 10.1038/srep04134] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023] Open
Abstract
Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose radical-mediated TiO2 photocatalytic action of such nanocomposites and evaluate the genome/proteome-wide expression profiles of Pseudomonas aeruginosa PAO1 cells after two minutes of intervention. The results indicate that the impact on the gene-wide flux distribution and metabolism is moderate in the analysed time span. Rather, the photocatalytic action triggers the decreased expression of a large array of genes/proteins specific for regulatory, signalling and growth functions in parallel with subsequent selective effects on ion homeostasis, coenzyme-independent respiration and cell wall structure. The present work provides the first solid foundation for the biocidal action of titania and may have an impact on the design of highly active photobiocidal nanomaterials.
Collapse
Affiliation(s)
- Anna Kubacka
- Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - María Suárez Diez
- Chair of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands
| | - David Rojo
- Center for Metabolomics and Bioanalysis, University CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain
| | | | - Sergio Ciordia
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, 28049 Madrid, Spain
| | - Inés Zapico
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, 28049 Madrid, Spain
| | - Juan P Albar
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, 28049 Madrid, Spain
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis, University CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain
| | - Vitor A P Martins dos Santos
- 1] Chair of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands [2] LifeGlimmer GmbH, 12163 Berlin, Germany
| | | | | |
Collapse
|
30
|
Stern AM, Zhu J. An introduction to nitric oxide sensing and response in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:187-220. [PMID: 24581392 DOI: 10.1016/b978-0-12-800261-2.00005-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is a radical gas that has been intensively studied for its role as a bacteriostatic agent. NO reacts in complex ways with biological molecules, especially metal centers and other radicals, to generate other bioactive compounds that inhibit enzymes, oxidize macromolecules, and arrest bacterial growth. Bacteria encounter not only NO derived from the host during infection but also NO derived from other bacteria and inorganic sources. The transcriptional responses used by bacteria to respond to NO are diverse but usually involve an iron-containing transcription factor that binds NO and alters its affinity for either DNA or factors involved in transcription, leading to the production of enzymatic tolerance systems. Some of these systems, such as flavohemoglobin and flavorubredoxin, directly remove NO. Some do not but are still important for NO tolerance through other mechanisms. The targets of NO that are protected by these systems include many metabolic pathways such as the tricarboxylic acid cycle and branched chain amino acid synthesis. This chapter discusses these topics and others and serves as a general introduction to microbial NO biology.
Collapse
|
31
|
|
32
|
Rinaldo S, Castiglione N, Giardina G, Caruso M, Arcovito A, Longa SD, D'Angelo P, Cutruzzolà F. Unusual heme binding properties of the dissimilative nitrate respiration regulator, a bacterial nitric oxide sensor. Antioxid Redox Signal 2012; 17:1178-89. [PMID: 22424265 DOI: 10.1089/ars.2011.4226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS In the opportunistic pathogen Pseudomonas aeruginosa, nitric oxide (NO) triggers the respiration of nitrate (denitrification), thus allowing survival in chronic infection sites as a microaerobic-anaerobic biofilm. The NO-dependent induction of denitrification is mediated by the dissimilative nitrate respiration regulator (DNR), a transcription factor forming a stable complex with heme, which is required to sense the physiological messenger (i.e., NO). The molecular details of NO sensing in DNR and, more in general, in this class of sensors are largely unknown, and a study aimed at integrating microbiology and biochemistry is needed. RESULTS Here we present a comprehensive study, including in vivo results and spectroscopy, kinetics, and protein engineering, that demonstrates the direct involvement of a histidine residue in heme iron coordination. Moreover, a peculiar phenomenon of ligand switching around heme iron, which hampers the identification of the second heme axial ligand, is also suggested. These results indicate that DNR is characterized by a remarkable flexibility in solution, as observed for other cAMP receptor protein/fumarate and nitrate reductase regulators (CRP-FNR) to which DNR belongs. INNOVATION The present work represents one of the few studies focused on the biochemistry of NO sensing by bacterial transcriptional regulators. The data presented demonstrate that structural plasticity of DNR is crucial for the sensing activity and confers to the protein unusual heme binding properties. CONCLUSIONS Protein flexibility and dynamics is a key structural feature essential to explain the evolutionary success and adaptability of CRP-FNR, and may represent a common strategy employed by heme-based redox sensors, which presents features deeply different from those of canonical hemeproteins.
Collapse
Affiliation(s)
- Serena Rinaldo
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Spiro S. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors. Philos Trans R Soc Lond B Biol Sci 2012; 367:1213-25. [PMID: 22451107 DOI: 10.1098/rstb.2011.0309] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N(2)O). N(2)O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N(2)O as a substrate, which is the respiratory N(2)O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N(2)O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N(2)O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
34
|
HcpR of Porphyromonas gingivalis is required for growth under nitrosative stress and survival within host cells. Infect Immun 2012; 80:3319-31. [PMID: 22778102 DOI: 10.1128/iai.00561-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the Gram-negative, anaerobic periodontopathogen Porphyromonas gingivalis must withstand nitrosative stress, which is particularly high in the oral cavity, the mechanisms allowing for protection against such stress are not known in this organism. In this study, microarray analysis of P. gingivalis transcriptional response to nitrite and nitric oxide showed drastic upregulation of the PG0893 gene coding for hybrid cluster protein (Hcp), which is a putative hydroxylamine reductase. Although regulation of hcp has been shown to be OxyR dependent in Escherichia coli, here we show that in P. gingivalis its expression is dependent on the Fnr-like regulator designated HcpR. Growth of the isogenic mutant V2807, containing an ermF-ermAM insertion within the hcpR (PG1053) gene, was significantly reduced in the presence of nitrite (P < 0.002) and nitric oxide-generating nitrosoglutathione (GSNO) (P < 0.001), compared to that of the wild-type W83 strain. Furthermore, the upregulation of PG0893 (hcp) was abrogated in V2807 exposed to nitrosative stress. In addition, recombinant HcpR bound DNA containing the hcp promoter sequence, and the binding was hemin dependent. Finally, V2807 was not able to survive with host cells, demonstrating that HcpR plays an important role in P. gingivalis virulence. This work gives insight into the molecular mechanisms of protection against nitrosative stress in P. gingivalis and shows that the regulatory mechanisms differ from those in E. coli.
Collapse
|
35
|
Carrica MDC, Fernandez I, Martí MA, Paris G, Goldbaum FA. The NtrY/X two-component system of Brucella spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes. Mol Microbiol 2012; 85:39-50. [DOI: 10.1111/j.1365-2958.2012.08095.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Okegbe C, Sakhtah H, Sekedat MD, Price-Whelan A, Dietrich LEP. Redox eustress: roles for redox-active metabolites in bacterial signaling and behavior. Antioxid Redox Signal 2012; 16:658-67. [PMID: 21883044 DOI: 10.1089/ars.2011.4249] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Plant biologists and microbiologists have long discussed and debated the physiological roles of so-called "redox-active metabolites." These are natural products with unusually high redox activity that are not directly required for active growth. Generally, the biological roles of these compounds have been ascribed to interspecies competition and virulence, and they have been considered important sources of distress. RECENT ADVANCES In this review, we discuss two examples of redox-active metabolites: nitric oxide and phenazines. Both are known for their toxic effects in some organisms and conditions but have recently been shown to provide benefits for some organisms under other conditions. CRITICAL ISSUES Biologists are identifying new roles for redox-active metabolites that are not directly related to their toxicity. These roles prompt us to suggest a dismissal of the paradigm that all biological stress is negative (i.e., distress). FUTURE DIRECTIONS A more accurate view of redox couples requires characterization of their specific biological effects in a condition-dependent manner. The responses to these compounds can be termed "distress" or "eustress," depending on whether they inhibit survival, provide protection from a compound that would otherwise inhibit survival, or promote survival.
Collapse
Affiliation(s)
- Chinweike Okegbe
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | | | | | | | | |
Collapse
|
37
|
Arai H. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Front Microbiol 2011; 2:103. [PMID: 21833336 PMCID: PMC3153056 DOI: 10.3389/fmicb.2011.00103] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO), and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
38
|
Respiratory nitrogen metabolism and nitrosative stress defence in ϵ-proteobacteria: the role of NssR-type transcription regulators. Biochem Soc Trans 2011; 39:299-302. [PMID: 21265792 DOI: 10.1042/bst0390299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ϵ-Proteobacteria form a globally ubiquitous group of ecologically significant organisms and comprise a diverse range of host-associated and free-living species. To grow by anaerobic respiration, many ϵ-proteobacteria reduce nitrate to nitrite followed by either nitrite ammonification or denitrification. Using the ammonifying model organisms Wolinella succinogenes and Campylobacter jejuni, the electron transport chains of nitrate respiration, respiratory nitrite ammonification and even N2O (nitrous oxide) respiration have been characterized in recent years, but knowledge on nitrosative stress defence, nitrogen compound-sensing and corresponding signal transduction pathways is limited. The potentially dominant role of NssR (nitrosative stress-sensing regulator)-type transcription regulators in ϵ-proteobacterial nitrogen metabolism is discussed.
Collapse
|
39
|
The Pseudomonas aeruginosa DNR transcription factor: light and shade of nitric oxide-sensing mechanisms. Biochem Soc Trans 2011; 39:294-8. [PMID: 21265791 DOI: 10.1042/bst0390294] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In response to environmental conditions, NO (nitric oxide) induces global changes in the cellular metabolism of Pseudomonas aeruginosa, which are strictly related to pathogenesis. In particular, at low oxygen tensions and in the presence of NO the denitrification alternative respiration is activated by a key regulator: DNR (dissimilative nitrate respiration regulator). DNR belongs to the CRP (cAMP receptor protein)-FNR (fumarate and nitrate reductase regulatory protein) superfamily of bacterial transcription factors. These regulators are involved in many different pathways and distinct activation mechanism seems to be operative in several cases. Recent results indicate that DNR is a haem protein capable of discriminating between NO and CO (carbon monoxide). On the basis of the available structural data, a suggested activation mechanism is discussed.
Collapse
|
40
|
Fleischhacker AS, Kiley PJ. Iron-containing transcription factors and their roles as sensors. Curr Opin Chem Biol 2011; 15:335-41. [PMID: 21292540 DOI: 10.1016/j.cbpa.2011.01.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/23/2022]
Abstract
Iron-binding transcription factors are widespread throughout the bacterial world and to date are known to bind several types of cofactors, such as Fe2+, heme, or iron-sulfur clusters. The known chemistry of these cofactors is exploited by transcription factors, including Fur, FNR, and NsrR, to sense molecules such as Fe2+, gases (e.g. oxygen and nitric oxide), or reactive oxygen species. New structural data and information generated by genome-wide analysis studies have provided additional details about the mechanism and function of iron-binding transcription factors that act as sensors.
Collapse
Affiliation(s)
- Angela S Fleischhacker
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | | |
Collapse
|
41
|
Abstract
YybT family proteins (COG3887) are functionally unknown proteins that are widely distributed among the firmicutes, including the human pathogens Staphylococcus aureus and Listeria monocytogenes. Recent studies suggested that YybT family proteins are crucial for the in vivo survival of bacterial pathogens during host infection. YybT family proteins contain an N-terminal domain that shares minimum sequence homology with Per-ARNT-Sim (PAS) domains. Despite the lack of an apparent residue for heme coordination, the putative PAS domains of BsYybT and GtYybT, two representative members of the YybT family proteins from Bacillus subtilis and Geobacillus thermodenitrificans, respectively, are found to bind b-type heme with 1:1 stoichiometry. Heme binding suppresses the catalytic activity of the DHH/DHHA1 phosphodiesterase domain and the degenerate GGDEF domain. Absorption spectroscopic studies indicate that YybT proteins do not form stable oxyferrous complexes due to the rapid oxidation of the ferrous iron upon O(2) binding. The ferrous heme, however, forms a hexacoordinated complex with carbon monoxide (CO) and a pentacoordinated complex with nitric oxide (NO). The coordination of NO, but not CO, to the heme stimulates the phosphodiesterase activity. These results suggest that YybT family proteins function as stress-signaling proteins for monitoring cellular heme or the NO level by using a heme-binding PAS domain that features an unconventional heme coordination environment.
Collapse
|
42
|
Dufour YS, Kiley PJ, Donohue TJ. Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet 2010; 6:e1001027. [PMID: 20661434 PMCID: PMC2908626 DOI: 10.1371/journal.pgen.1001027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022] Open
Abstract
The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across α-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual α-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 α-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the α-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks. An important property of living systems is the use of regulatory networks to appropriately program gene expression. Central to the function of regulatory networks are transcription factors that regulate gene expression by binding to specific DNA sequences. Despite the central role of these regulatory networks, the processes driving their organization and evolution across organisms are poorly understood. This paper describes the use of comparative genomics and high-throughput approaches to predict the organization and evolution of transcriptional regulatory networks across a large group of species. We focused on regulatory networks controlling cellular responses to changes in O2 levels because this signal has major consequences on many biological systems. Our analysis predicts that related regulatory networks share a core set of target genes across diverse species while other target genes vary according to the organism's specific lifestyle. Our approach of defining transcriptional regulatory networks across a wide range of organisms should be of general utility to studying similar questions in other systems.
Collapse
Affiliation(s)
- Yann S. Dufour
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- BACTER Institute, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|