1
|
Velásquez-Torres M, Trujillo-Ferrara JG, Godínez-Victoria M, Jarillo-Luna RA, Tsutsumi V, Sánchez-Monroy V, Posadas-Mondragón A, Cuevas-Hernández RI, Santiago-Cruz JA, Pacheco-Yépez J. Riluzole, a Derivative of Benzothiazole as a Potential Anti-Amoebic Agent against Entamoeba histolytica. Pharmaceuticals (Basel) 2023; 16:896. [PMID: 37375843 DOI: 10.3390/ph16060896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amoebiasis is produced by the parasite Entamoeba histolytica; this disease affects millions of people throughout the world who may suffer from amoebic colitis or amoebic liver abscess. Metronidazole is used to treat this protozoan, but it causes important adverse effects that limit its use. Studies have shown that riluzole has demonstrated activity against some parasites. Thus, the present study aimed, for the first time, to demonstrate the in vitro and in silico anti-amoebic activity of riluzole. In vitro, the results of Entamoeba histolytica trophozoites treated with IC50 (319.5 μM) of riluzole for 5 h showed (i) a decrease of 48.1% in amoeba viability, (ii) ultrastructural changes such as a loss of plasma membrane continuity and alterations in the nuclei followed by lysis, (iii) apoptosis-like cell death, (iv) the triggering of the production of reactive oxygen species and nitric oxide, and (v) the downregulation of amoebic antioxidant enzyme gene expression. Interestingly, docking studies have indicated that riluzole presented a higher affinity than metronidazole for the antioxidant enzymes thioredoxin, thioredoxin reductase, rubrerythrin, and peroxiredoxin of Entamoeba histolytica, which are considered as possible candidates of molecular targets. Our results suggest that riluzole could be an alternative treatment against Entamoeba histolytica. Future studies should be conducted to analyze the in vivo riluzole anti-amoebic effect on the resolution of amebic liver abscess in a susceptible model, as this will contribute to developing new therapeutic agents with anti-amoebic activity.
Collapse
Affiliation(s)
- Maritza Velásquez-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - José Guadalupe Trujillo-Ferrara
- Laboratorio de Investigación en Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Rosa Adriana Jarillo-Luna
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Virginia Sánchez-Monroy
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Araceli Posadas-Mondragón
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Roberto Issac Cuevas-Hernández
- Laboratorio de Investigación en Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - José Angel Santiago-Cruz
- Laboratorio de Ecología Microbiana, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11350, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
2
|
Villegas-Gómez I, Silva-Olivares A, Robles-Zepeda RE, Gálvez-Ruiz JC, Shibayama M, Valenzuela O. The Dichloromethane Fraction of Croton sonorae, A Plant Used in Sonoran Traditional Medicine, Affect Entamoeba histolytica Erythrophagocytosis and Gene Expression. Front Cell Infect Microbiol 2021; 11:693449. [PMID: 34368014 PMCID: PMC8343225 DOI: 10.3389/fcimb.2021.693449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Intestinal parasites are a global problem, mainly in developing countries. Obtaining information about plants and compounds that can combat gastrointestinal disorders and gastrointestinal symptoms is a fundamental first step in designing new treatment strategies. In this study, we analyzed the antiamoebic activity of the aerial part of Croton sonorae. The dichloromethane fraction of C. sonorae (CsDCMfx) contained flavonoids, terpenes, alkaloids, and glycosides. The ultrastructural morphology of the amoebae treated for 72 h with CsDCMfx was completely abnormal. CsDCMfx reduced erythrophagocytosis of trophozoites and the expression of genes involved in erythrocyte adhesion (gal/galnac lectin) and actin cytoskeleton rearrangement in the phagocytosis pathway (rho1 gtpase and formin1). Interestingly, CsDCMfx decreased the expression of genes involved in Entamoeba histolytica trophozoite pathogenesis, such as cysteine proteases (cp1, cp4, and cp5), sod, pfor, and enolase. These results showed that C. sonorae is a potential source of antiamoebic compounds.
Collapse
Affiliation(s)
- Isaac Villegas-Gómez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, México
| | - Angélica Silva-Olivares
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | | | | | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, México
| |
Collapse
|
3
|
Biological activity of esters of quinoxaline-7-carboxylate 1,4-di-N-oxide against E. histolytica and their analysis as potential thioredoxin reductase inhibitors. Parasitol Res 2020; 119:695-711. [PMID: 31907668 DOI: 10.1007/s00436-019-06580-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Amoebiasis is caused by the protozoan Entamoeba histolytica that affects millions of people throughout the world. The standard treatment is metronidazole, however, this drug causes several side effects, and is also mutagenic and carcinogenic. Therefore, the search for therapeutic alternatives is necessary. Quinoxaline 1,4-di-N-oxides (QdNOs) derivatives have been shown to exhibit activity against different protozoan. In the present study, the effects of esters of quinoxaline-7-carboxylate 1,4-di-N-oxide (7-carboxylate QdNOs) derivatives on E. histolytica proliferation, morphology, ultrastructure, and oxidative stress were evaluated, also their potential as E. histolytica thioredoxin reductase (EhTrxR) inhibitors was analyzed. In vitro tests showed that 12 compounds from n-propyl and isopropyl series, were more active (IC50 = 0.331 to 3.56 μM) than metronidazole (IC50 = 4.5 μM). The compounds with better biological activity have a bulky, trifluoromethyl and isopropyl group at R1-, R2-, and R3-position, respectively. The main alterations found in trophozoites treated with some of these compounds included changes in chromatin, cell granularity, redistribution of vacuoles with cellular debris, and an increase in reactive oxygen species. Interestingly, docking studies suggested that 7-carboxylate QdNOs derivatives could interact with amino acid residues of the NADPH-binding domain and/or the redox-active site of EhTrxR. Enzymatic assays demonstrated that selected 7-carboxylate QdNOs inhibits EhTrxR disulfide reductase activity, and diaphorase activity shows that these compounds could act as electron acceptor substrates for the enzyme. Taken together, these data indicate that among the mechanisms involved in the antiamoebic effect of the 7-carboxylate QdNOs derivatives studied, is the induction of oxidative stress and the inhibition of EhTrxR activity.
Collapse
|
4
|
Domínguez-Fernández T, Rodríguez MA, Sánchez Monroy V, Gómez García C, Medel O, Pérez Ishiwara DG. A Calpain-Like Protein Is Involved in the Execution Phase of Programmed Cell Death of Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:339. [PMID: 30319995 PMCID: PMC6167430 DOI: 10.3389/fcimb.2018.00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
Oxygen or nitrogen oxidative species and chemical stress induce the programmed cell death (PCD) of Entamoeba histolytica trophozoites. PCD caused by the aminoglycoside G418 is reduced by incubation with the cysteine protease inhibitor E-64; however, no typical caspases or metacaspases have been detected in this parasite. Calpain, a cysteine protease activated by calcium, has been suggested to be part of a specific PCD pathway in this parasite because the specific calpain inhibitor Z-Leu-Leu-Leu-al diminishes the PCD of trophozoites. Here, we predicted the hypothetical 3D structure of a calpain-like protein of E. histolytica and produced specific antibodies against it. We detected the protein in the cytoplasm and near the nucleus. Its expression gradually increased during incubation with G418, with the highest level after 9 h of treatment. In addition, a specific calpain-like siRNA sequence reduced the cell death rate by 65%. All these results support the hypothesis that the calpain-like protein is one of the proteases involved in the execution phase of PCD in E. histolytica. The hypothetical interactome of the calpain-like protein suggests that it may activate or regulate other proteins that probably participate in PCD, including those with EF-hand domains or other calcium-binding sites.
Collapse
Affiliation(s)
| | | | - Virginia Sánchez Monroy
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Consuelo Gómez García
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Olivia Medel
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - David Guillermo Pérez Ishiwara
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
5
|
Raj D, Chowdhury P, Sarkar R, Saito-Nakano Y, Okamoto K, Dutta S, Nozaki T, Ganguly S. Pyruvate Protects Giardia Trophozoites from Cysteine-Ascorbate Deprived Medium Induced Cytotoxicity. THE KOREAN JOURNAL OF PARASITOLOGY 2018. [PMID: 29529844 PMCID: PMC5858663 DOI: 10.3347/kjp.2018.56.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Giardia lamblia, an anaerobic, amitochondriate protozoan parasite causes parasitic infection giardiasis in children and young adults. It produces pyruvate, a major metabolic product for its fermentative metabolism. The current study was undertaken to explore the effects of pyruvate as a physiological antioxidant during oxidative stress in Giardia by cysteine-ascorbate deprivation and further investigation upon the hypothesis that oxidative stress due to metabolism was the reason behind the cytotoxicity. We have estimated intracellular reactive oxygen species generation due to cysteine-ascorbate deprivation in Giardia. In the present study, we have examined the effects of extracellular addition of pyruvate, during oxidative stress generated from cysteine-ascorbate deprivation in culture media on DNA damage in Giardia. The intracellular pyruvate concentrations at several time points were measured in the trophozoites during stress. Trophozoites viability under cysteine-ascorbate deprived (CAD) medium in presence and absence of extracellular pyruvate has also been measured. The exogenous addition of a physiologically relevant concentration of pyruvate to trophozoites suspension was shown to attenuate the rate of ROS generation. We have demonstrated that Giardia protects itself from destructive consequences of ROS by maintaining the intracellular pyruvate concentration. Pyruvate recovers Giardia trophozoites from oxidative stress by decreasing the number of DNA breaks that might favor DNA repair.
Collapse
Affiliation(s)
- Dibyendu Raj
- Vivekananda College, Thakurpukur, Kolkata-700063, India.,Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Punam Chowdhury
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Rituparna Sarkar
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata-700010, India
| | - Shanta Dutta
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sandipan Ganguly
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| |
Collapse
|
6
|
Baig AM, Lalani S, Khan NA. Apoptosis in Acanthamoeba castellanii
belonging to the T4 genotype. J Basic Microbiol 2017; 57:574-579. [DOI: 10.1002/jobm.201700025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/02/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Abdul M. Baig
- Department of Biological and Biomedical Sciences; Aga Khan University; Karachi Pakistan
| | - Salima Lalani
- Department of Biological and Biomedical Sciences; Aga Khan University; Karachi Pakistan
| | - Naveed A. Khan
- Faculty of Science and Technology, Department of Biological Sciences; Sunway University; Bandar Sunway Selangor Malaysia
| |
Collapse
|
7
|
Cázares-Apátiga J, Medina-Gómez C, Chávez-Munguía B, Calixto-Gálvez M, Orozco E, Vázquez-Calzada C, Martínez-Higuera A, Rodríguez MA. The Tudor Staphylococcal Nuclease Protein of Entamoeba histolytica Participates in Transcription Regulation and Stress Response. Front Cell Infect Microbiol 2017; 7:52. [PMID: 28293543 PMCID: PMC5328994 DOI: 10.3389/fcimb.2017.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
Entamoeba histolytica is the protozoa parasite responsible of human amoebiasis, disease that causes from 40,000 to 100,000 deaths annually worldwide. However, few are known about the expression regulation of molecules involved in its pathogenicity. Transcription of some virulence-related genes is positively controlled by the cis-regulatory element named URE1. Previously we identified the transcription factor that binds to URE1, which displayed a nuclear and cytoplasmic localization. This protein belongs to the Tudor Staphyococcal nuclease (TSN) family, which in other systems participates in virtually all pathways of gene expression, suggesting that this amoebic transcription factor (EhTSN; former EhURE1BP) could also play multiple functions in E. histolytica. The aim of this study was to identify the possible cellular events where EhTSN is involved. Here, we found that EhTSN in nucleus is located in euchromatin and close to, but not into, heterochromatin. We also showed the association of EhTSN with proteins involved in transcription and that the knockdown of EhTSN provokes a diminishing in the mRNA level of the EhRabB gene, which in its promoter region contains the URE1 motif, confirming that EhTSN participates in transcription regulation. In cytoplasm, this protein was found linked to the membrane of small vesicles and to plasma membrane. Through pull-down assays and mass spectrometry we identity thirty two candidate proteins to interact with EhTSN. These proteins participate in transcription, metabolism, signaling, and stress response, among other cellular processes. Interaction of EhTSN with some candidate proteins involved in metabolism, and signaling was validated by co-immunoprecipitation or co-localization. Finally we showed the co-localization of EhTSN and HSP70 in putative stress granules during heat shock and that the knockdown of EhTSN increases the cell death during heat shock treatment, reinforcing the hypothesis that EhTSN has a role during stress response. All data support the proposal that EhTSN is a multifunctional protein of E. histolytica.
Collapse
Affiliation(s)
- Javier Cázares-Apátiga
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Carlos Vázquez-Calzada
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Aarón Martínez-Higuera
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN Ciudad de México, Mexico
| |
Collapse
|
8
|
Toledano-Magaña Y, García-Ramos JC, Torres-Gutiérrez C, Vázquez-Gasser C, Esquivel-Sánchez JM, Flores-Alamo M, Ortiz-Frade L, Galindo-Murillo R, Nequiz M, Gudiño-Zayas M, Laclette JP, Carrero JC, Ruiz-Azuara L. Water-Soluble Ruthenium (II) Chiral Heteroleptic Complexes with Amoebicidal in Vitro and in Vivo Activity. J Med Chem 2017; 60:899-912. [PMID: 28075589 DOI: 10.1021/acs.jmedchem.6b00795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three water-soluble Ru(II) chiral heteroleptic coordination compounds [Ru(en)(pdto)]Cl2 (1), [Ru(gly)(pdto)]Cl (2), and [Ru(acac)(pdto)]Cl (3), where pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine, en = ethylendiamine, gly = glycinate, and acac = acetylacetonate, have been synthezised and fully characterized. The crystal structures of compounds 1-3 are described. The IC50 values for compounds 1-3 are within nanomolar range (14, 12, and 6 nM, respectively). The cytotoxicity for human peripheral blood lymphocytes is extremely low (>100 μM). Selectivity indexes for Ru(II) compounds are in the range 700-1300. Trophozoites exposed to Ru(II) compounds die through an apoptotic pathway triggered by ROS production. The orally administration to infected mice induces a total elimination of the parasite charge in mice faeces 1-2-fold faster than metronidazole. Besides, all compounds inhibit the trophozoite proliferation in amoebic liver abscess induced in hamster. All our results lead us to propose these compounds as promising candidates as antiparasitic agents.
Collapse
Affiliation(s)
- Yanis Toledano-Magaña
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Juan C García-Ramos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico.,Departamento de Fisicoquímica, Instituto de Química, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Carolina Torres-Gutiérrez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Cristina Vázquez-Gasser
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - José M Esquivel-Sánchez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Marcos Flores-Alamo
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Luis Ortiz-Frade
- Departamento de Electroquímica, Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC , Parque Tecnológico Querétaro Sanfandila, Pedro de Escobedo, CP 76703 Querétaro México
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah , Skaggs Hall 201, Salt Lake City, Utah 84112, United States
| | - Mario Nequiz
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México , Dr. Balmis 148, Col. Doctores, 06726, Mexico City, Mexico
| | - Marco Gudiño-Zayas
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México , Dr. Balmis 148, Col. Doctores, 06726, Mexico City, Mexico
| | - Juan P Laclette
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México , Avenida Universidad 3000, 04510, Mexico City, Mexico
| |
Collapse
|
9
|
Singh RS, Walia AK, Kanwar JR, Kennedy JF. Amoebiasis vaccine development: A snapshot on E. histolytica with emphasis on perspectives of Gal/GalNAc lectin. Int J Biol Macromol 2016; 91:258-68. [DOI: 10.1016/j.ijbiomac.2016.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
10
|
Li H, Jiang W, Liu Y, Jiang J, Zhang Y, Wu P, Zhao J, Duan X, Zhou X, Feng L. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes. Free Radic Biol Med 2016; 92:126-140. [PMID: 26795598 DOI: 10.1016/j.freeradbiomed.2016.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes and nucleated cells against oxidative stress and apoptosis. The studies supported the use of Gln, Ala, Cit and Pro as oxidative stress and apoptosis inhibitors in mammal cells and the hypothesis that the inhibited effects of Gln on oxidative stress and apoptosis are at least partly dependent on that of its metabolites in mammalian.
Collapse
Affiliation(s)
- Huatao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, Neijiang 641000, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xudong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
11
|
Pineda E, Vázquez C, Encalada R, Nozaki T, Sato E, Hanadate Y, Néquiz M, Olivos-García A, Moreno-Sánchez R, Saavedra E. Roles of acetyl-CoA synthetase (ADP-forming) and acetate kinase (PPi-forming) in ATP and PPi supply in Entamoeba histolytica. Biochim Biophys Acta Gen Subj 2016; 1860:1163-72. [PMID: 26922831 DOI: 10.1016/j.bbagen.2016.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/03/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Acetate is an end-product of the PPi-dependent fermentative glycolysis in Entamoeba histolytica; it is synthesized from acetyl-CoA by ADP-forming acetyl-CoA synthetase (ACS) with net ATP synthesis or from acetyl-phosphate by a unique PPi-forming acetate kinase (AcK). The relevance of these enzymes to the parasite ATP and PPi supply, respectively, are analyzed here. METHODS The recombinant enzymes were kinetically characterized and their physiological roles were analyzed by transcriptional gene silencing and further metabolic analyses in amoebae. RESULTS Recombinant ACS showed higher catalytic efficiencies (Vmax/Km) for acetate formation than for acetyl-CoA formation and high acetyl-CoA levels were found in trophozoites. Gradual ACS gene silencing (49-93%) significantly decreased the acetate flux without affecting the levels of glycolytic metabolites and ATP in trophozoites. However, amoebae lacking ACS activity were unable to reestablish the acetyl-CoA/CoA ratio after an oxidative stress challenge. Recombinant AcK showed activity only in the acetate formation direction; however, its substrate acetyl-phosphate was undetected in axenic parasites. AcK gene silencing did not affect acetate production in the parasites but promoted a slight decrease (10-20%) in the hexose phosphates and PPi levels. CONCLUSIONS These results indicated that the main role of ACS in the parasite energy metabolism is not ATP production but to recycle CoA for glycolysis to proceed under aerobic conditions. AcK does not contribute to acetate production but might be marginally involved in PPi and hexosephosphate homeostasis. SIGNIFICANCE The previous, long-standing hypothesis that these enzymes importantly contribute to ATP and PPi supply in amoebae can now be ruled out.
Collapse
Affiliation(s)
- Erika Pineda
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez. Mexico D.F. 14080, Mexico
| | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez. Mexico D.F. 14080, Mexico
| | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez. Mexico D.F. 14080, Mexico
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases. Tokyo 162-8640, Japan
| | - Emi Sato
- Department of Parasitology, National Institute of Infectious Diseases. Tokyo 162-8640, Japan
| | - Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases. Tokyo 162-8640, Japan
| | - Mario Néquiz
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Mexico D.F. 04510, Mexico
| | - Alfonso Olivos-García
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Mexico D.F. 04510, Mexico
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez. Mexico D.F. 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez. Mexico D.F. 14080, Mexico.
| |
Collapse
|
12
|
Pais-Morales J, Betanzos A, García-Rivera G, Chávez-Munguía B, Shibayama M, Orozco E. Resveratrol Induces Apoptosis-Like Death and Prevents In Vitro and In Vivo Virulence of Entamoeba histolytica. PLoS One 2016; 11:e0146287. [PMID: 26731663 PMCID: PMC4701480 DOI: 10.1371/journal.pone.0146287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022] Open
Abstract
Entamoeba histolytica causes amoebiasis, an infection that kills 100,000 individuals each year. Metronidazole and its derivatives are currently used against this protozoan, but these drugs present adverse effects on human health. Here, we investigated the effect of resveratrol (a natural compound) on E. histolytica trophozoites viability, as well as its influence on the parasite virulence. Trophozoites growth was arrested by 72 μM resveratrol and the IC50 was determined as 220 μM at 48 h. Cells appeared smaller, rounded and in clusters, with debris-containing vacuoles and with abnormally condensed chromatin. Resveratrol triggered reactive oxygen species production. It caused lipid peroxidation and produced phosphatidylserine externalization and DNA fragmentation this latter evidenced by TUNEL assays. It also provoked an increase of intracellular Ca2+ concentration, activated calpain and decreased superoxide dismutase activity, indicating that an apoptosis-like event occurred; however, autophagy was not detected. Cytopathic activity, phagocytosis, encystment and in vivo virulence were diminished dramatically by pre-incubation of trophozoites with resveratrol, evidencing that resveratrol attenuated the trophozoite virulence in vitro. Interestingly, after the inoculation of virulent trophozoites, animals treated with the drug did not develop or developed very small abscesses. Our findings propose that resveratrol could be an alternative to contend amoebiasis.
Collapse
Affiliation(s)
- Jonnatan Pais-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
- * E-mail:
| |
Collapse
|
13
|
Monroy VS, Flores OM, García CG, Maya YC, Fernández TD, Pérez Ishiwara DG. Calpain-like: A Ca(2+) dependent cystein protease in Entamoeba histolytica cell death. Exp Parasitol 2015; 159:245-51. [PMID: 26496790 DOI: 10.1016/j.exppara.2015.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 09/08/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica programmed cell death (PCD) induced by G418 is characterized by the release of important amounts of intracellular calcium from reservoirs. Nevertheless, no typical caspases have been detected in the parasite, the PCD phenotype is inhibited by the cysteine protease inhibitor E-64. These results strongly suggest that Ca(2+)-dependent proteases could be involved in PCD. In this study, we evaluate the expression and activity of a specific dependent Ca(2+) protease, the calpain-like protease, by real-time quantitative PCR (RTq-PCR), Western blot assays and a enzymatic method during the induction of PCD by G418. Alternatively, using cell viability and TUNEL assays, we also demonstrated that the Z-Leu-Leu-Leu-al calpain inhibitor reduced the rate of cell death. The results demonstrated 4.9-fold overexpression of calpain-like gene 1.5 h after G418 PCD induction, while calpain-like protein increased almost two-fold with respect to basal calpain-like expression after 3 h of induction, and calpain activity was found to be approximately three-fold higher 6 h after treatment compared with untreated trophozoites. Taken together, these results suggest that this Ca(2+)-dependent protease could be involved in the executory phase of PCD.
Collapse
Affiliation(s)
- Virginia Sánchez Monroy
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico; Laboratorio Multidisciplinario de Investigación, Escuela Militar de Graduados de Sanidad, UDEFA, Lomas de San Isidro, DF, CP 11620, Mexico
| | - Olivia Medel Flores
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - Consuelo Gómez García
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - Yesenia Chávez Maya
- Facultad de Estudios Superiores Cuautitlán Izcalli, UNAM, Cuautitlán Izcalli, Estado de México CP.54740, Mexico
| | - Tania Domínguez Fernández
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - D Guillermo Pérez Ishiwara
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico; Centro de Investigación en Ciencia Aplicada. Instituto Politécnico Nacional, Tepetitla de Lardizabal, Tlaxcala, Doctorado en Biotecnología, Red de Investigación en Biotecnología IPN, Mexico.
| |
Collapse
|
14
|
Li H, Feng L, Jiang W, Liu Y, Jiang J, Zhang Y, Wu P, Zhou X. Ca(2+) and caspases are involved in hydroxyl radical-induced apoptosis in erythrocytes of Jian carp (Cyprinus carpio var. Jian). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1305-1319. [PMID: 26080678 DOI: 10.1007/s10695-015-0087-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
There are young erythrocytes and mature erythrocytes in the peripheral blood of fish. The present study explored the apoptosis in hydroxyl radical ((·)OH)-induced young and mature erythrocytes of Jian carp (Cyprinus carpio var. Jian). Carp erythrocytes from the peripheral blood were separated into the young fraction, the intermediate fraction and the mature fraction using fixed-angle centrifugation. The erythrocytes in three age fractions were treated with the caspase inhibitors (zVAD-fmk) in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40 μM FeSO4/20 μM H2O2. The results showed that the (·)OH-induced reactive oxygen species (ROS) generation, phosphatidylserine (PS) exposure and DNA fragmentation are caspase dependent in carp erythrocytes. Furthermore, the ROS generation, PS exposure and DNA fragmentation in the more young fraction are more dependent on the caspase activity. This suggested that the caspases are involved in the (·)OH-induced apoptosis in the young erythrocytes of fish. Results also indicated that Ca(2+) is involved in (·)OH-induced calpain activation, PS exposure and DNA fragmentation in carp erythrocytes. Moreover, the calpain activation, DNA fragmentation and PS exposure in the more mature fraction are more dependent on the levels of Ca(2+). This revealed that (·)OH-induced apoptosis is Ca(2+) dependent in the mature erythrocytes of fish. Taken together, there might be two apoptosis pathways in fish erythrocytes: one is the caspase-dependent apoptosis in the young erythrocytes and the other is the Ca(2+)-involved apoptosis in the mature erythrocytes.
Collapse
Affiliation(s)
- HuaTao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - WeiDan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - YongAn Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - XiaoQiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
15
|
Santos F, Nequiz M, Hernández-Cuevas NA, Hernández K, Pineda E, Encalada R, Guillén N, Luis-García E, Saralegui A, Saavedra E, Pérez-Tamayo R, Olivos-García A. Maintenance of intracellular hypoxia and adequate heat shock response are essential requirements for pathogenicity and virulence ofEntamoeba histolytica. Cell Microbiol 2015; 17:1037-51. [DOI: 10.1111/cmi.12419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Fabiola Santos
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
- Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; México D.F. 11340 Mexico
| | - Mario Nequiz
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| | | | - Kahory Hernández
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| | - Erika Pineda
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Mexico D.F. 14080 Mexico
| | - Rusely Encalada
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Mexico D.F. 14080 Mexico
| | - Nancy Guillén
- Unité Biologie Cellulaire du Parasitisme; Institut Pasteur; Paris F-75015 France
- INSERM, U786; Paris F-75015 France
| | - Erika Luis-García
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| | - Andrés Saralegui
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca Morelos 62250 Mexico
| | - Emma Saavedra
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Mexico D.F. 14080 Mexico
| | - Ruy Pérez-Tamayo
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| | - Alfonso Olivos-García
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| |
Collapse
|
16
|
Sarniguet C, Toloza J, Cipriani M, Lapier M, Vieites M, Toledano-Magaña Y, García-Ramos JC, Ruiz-Azuara L, Moreno V, Maya JD, Azar CO, Gambino D, Otero L. Water-soluble ruthenium complexes bearing activity against protozoan parasites. Biol Trace Elem Res 2014; 159:379-92. [PMID: 24740394 DOI: 10.1007/s12011-014-9964-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 03/31/2014] [Indexed: 01/18/2023]
Abstract
Parasitic illnesses are major causes of human disease and misery worldwide. Among them, both amebiasis and Chagas disease, caused by the protozoan parasites, Entamoeba histolytica and Trypanosoma cruzi, are responsible for thousands of annual deaths. The lack of safe and effective chemotherapy and/or the appearance of current drug resistance make the development of novel pharmacological tools for their treatment relevant. In this sense, within the framework of the medicinal inorganic chemistry, metal-based drugs appear to be a good alternative to find a pharmacological answer to parasitic diseases. In this work, novel ruthenium complexes [RuCl2(HL)(HPTA)2]Cl2 with HL=bioactive 5-nitrofuryl containing thiosemicarbazones and PTA=1,3,5-triaza-7-phosphaadamantane have been synthesized and fully characterized. PTA was included as co-ligand in order to modulate complexes aqueous solubility. In fact, obtained complexes were water soluble. Their activity against T. cruzi and E. histolytica was evaluated in vitro. [RuCl2(HL4)(HPTA)2]Cl2 complex, with HL4=N-phenyl-5-nitrofuryl-thiosemicarbazone, was the most active compound against both parasites. In particular, it showed an excellent activity against E. histolytica (half maximal inhibitory concentration (IC50)=5.2 μM), even higher than that of the reference drug metronidazole. In addition, this complex turns out to be selective for E. histolytica (selectivity index (SI)>38). The potential mechanism of antiparasitic action of the obtained ruthenium complexes could involve oxidative stress for both parasites. Additionally, complexes could interact with DNA as second potential target by an intercalative-like mode. Obtained results could be considered a contribution in the search for metal compounds that could be active against multiple parasites.
Collapse
Affiliation(s)
- Cynthia Sarniguet
- Cátedra de Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Gral. Flores 2124, C. C. 1157, 11800, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Taylor-Brown E, Hurd H. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 2013; 6:108. [PMID: 23597031 PMCID: PMC3640913 DOI: 10.1186/1756-3305-6-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022] Open
Abstract
It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.
Collapse
|
18
|
Husain A, Sato D, Jeelani G, Soga T, Nozaki T. Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica. PLoS Negl Trop Dis 2012; 6:e1831. [PMID: 23029590 PMCID: PMC3459822 DOI: 10.1371/journal.pntd.0001831] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/10/2012] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica, a microaerophilic enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. Trophozoites of E. histolytica are exposed to a variety of reactive oxygen and nitrogen species during infection. Since E. histolytica lacks key components of canonical eukaryotic anti-oxidative defense systems, such as catalase and glutathione system, alternative not-yet-identified anti-oxidative defense strategies have been postulated to be operating in E. histolytica. In the present study, we investigated global metabolic responses in E. histolytica in response to H2O2- and paraquat-mediated oxidative stress by measuring charged metabolites on capillary electrophoresis and time-of-flight mass spectrometry. We found that oxidative stress caused drastic modulation of metabolites involved in glycolysis, chitin biosynthesis, and nucleotide and amino acid metabolism. Oxidative stress resulted in the inhibition of glycolysis as a result of inactivation of several key enzymes, leading to the redirection of metabolic flux towards glycerol production, chitin biosynthesis, and the non-oxidative branch of the pentose phosphate pathway. As a result of the repression of glycolysis as evidenced by the accumulation of glycolytic intermediates upstream of pyruvate, and reduced ethanol production, the levels of nucleoside triphosphates were decreased. We also showed for the first time the presence of functional glycerol biosynthetic pathway in E. histolytica as demonstrated by the increased production of glycerol 3-phosphate and glycerol upon oxidative stress. We proposed the significance of the glycerol biosynthetic pathway as a metabolic anti-oxidative defense system in E. histolytica. During the course of infection, trophozoites of E. histolytica need to cope with the oxidative stress in order to survive under the oxidative environment of its host. As a result of the absence of the key eukaryotic anti-oxidative defense system, it needs to employ novel defense strategies. Several studies such as transcriptomic profiling of trophozoites exposed to oxidative stress, and biochemical and functional analysis of individual proteins has been done in the past. Since, oxidative stress damages several metabolic enzymes, and modulate expression of many genes, it is important to analyze the detailed metabolomic response of E. histolytica upon oxidative stress to understand the role of metabolism in combating oxidative stress. In the present study, we demonstrated that oxidative stress causes glycolytic inhibition and redirection of metabolic flux towards glycerol production, chitin biosynthesis, and the non-oxidative branch of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Afzal Husain
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
19
|
Wilson IW, Weedall GD, Hall N. Host-Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes? Parasite Immunol 2012; 34:90-9. [PMID: 21810102 PMCID: PMC3378717 DOI: 10.1111/j.1365-3024.2011.01325.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Invasive amoebiasis caused by Entamoeba histolytica is a major global health problem. Virulence is a rare outcome of infection, occurring in fewer than 1 in 10 infections. Not all strains of the parasite are equally virulent, and understanding the mechanisms and causes of virulence is an important goal of Entamoeba research. The sequencing of the genome of E. histolytica and the related avirulent species Entamoeba dispar has allowed whole-genome-scale analyses of genetic divergence and differential gene expression to be undertaken. These studies have helped elucidate mechanisms of virulence and identified genes differentially expressed in virulent and avirulent parasites. Here, we review the current status of the E. histolytica and E. dispar genomes and the findings of a number of genome-scale studies comparing parasites of different virulence.
Collapse
Affiliation(s)
- I W Wilson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
20
|
Oxidative and Nitrosative Stress on Phagocytes’ Function: from Effective Defense to Immunity Evasion Mechanisms. Arch Immunol Ther Exp (Warsz) 2011; 59:441-8. [DOI: 10.1007/s00005-011-0144-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/27/2011] [Indexed: 12/12/2022]
|
21
|
Villalba-Magdaleno JD, Pérez-Ishiwara G, Serrano-Luna J, Tsutsumi V, Shibayama M. In vivo programmed cell death of Entamoeba histolytica trophozoites in a hamster model of amoebic liver abscess. MICROBIOLOGY-SGM 2011; 157:1489-1499. [PMID: 21349978 DOI: 10.1099/mic.0.047183-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Entamoeba histolytica trophozoites can induce host cell apoptosis, which correlates with the virulence of the parasite. This phenomenon has been seen during the resolution of an inflammatory response and the survival of the parasites. Other studies have shown that E. histolytica trophozoites undergo programmed cell death (PCD) in vitro, but how this process occurs within the mammalian host cell remains unclear. Here, we studied the PCD of E. histolytica trophozoites as part of an in vivo event related to the inflammatory reaction and the host-parasite interaction. Morphological study of amoebic liver abscesses showed only a few E. histolytica trophozoites with peroxidase-positive nuclei identified by terminal deoxynucleotidyltransferase enzyme-mediated dUTP nick end labelling (TUNEL). To better understand PCD following the interaction between amoebae and inflammatory cells, we designed a novel in vivo model using a dialysis bag containing E. histolytica trophozoites, which was surgically placed inside the peritoneal cavity of a hamster and left to interact with the host's exudate components. Amoebae collected from bags were then examined by TUNEL assay, fluorescence-activated cell sorting (FACS) and transmission electron microscopy. Nuclear condensation and DNA fragmentation of E. histolytica trophozoites were observed after exposure to peritoneal exudates, which were mainly composed of neutrophils and macrophages. Our results suggest that production of nitric oxide by inflammatory cells could be involved in PCD of trophozoites. In this modified in vivo system, PCD appears to play a prominent role in the host-parasite interaction and parasite cell death.
Collapse
Affiliation(s)
- José D'Artagnan Villalba-Magdaleno
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Chapultepec, CP 11850, Mexico.,Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| | | | | | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| |
Collapse
|