1
|
Wang H, Ling L, Song W, Gu J, Bing H, Sun J, Guo L, Luo Y, Qi H, Wang X, Wang JD, Zhao J, Xiang W. Discovery of (+)-Methyl Nonactate as a Potential Fungicide against Gummy Stem Blight. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5248-5259. [PMID: 39992285 DOI: 10.1021/acs.jafc.4c09634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gummy stem blight (GSB), which is caused by Stagonosporopsis cucurbitacearum, threatens pumpkin yields and agriculture. Effective, safe antifungal agents are urgently needed. In this study, fermentation broth supernatant of Streptomyces sp. NEAU-T55 demonstrated considerable antifungal activity against S. cucurbitacearum. Activity-guided isolation identified 2 new and 14 known compounds, with (+)-methyl nonactate (10) determined as the main active ingredient. This compound exhibited strong antifungal activity (EC50 = 0.12 μg mL-1), outperforming difenoconazole (EC50 = 0.17 μg mL-1), and achieved 74.1% control efficacy in the pot experiments. Microscopy revealed that (+)-methyl nonactate impeded mycelial growth and induced morphological alterations. Transcriptomic analysis indicated that (+)-methyl nonactate may inhibit acetolactate synthase, thereby disrupting amino acid metabolism and diminishing precursor availability for the tricarboxylic acid cycle. This research represents the first application of (+)-methyl nonactate for GSB control and provides insights into its antifungal mechanisms, laying the groundwork for its potential development as a novel agricultural antibiotic.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ling Ling
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhao Gu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jingzheng Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Yanfang Luo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Huan Qi
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ji-Dong Wang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Kırboğa KK, Karim A, Küçüksille EU, Rudrapal M, Khan J, Achar RR, Silina E, Manturova N, Stupin V. Exploring the antifungal potential of Cannabis sativa-derived stilbenoids and cannabinoids against novel targets through in silico protein interaction profiling. Front Chem 2025; 12:1515424. [PMID: 39834844 PMCID: PMC11743709 DOI: 10.3389/fchem.2024.1515424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Cannabinoid and stilbenoid compounds derived from Cannabis sativa were screened against eight specific fungal protein targets to identify potential antifungal agents. The proteins investigated included Glycosylphosphatidylinositol (GPI), Enolase, Mannitol-2-dehydrogenase, GMP synthase, Dihydroorotate dehydrogenase (DHODH), Heat shock protein 90 homolog (Hsp90), Chitin Synthase 2 (CaChs2), and Mannitol-1-phosphate 5-dehydrogenase (M1P5DH), all of which play crucial roles in fungal survival and pathogenicity. This research evaluates the binding affinities and interaction profiles of selected cannabinoids and stilbenoids with these eight proteins using molecular docking and molecular dynamics simulations. The ligands with the highest binding affinities were identified, and their pharmacokinetic profiles were analyzed using ADMET analysis. The results indicate that GMP synthase exhibited the highest binding affinity with Cannabistilbene I (-9.1 kcal/mol), suggesting hydrophobic solid interactions and multiple hydrogen bonds. Similarly, Chitin Synthase 2 demonstrated significant binding with Cannabistilbene I (-9.1 kcal/mol). In contrast, ligands such as Cannabinolic acid and 8-hydroxycannabinolic acid exhibited moderate binding affinities, underscoring the variability in interaction strengths among different proteins. Despite promising in silico results, experimental validation is necessary to confirm therapeutic potential. This research lays a crucial foundation for future studies, emphasizing the importance of evaluating binding affinities, pharmacokinetic properties, and multi-target interactions to identify promising antifungal agents.
Collapse
Affiliation(s)
- Kevser Kübra Kırboğa
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Türkiye
| | - Aman Karim
- Faculty of Multidisciplinary Studies, Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ecir Uğur Küçüksille
- Faculty of Engineering, Department of Computer Engineering, Isparta Suleyman Demirel University, Isparta, Türkiye
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology and Research, Guntur, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Institute of Digital Biodesign and Modeling of Living Systems, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Rząd K, Kuplińska A, Gabriel I. Fungal L-Methionine Biosynthesis Pathway Enzymes and Their Applications in Various Scientific and Commercial Fields. Biomolecules 2024; 14:1315. [PMID: 39456248 PMCID: PMC11506715 DOI: 10.3390/biom14101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
L-methionine (L-Met) is one of the nine proteinogenic amino acids essential for humans since, in human cells, there are no complete pathways for its biosynthesis from simple precursors. L-Met plays a crucial role in cellular function as it is required for proper protein synthesis, acting as an initiator. Additionally, this amino acid participates in various metabolic processes and serves as a precursor for the synthesis of S-adenosylmethionine (AdoMet), which is involved in the methylation of DNA molecules and phospholipids, as well as in maintaining genome stability. Due to its importance, fungal L-methionine biosynthesis pathway enzymes are being intensively studied. This review presents the current state of the art in terms of their cellular function, usefulness as molecular markers, antifungal targets, or industrial approaches.
Collapse
Affiliation(s)
| | | | - Iwona Gabriel
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (K.R.); (A.K.)
| |
Collapse
|
4
|
Folorunso OS, Sebolai OM. A Limited Number of Amino Acid Permeases Are Crucial for Cryptococcus neoformans Survival and Virulence. Int J Microbiol 2024; 2024:5566438. [PMID: 39148675 PMCID: PMC11326883 DOI: 10.1155/2024/5566438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
One unique attribute of Cryptococcus neoformans is its ability to procure essential monomers from its surroundings to survive in diverse environments. Preferentially, sugars are the energy sources for this opportunistic pathogenic fungus under the carbon catabolite repression (CCR); however, sugar restriction induces alternative use of low molecular weight alcohol, organic acids, and amino acids. The expression of transmembrane amino acid permeases (Aaps) allows C. neoformans to utilize different amino acids and their conjugates, notwithstanding under the nitrogen catabolite repression (NCR). Being referred to as global permeases, there is a notion that all cryptococcal Aaps are important to survival and virulence. This functional divergence makes alternative drug targeting against Cryptococcus a challenge. We examine the functions and regulations of C. neoformans Aap variants with the aim of rationalizing their relevance to cryptococcal cell survival and virulence. Based on nutrient bioavailability, we linked the Cac1 pathway to Ras1 activation for thermotolerance that provides a temperature cushion for Aap activity under physiological conditions. Lastly, mutants of Aaps are examined for significant phenotypic deficiencies/advantages, which buttress the specific importance of limited numbers of Aaps involved in cryptococcal infections.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| |
Collapse
|
5
|
Chong NF, Van de Wouw AP, Idnurm A. The ilv2 gene, encoding acetolactate synthase for branched chain amino acid biosynthesis, is required for plant pathogenicity by Leptosphaeria maculans. Mol Biol Rep 2024; 51:682. [PMID: 38796647 PMCID: PMC11127833 DOI: 10.1007/s11033-024-09620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Control of blackleg disease of canola caused by the fungus Leptosphaeria maculans relies on strategies such as the inhibition of growth with fungicides. However, other chemicals are used during canola cultivation, including fertilizers and herbicides. There is widespread use of herbicides that target the acetolactate synthase (ALS) enzyme involved in branched chain amino acid synthesis and low levels of these amino acids within leaves of Brassica species. In L. maculans the ilv2 gene encodes ALS and thus ALS-inhibiting herbicides may inadvertently impact the fungus. METHODS AND RESULTS Here, the impact of a commercial herbicide targeting ALS and mutation of the homologous ilv2 gene in L. maculans was explored. Exposure to herbicide had limited impact on growth in vitro but reduced lesion sizes in plant disease experiments. Furthermore, the mutation of the ilv2 gene via CRISPR-Cas9 gene editing rendered the fungus non-pathogenic. CONCLUSION Herbicide applications can influence disease outcome, but likely to a minor extent.
Collapse
Affiliation(s)
- Nicholas F Chong
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Angela P Van de Wouw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
6
|
Zhao Y, Huang C, Zeng R, Chen P, Xu K, Huang X, Wang X. AflaILVB/G/I and AflaILVD are involved in mycelial production, aflatoxin biosynthesis, and fungal virulence in Aspergillus flavus. Front Cell Infect Microbiol 2024; 14:1372779. [PMID: 38596652 PMCID: PMC11003189 DOI: 10.3389/fcimb.2024.1372779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Aflatoxins (AFs) are produced by fungi such as Aspergillus flavus and A. parasiticus and are one of the most toxic mycotoxins found in agricultural products and food. Aflatoxin contamination, which requires the control of A. flavus, remains problematic because of the lack of effective strategies and the exploration of new compounds that can inhibit A. flavus growth and mycotoxin production is urgently required to alleviate potential deleterious effects. Acetohydroxy acid synthase (AHAS) and dihydroxy acid dehydratase are important enzymes in the biosynthetic pathways of branched-chain amino acids (BCAAs), including isoleucine, leucine, and valine. Enzymes involved in BCAA biosynthesis are present in bacteria, plants, and fungi, but not in mammals, and are therefore, attractive targets for antimicrobial and herbicide development. In this study, we characterized AflaILVB/G/I and AflaILVD, which encode the catalytic and regulatory subunits of AHAS and dihydroxy acid dehydratase, from the pathogenic fungus Aspergillus flavus. The AflaILVB/G/I and AflaILVD deletion mutant grew slower and produced smaller colonies than the wild-type strain when grown on glucose minimal medium, potato dextrose agar, and yeast extract medium for three days at 28°C, and disruption of AflaILVB/G/I caused a significant reduction in conidia production when grown on all kinds of media. Cellular stress assays determined that all strains were sensitive to H2O2. Importantly, the pathogenicity and aflatoxin production were affected when AflaILVB/G/I and AflaILVD were knocked out, particularly AflaILVB/G/I. A series of genes that encoded enzymes involved in aflatoxin synthesis were downregulated, meaning that the knockout of AflaILVB/G/I influenced aflatoxin synthesis in A. flavus strain WT. Collectively, our results demonstrate the potential value of antifungals targeting AflaILVB/G/I in A. flavus.
Collapse
Affiliation(s)
- Yarong Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chulan Huang
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Rui Zeng
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Peirong Chen
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Kaihang Xu
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xiaomei Huang
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
7
|
Duke SO, Pan Z, Bajsa-Hirschel J, Tamang P, Hammerschmidt R, Lorsbach BA, Sparks TC. Molecular Targets of Herbicides and Fungicides─Are There Useful Overlaps for Fungicide Discovery? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20532-20548. [PMID: 38100716 PMCID: PMC10755756 DOI: 10.1021/acs.jafc.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
New fungicide modes of action are needed for fungicide resistance management strategies. Several commercial herbicide targets found in fungi that are not utilized by commercial fungicides are discussed as possible fungicide molecular targets. These are acetyl CoA carboxylase, acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthase, phytoene desaturase, protoporphyrinogen oxidase, long-chain fatty acid synthase, dihydropteroate synthase, hydroxyphenyl pyruvate dioxygenase, and Ser/Thr protein phosphatase. Some of the inhibitors of these herbicide targets appear to be either good fungicides or good leads for new fungicides. For example, some acetolactate synthase and dihydropteroate inhibitors are excellent fungicides. There is evidence that some herbicides have indirect benefits to certain crops due to their effects on fungal crop pathogens. Using a pesticide with both herbicide and fungicide activities based on the same molecular target could reduce the total amount of pesticide used. The limitations of such a product are discussed.
Collapse
Affiliation(s)
- Stephen O. Duke
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University 38667, United States
| | - Zhiqiang Pan
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Joanna Bajsa-Hirschel
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Prabin Tamang
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Raymond Hammerschmidt
- Department
of Plant, Soil and Microbial Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Beth A. Lorsbach
- Nufarm, 4020 Aerial Center Parkway, Morrisville, North Carolina 27560, United States
| | | |
Collapse
|
8
|
Lin Y, Jung H, Bulman CA, Ng J, Vinck R, O’Beirne C, Zhong S, Moser MS, Tricoche N, Peguero R, Li RW, Urban JF, Le Pape P, Pagniez F, Moretto M, Weil T, Lustigman S, Cariou K, Mitreva M, Sakanari JA, Gasser G. Discovery of New Broad-Spectrum Anti-Infectives for Eukaryotic Pathogens Using Bioorganometallic Chemistry. J Med Chem 2023; 66:15867-15882. [PMID: 38009931 PMCID: PMC11840807 DOI: 10.1021/acs.jmedchem.3c01333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens, including fungal infections. Herein, we show that the simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from that of the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and neglected tropical diseases (NTDs) targeted for elimination by 2030.
Collapse
Affiliation(s)
- Yan Lin
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Hyeim Jung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina A. Bulman
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - James Ng
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Cillian O’Beirne
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Shuai Zhong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Matthew S. Moser
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Nancy Tricoche
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Ricardo Peguero
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Robert W. Li
- Animal Parasitic Diseases Laboratory, United States Department of Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Joseph F. Urban
- Diet, Genomics and Immunology Laboratory, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Patrice Le Pape
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Fabrice Pagniez
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Marco Moretto
- Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Tobias Weil
- Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Judy A. Sakanari
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
9
|
Cong H, Li C, Wang Y, Zhang Y, Ma D, Li L, Jiang J. The Mechanism of Transcription Factor Swi6 in Regulating Growth and Pathogenicity of Ceratocystis fimbriata: Insights from Non-Targeted Metabolomics. Microorganisms 2023; 11:2666. [PMID: 38004677 PMCID: PMC10673406 DOI: 10.3390/microorganisms11112666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Ceratocystis fimbriata (C. fimbriata) is a notorious pathogenic fungus that causes sweet potato black rot disease. The APSES transcription factor Swi6 in fungi is located downstream of the cell wall integrity (CWI)-mitogen-activated protein kinase (MAPK) signaling pathway and has been identified to be involved in cell wall integrity and virulence in several filamentous pathogenic fungi. However, the specific mechanisms by which Swi6 regulates the growth and pathogenicity of plant pathogenic fungi remain elusive. In this study, the SWI6 deletion mutants and complemented strains of C. fimbriata were generated. Deletion of Swi6 in C. fimbriata resulted in aberrant growth patterns. Pathogenicity assays on sweet potato storage roots revealed a significant decrease in virulence in the mutant. Non-targeted metabolomic analysis using LC-MS identified a total of 692 potential differentially accumulated metabolites (PDAMs) in the ∆Cfswi6 mutant compared to the wild type, and the results of KEGG enrichment analysis demonstrated significant enrichment of PDAMs within various metabolic pathways, including amino acid metabolism, lipid metabolism, nucleotide metabolism, GPI-anchored protein synthesis, and ABC transporter metabolism. These metabolic pathways were believed to play a crucial role in mediating the growth and pathogenicity of C. fimbriata through the regulation of CWI. Firstly, the deletion of the SWI6 gene led to abnormal amino acid and lipid metabolism, potentially exacerbating energy storage imbalance. Secondly, significant enrichment of metabolites related to GPI-anchored protein biosynthesis implied compromised cell wall integrity. Lastly, disruption of ABC transport protein metabolism may hinder intracellular transmembrane transport. Importantly, this study represents the first investigation into the potential regulatory mechanisms of SWI6 in plant filamentous pathogenic fungi from a metabolic perspective. The findings provide novel insights into the role of SWI6 in the growth and virulence of C. fimbriata, highlighting its potential as a target for controlling this pathogen.
Collapse
Affiliation(s)
- Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Daifu Ma
- Chinese Academy of Agricultural Sciences Sweet Potato Research Institute, Xuzhou 221131, China;
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| |
Collapse
|
10
|
Dumeaux V, Massahi S, Bettauer V, Mottola A, Dukovny A, Khurdia SS, Costa ACBP, Omran RP, Simpson S, Xie JL, Whiteway M, Berman J, Hallett MT. Candida albicans exhibits heterogeneous and adaptive cytoprotective responses to antifungal compounds. eLife 2023; 12:e81406. [PMID: 37888959 PMCID: PMC10699808 DOI: 10.7554/elife.81406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.
Collapse
Affiliation(s)
- Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Western University, London, Canada
| | - Samira Massahi
- Department of Biology, Concordia University, Montreal, Canada
| | - Van Bettauer
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Austin Mottola
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Anna Dukovny
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | | | | | - Shawn Simpson
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Jinglin Lucy Xie
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | | | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | |
Collapse
|
11
|
Steyer JT, Todd RB. Branched-chain amino acid biosynthesis in fungi. Essays Biochem 2023; 67:865-876. [PMID: 37455545 DOI: 10.1042/ebc20230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Branched-chain amino acids (BCAAs)-isoleucine, leucine, and valine-are synthesized by fungi. These amino acids are important components of proteins and secondary metabolites. The biochemical pathway for BCAA biosynthesis is well-characterized in the yeast Saccharomyces cerevisiae. The biosynthesis of these three amino acids is interconnected. Different precursors are metabolized in multiple steps through shared enzymes to produce isoleucine and valine, and the valine biosynthesis pathway branches before the penultimate step to a series of leucine biosynthesis-specific steps to produce leucine. Recent efforts have made advances toward characterization of the BCAA biosynthesis pathway in several fungi, revealing diversity in gene duplication and functional divergence in the genes for these enzymatic steps in different fungi. The BCAA biosynthesis pathway is regulated by the transcription factor LEU3 in S. cerevisiae, and LeuB in Aspergillus nidulans and Aspergillus fumigatus, and the activity of these transcription factors is modulated by the leucine biosynthesis pathway intermediate α-isopropylmalate. Herein, we discuss recent advances in our understanding of the BCAA pathway and its regulation, focusing on filamentous ascomycete fungi and comparison with the well-established process in yeast.
Collapse
Affiliation(s)
- Joel T Steyer
- Department of Plant Pathology, Kansas State University, Manhattan KS, 66506, U.S.A
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, Manhattan KS, 66506, U.S.A
| |
Collapse
|
12
|
Lin Y, Jung H, Bulman CA, Ng J, Vinck R, O'Beirne C, Moser MS, Tricoche N, Peguero R, Li RW, Urban JF, Pape PL, Pagniez F, Moretto M, Weil T, Lustigman S, Cariou K, Mitreva M, Sakanari JA, Gasser G. Discovery of New Broad-Spectrum Anti-Infectives for Eukaryotic Pathogens Using Bioorganometallic Chemistry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546819. [PMID: 37425761 PMCID: PMC10327022 DOI: 10.1101/2023.06.28.546819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens including fungal infections. Since these diseases target the most vulnerable communities who are disadvantaged by health and socio-economic factors, new agents should be, if possible, easy-to-prepare to allow for commercialization based on their low cost. In this study, we show that simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and NTDs targeted for elimination by 2030. Overall, the discovery of these new compounds with broad-spectrum activity opens new avenues for the development of treatments for several current human infections, either caused by fungi or by parasites, including other NTDs, as well as newly emerging diseases. ONE-SENTENCE SUMMARY Simple derivatives of the well-known antifungal drug fluconazole were found to be highly effective in vivo against fungal infections, and also potent against the parasitic nematode Brugia, which causes lymphatic filariasis and against Trichuris, one of the soil-transmitted helminths that infects millions of people globally.
Collapse
|
13
|
Dong Q, Chen M, Zhang Y, Song P, Yang H, Zhao Y, Yu C, Zha L. Integrated physiologic and proteomic analysis of Stropharia rugosoannulata mycelia in response to Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129877. [PMID: 36067563 DOI: 10.1016/j.jhazmat.2022.129877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Soil Cd pollution seriously threatens environment and human health. Due to its ability to absorb and accumulate Cd in mycelia, Stropharia rugosoannulata could be a potential candidate for bioremediation of Cd-contaminated soils; however, the response mechanism of mycelia to Cd stress is still unclear. In this study, the physiologic and proteomic differences of S. rugosoannulata mycelia under 0.2 mg/L (low) and 2 mg/L (high) Cd stress were investigated. The results showed that Cd accumulation and mycelial growth inhibition exhibited a concentration-depended trend. Analysis of antioxidant system indicated that SOD, GR, GSH, GSSG and ASA played key roles in resisting the toxic effects of Cd. Via proteome analysis, 24 and 267 differentially expressed proteins (DEPs) were observed under low and high Cd stress, respectively. GO and KEGG analysis found that the mycelial growth inhibition might due to the down-regulation of some DEPs involved in "valine, leucine and isoleucine biosynthesis" and "tyrosine metabolism"; the certain tolerance to high Cd stress might attribute to the regulation of DEPs referred to energy metabolism and antioxidant system-related pathways, maintaining cellular energy homeostasis and removing ROS. These results provide a theoretical basis for further elucidation of response mechanisms in S. rugosoannulata to Cd stress.
Collapse
Affiliation(s)
- Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yaru Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Panpan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| |
Collapse
|
14
|
Yang X, Huang Q, Xu J, Gao Z, Jiang X, Wu Y, Ye W, Liang Y. Transcriptome reveals BCAAs biosynthesis pathway is influenced by lovastatin and can act as a potential control target in Phytophthora sojae. J Appl Microbiol 2022; 133:3585-3595. [PMID: 36000236 DOI: 10.1111/jam.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
Abstract
AIMS Lovastatin has been indicated to impair growth and development of Phytophthora sojae. Therefore, this study was performed to understand the inhibitory mechanism of lovastatin and investigate the metabolic pathway potentially serviced as a new control target for this plant pathogen. METHODS AND RESULTS Whole transcriptome analysis of lovastatin-treated P. sojae was performed by RNA-sequencing. The results revealed that 84 genes were upregulated and 58 were downregulated with more than four-fold changes under treatment. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the branched-chain amino acids (BCAAs) biosynthesis pathway was abundantly enriched. All enzymes in the BCAAs biosynthesis pathway were identified in the P. sojae genome. Moreover, the study found that the herbicide flumetsulam targeting acetohydroxyacid synthase (AHAS) of the BCAAs biosynthesis pathway could effectively inhibit mycelial growth of P. sojae. CONCLUSIONS Lovastatin treatment significantly influences the BCAAs biosynthesis pathway in P. sojae. Moreover, the herbicide flumetsulam targets AHAS and inhibits growth of P. sojae. SIGNIFICANCE AND IMPACT OF STUDY The present study revealed that BCAAs biosynthesis pathway was influenced by lovastatin treatment and its key enzyme AHAS was identified as a potential new control target, which provides clues for exploring more oomycides to control plant diseases caused by P. sojae.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qifeng Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jitao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhen Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xue Jiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Kuplińska A, Rząd K, Wojciechowski M, Milewski S, Gabriel I. Antifungal Effect of Penicillamine Due to the Selective Targeting of L-Homoserine O-Acetyltransferase. Int J Mol Sci 2022; 23:ijms23147763. [PMID: 35887110 PMCID: PMC9317633 DOI: 10.3390/ijms23147763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the apparent similarity of fungal and mammalian metabolic pathways, the number of established antifungal targets is low, and the identification of novel ones is highly desirable. The results of our studies, presented in this work, indicate that the fungal biosynthetic pathway of L-methionine, an amino acid essential for humans, seems to be an attractive perspective. The MET2 gene from Candida albicans encoding L-homoserine O-acetyltransferase (CaMet2p), an enzyme catalyzing the first step in that pathway, was cloned and expressed as the native or the oligo-His-tagged fusion protein in Escherichia coli. The recombinant enzymes were purified and characterized for their basic molecular properties and substrate specificities. The purified MET2 gene product revealed the appropriate activity, catalyzed the conversion of L-homoserine (L-Hom) to O-acetyl-L-homoserine (OALH), and exhibited differential sensitivity to several L-Hom or OALH analogues, including penicillamine. Surprisingly, both penicillamine enantiomers (L- and D-Pen) displayed comparable inhibitory effects. The results of the docking of L- and D-Pen to the model of CaMet2p confirmed that both enantiomeric forms of the inhibitor are able to bind to the catalytic site of the enzyme with similar affinities and a similar binding mode. The sensitivity of some fungal cells to L-Pen, depending on the presence or absence of L-Met in the medium, clearly indicate Met2p targeting. Moreover, C. glabrata clinical strains that are resistant to fluconazole displayed a similar susceptibility to L-Pen as the wild-type strains. Our results prove the potential usefulness of Met2p as a molecular target for antifungal chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Iwona Gabriel
- Correspondence: ; Tel.: +48-58-348-6078; Fax: +48-58-347-1144
| |
Collapse
|
16
|
Reslan L, Araj GF, Finianos M, El Asmar R, Hrabak J, Dbaibo G, Bitar I. Molecular Characterization of Candida auris Isolates at a Major Tertiary Care Center in Lebanon. Front Microbiol 2022; 12:770635. [PMID: 35145489 PMCID: PMC8822126 DOI: 10.3389/fmicb.2021.770635] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The globally emerging Candida auris pathogens poses heavy burden to the healthcare system. Their molecular analyses assist in understanding their epidemiology, dissemination, treatment, and control. This study was warranted to describe the genomic features and drug resistance profiles using whole genome sequencing (WGS) among C. auris isolates from Lebanon. METHODS A total of 28 C. auris clinical isolates, from different hospital units, were phenotypically identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and tested for antifungal resistance using Vitek-2 system and E test. The complete genomes were determined by WGS using long reads sequencing (PacBio) to reveal the clade distribution and antifungal resistance genes. RESULTS Candida auris revealed uniform resistance to fluconazole and amphotericin B, with full susceptibility to echinocandins. Among key resistance genes studied, only two mutations were detected: Y132F in ERG11 gene and a novel mutation, D709E, found in CDR1 gene encoding for an ABC efflux pump. Phylogenetically, C. auris genomes belonged to South Asian clade I and showed limited genetic diversity, suggesting person to person transmission. CONCLUSION This characterization of C. auris isolates from Lebanon revealed the exclusivity of clade I lineage together with uniform resistance to fluconazole and amphotericin B. The control of such highly resistant pathogen necessitates an appropriate and rapid recovery and identification to contain spread and outbreaks.
Collapse
Affiliation(s)
- Lina Reslan
- American University of Beirut, Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - George F. Araj
- American University of Beirut, Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Plzeň, Czechia
| | - Rima El Asmar
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Plzeň, Czechia
| | - Ghassan Dbaibo
- American University of Beirut, Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Plzeň, Czechia
| |
Collapse
|
17
|
Shao S, Li B, Sun Q, Guo P, Du Y, Huang J. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microscletotial and conidial formation and virulence in Verticillium dahliae. Fungal Genet Biol 2022; 159:103667. [PMID: 35041986 DOI: 10.1016/j.fgb.2022.103667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Acetolactate synthase (AHAS) catalyses the first common step in the biosynthesis pathways of three branched-chain amino acids (BCAAs) of valine, isoleucine and leucine. Here, we characterized one regulatory subunit (VdILV6) and three catalytic subunits (VdILV2A, VdILV2B and VdILV2C) of AHAS from the important cotton Verticillium wilt fungus Verticillium dahliae. Phenotypic analysis showed that VdILV6 knockout mutants were auxotrophic for valine and isoleucine and were defective in conidial morphogenesis, hypha penetration and virulence to cotton, and lost ability of microscletotial formation. The growth of single catalytic subunit gene knockout mutants were significantly inhibited by leucine at higher concentration and single catalytic subunit gene knockout mutants showed significantly reduced virulence to cotton. VdILV2B knockout also led to obviously reduced microscletotial formation and conidial production, VdILV2C knockout led to reduced conidial production. Further studies suggested that both feedback inhibition by leucine and the inhibition by AHAS inhibiting herbicides of tribenuron and bispyribac resulted in significantly down-regulated expression of the four subunit VdILVs genes (VdILV2A, VdILV2B, VdILV2C and VdILV6). Any single catalytic subunit gene knockout led to reduced expression of the other three subunit genes, whereas VdILV6 knckout induced increased expression of the three catalytic subunit genes. VdILV2B, VdILV2C and VdILV6 knockout resulted in increased expression of VdCPC1 regulator gene of the cross-pathway control of amino acid biosynthesis. Taken together, these results indicate multiple roles of four VdILVs genes in the biosynthesis of BCAAs, virulence, fungal growth and development in the filamentous fungi V. dahliae.
Collapse
Affiliation(s)
- ShengNan Shao
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Biao Li
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Qi Sun
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - PeiRu Guo
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - YeJuan Du
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| | - JiaFeng Huang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| |
Collapse
|
18
|
Low YS, Garcia MD, Lonhienne T, Fraser JA, Schenk G, Guddat LW. Triazolopyrimidine herbicides are potent inhibitors of Aspergillus fumigatus acetohydroxyacid synthase and potential antifungal drug leads. Sci Rep 2021; 11:21055. [PMID: 34702838 PMCID: PMC8548585 DOI: 10.1038/s41598-021-00349-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Aspergillus fumigatus is a fungal pathogen whose effects can be debilitating and potentially fatal in immunocompromised patients. Current drug treatment options for this infectious disease are limited to just a few choices (e.g. voriconazole and amphotericin B) and these themselves have limitations due to potentially adverse side effects. Furthermore, the likelihood of the development of resistance to these current drugs is ever present. Thus, new treatment options are needed for this infection. A new potential antifungal drug target is acetohydroxyacid synthase (AHAS; EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, and a target for many commercial herbicides. In this study, we have expressed, purified and characterised the catalytic subunit of AHAS from A. fumigatus and determined the inhibition constants for several known herbicides. The most potent of these, penoxsulam and metosulam, have Ki values of 1.8 ± 0.9 nM and 1.4 ± 0.2 nM, respectively. Molecular modelling shows that these compounds are likely to bind into the herbicide binding pocket in a mode similar to Candida albicans AHAS. We have also shown that these two compounds inhibit A. fumigatus growth at a concentration of 25 µg/mL. Thus, AHAS inhibitors are promising leads for the development of new anti-aspergillosis therapeutics.
Collapse
Affiliation(s)
- Y S Low
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M D Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - T Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - J A Fraser
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - G Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - L W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
19
|
Lowes DJ, Miao J, Al-Waqfi RA, Avad KA, Hevener KE, Peters BM. Identification of Dual-Target Compounds with Antifungal and Anti-NLRP3 Inflammasome Activity. ACS Infect Dis 2021; 7:2522-2535. [PMID: 34260210 PMCID: PMC11344480 DOI: 10.1021/acsinfecdis.1c00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invasive and superficial infections caused by the Candida species result in significant global morbidity and mortality. As the pathogenicity of these organisms is intimately intertwined with host immune response, therapies to target both the fungus and host inflammation may be warranted. Structural similarities exist between established inhibitors of the NLRP3 inflammasome and those of fungal acetohydroxyacid synthase (AHAS). Therefore, we leveraged this information to conduct an in silico molecular docking screen to find novel polypharmacologic inhibitors of these targets that resulted in the identification of 12 candidate molecules. Of these, compound 10 significantly attenuated activation of the NLPR3 inflammasome by LPS + ATP, while also demonstrating growth inhibitory activity against C. albicans that was alleviated in the presence of exogenous branched chain amino acids, consistent with targeting of fungal AHAS. SAR studies delineated an essential molecular scaffold required for dual activity. Ultimately, 10 and its analog 10a resulted in IC50 (IL-1β release) and MIC50 (fungal growth) values with low μM potency against several Candida species. Collectively, this work demonstrates promising potential of dual-target approaches for improved management of fungal infections.
Collapse
Affiliation(s)
- David J Lowes
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jian Miao
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rand A Al-Waqfi
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Kristiana A Avad
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Doctor of Pharmacy Program, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
20
|
Li JH, Li RH, Wang Y, Li SX, Wu YP, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity, enzyme activity, and molecular docking of novel aniline thiourea. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1901702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sui xin Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yun peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
21
|
Duplication and Functional Divergence of Branched-Chain Amino Acid Biosynthesis Genes in Aspergillus nidulans. mBio 2021; 12:e0076821. [PMID: 34154419 PMCID: PMC8262921 DOI: 10.1128/mbio.00768-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fungi, bacteria, and plants, but not animals, synthesize the branched-chain amino acids: leucine, isoleucine, and valine. While branched-chain amino acid (BCAA) biosynthesis has been well characterized in the yeast Saccharomyces cerevisiae, it is incompletely understood in filamentous fungi. The three BCAAs share several early biosynthesis steps before divergence into specific pathways. In Aspergillus nidulans, the genes for the first two dedicated steps in leucine biosynthesis have been characterized, but the final two have not. We used sequence searches of the A. nidulans genome to identify two genes encoding β-isopropylmalate dehydrogenase, which catalyzes the penultimate step of leucine biosynthesis, and six genes encoding BCAA aminotransferase, which catalyzes the final step in biosynthesis of all three BCAA. We have used combinations of gene knockouts to determine the relative contribution of each of these genes to BCAA biosynthesis. While both β-isopropylmalate dehydrogenase genes act in leucine biosynthesis, the two most highly expressed BCAA aminotransferases are responsible for BCAA biosynthesis. We have also characterized the expression of leucine biosynthesis genes using reverse transcriptase-quantitative PCR and found regulation in response to leucine availability is mediated through the Zn(II)2Cys6 transcription factor LeuB. IMPORTANCE Branched-chain amino acid (BCAA) biosynthesis is important for pathogenic fungi to successfully cause disease in human and plant hosts. The enzymes for their production are absent from humans and, therefore, provide potential antifungal targets. While BCAA biosynthesis is well characterized in yeasts, it is poorly understood in filamentous fungal pathogens. Developing a thorough understanding of both the genes encoding the metabolic enzymes for BCAA biosynthesis and how their expression is regulated will inform target selection for antifungal drug development.
Collapse
|
22
|
Xie L, Zang X, Cheng W, Zhang Z, Zhou J, Chen M, Tang Y. Harzianic Acid from Trichoderma afroharzianum Is a Natural Product Inhibitor of Acetohydroxyacid Synthase. J Am Chem Soc 2021; 143:10.1021/jacs.1c03988. [PMID: 34132537 PMCID: PMC8674378 DOI: 10.1021/jacs.1c03988] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthetic pathway and is a validated target for herbicide and fungicide development. Here we report harzianic acid (HA, 1) produced by the biocontrol fungus Trichoderma afroharzianum t-22 (Tht22) as a natural product inhibitor of AHAS. The biosynthetic pathway of HA was elucidated with heterologous reconstitution. Guided by a putative self-resistance enzyme in the genome, HA was biochemically demonstrated to be a selective inhibitor of fungal AHAS, including those from phytopathogenic fungi. In addition, HA can inhibit a common resistant variant of AHAS in which the active site proline is mutated. Structural analysis of AHAS complexed with HA revealed the molecular basis of competitive inhibition, which differs from all known commercial AHAS inhibitors. The alternative binding mode also rationalizes the selectivity of HA, as well as effectiveness toward resistant mutants. A proposed role of HA biosynthesis by Tht22 in the rhizosphere is discussed based on the data.
Collapse
Affiliation(s)
- Linan Xie
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Xin Zang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Cheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhuan Zhang
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengbin Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Molecular targets for antifungals in amino acid and protein biosynthetic pathways. Amino Acids 2021; 53:961-991. [PMID: 34081205 PMCID: PMC8241756 DOI: 10.1007/s00726-021-03007-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023]
Abstract
Fungi cause death of over 1.5 million people every year, while cutaneous mycoses are among the most common infections in the world. Mycoses vary greatly in severity, there are long-term skin (ringworm), nail or hair infections (tinea capitis), recurrent like vaginal candidiasis or severe, life-threatening systemic, multiorgan infections. In the last few years, increasing importance is attached to the health and economic problems caused by fungal pathogens. There is a growing need for improvement of the availability of antifungal drugs, decreasing their prices and reducing side effects. Searching for novel approaches in this respect, amino acid and protein biosynthesis pathways appear to be competitive. The route that leads from amino acid biosynthesis to protein folding and its activation is rich in enzymes that are descriptive of fungi. Blocking the action of those enzymes often leads to avirulence or growth inhibition. In this review, we want to trace the principal processes of fungi vitality. We present the data of genes encoding enzymes involved in amino acid and protein biosynthesis, potential molecular targets in antifungal chemotherapy, and describe the impact of inhibitors on fungal organisms.
Collapse
|
24
|
Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104766. [PMID: 33518053 DOI: 10.1016/j.pestbp.2020.104766] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
According to the pharmacophore binding strategy and principle of bioelectronic isobaric, used the sulfonylurea bridge as the parent structure, a series of novel thiourea compounds containing aromatic-substituted pyrimidines were designed and synthesized. The preliminary herbicidal activity tests showed that some compounds had good herbicidal activity against Digitaria adscendens, Amaranthus retroflexus, especially for compound 4d and 4f. The results showed that compound 4d had an inhibition rate of 81.5% on the root growth of Brassica napus L. at the concentration of 100 mg L-1, and compound 4f had an inhibition rate of 81% on the root growth of Digitaria adscendens at the concentration of 100 mg L-1. Compounds 4d and 4f had higher comparative activity on Echinochloa crus-galli than the commercial herbicide bensulfuron-methyl. The preliminary structure-activity relationship (SAR) was also summarized. We also tested the in vivo AHAS enzyme activity inhibition experiment of 14 compounds at 100 mg L-1, and the results showed that they all have inhibitory activity on the enzyme, with the highest inhibition rate reaching 44.4% (compound 4d). Based on the results of molecular docking to yeast acetohydroxyacid synthase (AHAS), the possible herbicidal activity mechanism of these compounds was evaluated.
Collapse
Affiliation(s)
- Jia-Hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
| | - Yun-Peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran-Hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong-Gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei-Jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
25
|
Orasch T, Dietl AM, Shadkchan Y, Binder U, Bauer I, Lass-Flörl C, Osherov N, Haas H. The leucine biosynthetic pathway is crucial for adaptation to iron starvation and virulence in Aspergillus fumigatus. Virulence 2020; 10:925-934. [PMID: 31694453 PMCID: PMC6844326 DOI: 10.1080/21505594.2019.1682760] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In contrast to mammalia, fungi are able to synthesize the branched-chain amino acid leucine de novo. Recently, the transcription factor LeuB has been shown to cross-regulate leucine biosynthesis, nitrogen metabolism and iron homeostasis in Aspergillus fumigatus, the most common human mold pathogen. Moreover, the leucine biosynthetic pathway intermediate α-isopropylmalate (α-IPM) has previously been shown to posttranslationally activate LeuB homologs in S. cerevisiae and A. nidulans. Here, we demonstrate that in A. fumigatus inactivation of both leucine biosynthetic enzymes α-IPM synthase (LeuC), which disrupts α-IPM synthesis, and α-IPM isomerase (LeuA), which causes cellular α-IPM accumulation, results in leucine auxotrophy. However, compared to lack of LeuA, lack of LeuC resulted in increased leucine dependence, a growth defect during iron starvation and decreased expression of LeuB-regulated genes including genes involved in iron acquisition. Lack of either LeuA or LeuC decreased virulence in an insect infection model, and inactivation of LeuC rendered A. fumigatus avirulent in a pulmonary aspergillosis mouse model. Taken together, we demonstrate that the lack of two leucine biosynthetic enzymes, LeuA and LeuC, results in significant phenotypic consequences indicating that the regulator LeuB is activated by α-IPM in A. fumigatus and that the leucine biosynthetic pathway is an attractive target for the development of antifungal drugs.
Collapse
Affiliation(s)
- Thomas Orasch
- Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna-Maria Dietl
- Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yana Shadkchan
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Ulrike Binder
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nir Osherov
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
The RNA fold interactome of evolutionary conserved RNA structures in S. cerevisiae. Nat Commun 2020; 11:2789. [PMID: 32493961 PMCID: PMC7270185 DOI: 10.1038/s41467-020-16555-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins play key roles in regulation of gene expression via recognition of structural features in RNA molecules. Here we apply a quantitative RNA pull-down approach to 186 evolutionary conserved RNA structures and report 162 interacting proteins. Unlike global RNA interactome capture, we associate individual RNA structures within messenger RNA with their interacting proteins. Of our binders 69% are known RNA-binding proteins, whereas some are previously unrelated to RNA binding and do not harbor canonical RNA-binding domains. While current knowledge about RNA-binding proteins relates to their functions at 5′ or 3′-UTRs, we report a significant number of them binding to RNA folds in the coding regions of mRNAs. Using an in vivo reporter screen and pulsed SILAC, we characterize a subset of mRNA-RBP pairs and thus connect structural RNA features to functionality. Ultimately, we here present a generic, scalable approach to interrogate the increasing number of RNA structural motifs. Previous study identified in vivo structured mRNA regions in Saccharomyces cerevisiae by dimethyl sulfate-sequencing. Here the authors use quantitative proteomics to identify protein interactors of 186 RNA folds in S. cerevisiae, providing functional links between RNA binding proteins and distinct mRNA fold.
Collapse
|
27
|
Wei C, Qin T, Li Y, Wang W, Dong T, Wang Q. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.). Biochem Biophys Res Commun 2020; 524:392-397. [PMID: 32005518 DOI: 10.1016/j.bbrc.2020.01.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 11/15/2022]
Abstract
Cotton Verticillium wilt caused by Verticillium dahliae (V. dahliae) is one of the most destructive fungal diseases and is difficult to control. However, resistant germplasm resources are scarce in cotton. Many studies have shown that host-induced gene silencing (HIGS) is a practical and effective technology in crop disease prevention by silencing virulence genes of pathogens. Acetolactate synthase (ALS) contains a catalytic subunit ILV2 and a regulatory subunit ILV6, which catalyzes the first common step reaction in branched-chain amino acid (BCAA) biosynthesis. We identified two acetolactate synthases, VdILV2 and VdILV6, which are homologs of ILV2 and ILV6, respectively, in Magnaporthe oryzae. To characterize the function of VdILV2 and VdILV6 in V. dahliae, we suppressed their expression in the strong pathogenic isolate Vd991 by using HIGS technology. VdILV2- or VdILV6-silenced V. dahliae had a dramatic reduction in pathogenicity. The results indicated that VdILV2 and VdILV6 are involved in the pathogenicity of V. dahliae. HIGS of VdILV2 or VdILV6 provides a novel fungicide target and an effective control to resist Verticillium wilt caused by V. dahliae.
Collapse
Affiliation(s)
- Chunyan Wei
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Tengfei Qin
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Yuqing Li
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Weipeng Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Tao Dong
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| |
Collapse
|
28
|
Chen W, Li Y, Zhou Y, Ma Y, Li Z. Design, synthesis and SAR study of novel sulfonylurea derivatives containing arylpyrimidine moieties as potential anti-phytopathogenic fungal agents. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Role of Amino Acid Metabolism in the Virulence of Human Pathogenic Fungi. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00124-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Liu X, Jiang Y, Zhang Y, Yu M, Jiang H, Xu J, Shi J. FgIlv3a is crucial in branched-chain amino acid biosynthesis, vegetative differentiation, and virulence in Fusarium graminearum. J Microbiol 2019; 57:694-703. [PMID: 31079334 DOI: 10.1007/s12275-019-9123-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
Dihydroxyacid dehydratase (DHAD), encoded by ILV3, catalyses the third step in the biosynthetic pathway of branched-chain amino acids (BCAAs), which include isoleucine (Ile), leucine (Leu), and valine (Val). Enzymes involved in BCAA biosynthesis exist in bacteria, plants, and fungi but not in mammals and are therefore attractive targets for antimicrobial or herbicide development. In this study, three paralogous ILV3 genes (FgILV3A, FgILV3B, and FgILV3C) were identified in the genome of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). Deletion of FgILV3A alone or combined with FgILV3B or FgILV3C indicated an important role for FgILV3A in BCAA biosynthesis. FgILV3A deletion mutants lost the ability to grow on medium lacking amino acids. Exogenous supplementation of 1 mM Ile and Val rescued the auxotrophy of ΔFgIlv3A, though 5 mM was required to recover the growth defects in ΔFgIlv3AB and ΔFgIlv3AC strains, indicating that FgIlv3b and FgIlv3c exhibit redundant but accessory roles with FgIlv3a in BCAA biosynthesis. The auxotrophy of ΔFgIlv3A resulted in pleiotropic defects in aerial hyphal growth, in conidial formation and germination, and in aurofusarin accumulation. In addition, the mutants showed reduced virulence and deoxynivalenol production. Overall, our study demonstrates that FgIlv3a is crucial for BCAA biosynthesis in F. graminearum and a candidate fungicide target for FHB management.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,School of Food and Biological Engineering, Jiangsu Univeristy, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Yichen Jiang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, Tibet, P. R. China
| | - Yinghui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,College of Life Science, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan, P. R. China
| | - Mingzheng Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China
| | - Hongjun Jiang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, P. R. China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,School of Food and Biological Engineering, Jiangsu Univeristy, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China. .,School of Food and Biological Engineering, Jiangsu Univeristy, Zhenjiang, 212013, Jiangsu, P. R. China.
| |
Collapse
|
31
|
Wu RJ, Ren T, Gao JY, Wang L, Yu Q, Yao Z, Song GQ, Ruan WB, Niu CW, Song FH, Zhang LX, Li M, Wang JG. Chemical preparation, biological evaluation and 3D-QSAR of ethoxysulfuron derivatives as novel antifungal agents targeting acetohydroxyacid synthase. Eur J Med Chem 2018; 162:348-363. [PMID: 30448420 DOI: 10.1016/j.ejmech.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022]
Abstract
Accetohydroxyacid synthase (AHAS) is the first enzyme involved in the biosynthetic pathway of branched-chain amino acids. Earlier gene mutation of Candida albicans in a mouse model suggested that this enzyme is a promising target of antifungals. Recent studies have demonstrated that some commercial AHAS-inhibiting sulfonylurea herbicides exerted desirable antifungal activity. In this study, we have designed and synthesized 68 novel ethoxysulfulron (ES) derivatives and evaluated their inhibition constants (Ki) against C. albicans AHAS and cell based minimum inhibitory concentration (MIC) values. The target compounds 5-1, 5-10, 5-22, 5-31 and 5-37 displayed stronger AHAS inhibitions than ES did. Compound 5-1 had the best Ki of 6.7 nM against fungal AHAS and MIC values of 2.5 mg/L against Candida albicans and Candica parapsilosis after 72 h. A suitable nematode model was established here and the antifungal activity of 5-1 was further evaluated in vivo. A possible binding mode was simulated via molecular docking and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationship. The current study has indicated that some ES derivatives should be considered as promising hits to develop antifungal drugs with novel biological target.
Collapse
Affiliation(s)
- Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie-Yu Gao
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Li Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Qing Song
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei-Bin Ruan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fu-Hang Song
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Xin Zhang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
32
|
Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections. Proc Natl Acad Sci U S A 2018; 115:E9649-E9658. [PMID: 30249642 DOI: 10.1073/pnas.1809422115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The increased prevalence of drug-resistant human pathogenic fungal diseases poses a major threat to global human health. Thus, new drugs are urgently required to combat these infections. Here, we demonstrate that acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway, is a promising new target for antifungal drug discovery. First, we show that several AHAS inhibitors developed as commercial herbicides are powerful accumulative inhibitors of Candida albicans AHAS (K i values as low as 800 pM) and have determined high-resolution crystal structures of this enzyme in complex with several of these herbicides. In addition, we have demonstrated that chlorimuron ethyl (CE), a member of the sulfonylurea herbicide family, has potent antifungal activity against five different Candida species and Cryptococcus neoformans (with minimum inhibitory concentration, 50% values as low as 7 nM). Furthermore, in these assays, we have shown CE and itraconazole (a P450 inhibitor) can act synergistically to further improve potency. Finally, we show in Candida albicans-infected mice that CE is highly effective in clearing pathogenic fungal burden in the lungs, liver, and spleen, thus reducing overall mortality rates. Therefore, in view of their low toxicity to human cells, AHAS inhibitors represent a new class of antifungal drug candidates.
Collapse
|
33
|
Aghaei Gharehbolagh S, Kordbacheh P, Hashemi SJ, Daie Ghazvini R, Asgari Y, Agha Kuchak Afshari S, Seyedmousavi S, Rezaie S. MGL_3741 gene contributes to pathogenicity of Malassezia globosa in pityriasis versicolor. Mycoses 2018; 61:938-944. [PMID: 30106184 DOI: 10.1111/myc.12840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/08/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
Abstract
Dihydroxyacid dehydratase (DHAD) is a key enzyme in biosynthetic pathway of isoleucine and valine. This pathway is absent in human but exists in various organisms such as fungi. Using RNA-seq analysis in this study, we identified MGL_3741gene which encodes DHAD protein in Malassezia globosa (M. globosa). Furthermore, we found that mentioned gene is homologous to the Ustilago maydis, Saccharomyces cerevisiae, Aspergillus flavus, and Aspergillus fumigatus ILV3P. For understanding the probable role of this gene in pathogenicity of M. globosa, we applied Real-time PCR to investigate the differentially expressed of the MGL_3741 gene in healthy and pathogenic states. Our results indicate a significant difference between two mentioned stats. These results revealed that ILV3-like gene in M. globosa can be related to the pathogenicity of this yeast.
Collapse
Affiliation(s)
- Sanaz Aghaei Gharehbolagh
- Department of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parivash Kordbacheh
- Department of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamal Hashemi
- Department of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Daie Ghazvini
- Department of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Agha Kuchak Afshari
- Department of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedmojtaba Seyedmousavi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Center of Expertise in Microbiology, Infection Biology and Antimicrobial Pharmacology, Tehran, Iran.,Department of Medical Microbiology, Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Sassan Rezaie
- Department of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Potential targets for the development of new antifungal drugs. J Antibiot (Tokyo) 2018; 71:978-991. [DOI: 10.1038/s41429-018-0100-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
|
35
|
Structural insights into the mechanism of inhibition of AHAS by herbicides. Proc Natl Acad Sci U S A 2018; 115:E1945-E1954. [PMID: 29440497 DOI: 10.1073/pnas.1714392115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS), the first enzyme in the branched amino acid biosynthesis pathway, is present only in plants and microorganisms, and it is the target of >50 commercial herbicides. Penoxsulam (PS), which is a highly effective broad-spectrum AHAS-inhibiting herbicide, is used extensively to control weed growth in rice crops. However, the molecular basis for its inhibition of AHAS is poorly understood. This is despite the availability of structural data for all other classes of AHAS-inhibiting herbicides. Here, crystallographic data for Saccharomyces cerevisiae AHAS (2.3 Å) and Arabidopsis thaliana AHAS (2.5 Å) in complex with PS reveal the extraordinary molecular mechanisms that underpin its inhibitory activity. The structures show that inhibition of AHAS by PS triggers expulsion of two molecules of oxygen bound in the active site, releasing them as substrates for an oxygenase side reaction of the enzyme. The structures also show that PS either stabilizes the thiamin diphosphate (ThDP)-peracetate adduct, a product of this oxygenase reaction, or traps within the active site an intact molecule of peracetate in the presence of a degraded form of ThDP: thiamine aminoethenethiol diphosphate. Kinetic analysis shows that PS inhibits AHAS by a combination of events involving FAD oxidation and chemical alteration of ThDP. With the emergence of increasing levels of resistance toward front-line herbicides and the need to optimize the use of arable land, these data suggest strategies for next generation herbicide design.
Collapse
|
36
|
Verma S, Shakya VPS, Idnurm A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 2018; 9:426-446. [PMID: 29261004 PMCID: PMC5955198 DOI: 10.1080/21505594.2017.1414133] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are best known for their role in the production of ATP; however, recent research implicates other mitochondrial functions in the virulence of human pathogenic fungi. Inhibitors of mitochondrial succinate dehydrogenase or the electron transport chain are successfully used to combat plant pathogenic fungi, but similar inhibition of mitochondrial functions has not been pursued for applications in medical mycology. Advances in understanding mitochondrial function relevant to human pathogenic fungi are in four major directions: 1) the role of mitochondrial morphology in virulence, 2) mitochondrial genetics, with a focus on mitochondrial DNA recombination and mitochondrial inheritance 3) the role of mitochondria in drug resistance, and 4) the interaction of mitochondria with other organelles. Collectively, despite the similarities in mitochondrial functions between fungi and animals, this organelle is currently an under-explored potential target to treat medical mycoses. Future research could define and then exploit those mitochondrial components best suited as drug targets.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Viplendra P. S. Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
37
|
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species. Microorganisms 2017; 5:microorganisms5040065. [PMID: 28974017 PMCID: PMC5748574 DOI: 10.3390/microorganisms5040065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans.
Collapse
|
38
|
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Two FgLEU2 Genes with Different Roles in Leucine Biosynthesis and Infection-Related Morphogenesis in Fusarium graminearum. PLoS One 2016; 11:e0165927. [PMID: 27835660 PMCID: PMC5106029 DOI: 10.1371/journal.pone.0165927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/19/2016] [Indexed: 12/04/2022] Open
Abstract
3-isopropylmalate dehydrogenase (IPMD) encoded by LEU2 is a key enzyme in leucine (Leu) biosynthetic pathway. Analysis of the genome sequence of Fusarium graminearum revealed two paralogous LEU2 genes (designated as FgLEU2A and FgLEU2B) in this fungus and the deduced amino acid sequences of FgLeu2A and FgLeu2B share 45% identity. Targeted disruption of individual FgLEU2A/B gene in F. graminearum assigned a more crucial role of FgLeu2A in Leu biosynthesis as disruption of FgLEU2A resulted in mutant (ΔFgLeu2A-10) that was Leu-auxotrophic and could not grow in minimal medium limited for amino acids, whereas FgLEU2B deletion mutant ΔFgLeu2B-2 was morphologically indistinguishable from the wild type strain PH-1. The growth defects of ΔFgLeu2A-10 could be overcome by exogenous addition of Leu at 0.25 mM. Double deletion of FgLEU2A and FgLEU2B (ΔFgLeu2AB-8) caused a more severe Leu-auxotrophic phenotype as the concentration of Leu exogenously added to medium to rescue the growth defect of ΔFgLeu2AB-8 should be raised to 1.25 mM, indicating a less important but nonnegligible role of FgLeu2B in Leu biosynthesis. Disturb of Leu biosynthesis caused by FgLEU2A deletion leads to slower growth rate, reduced aerial hyphal formation and red pigmentation on PDA plates and completely blocked conidial production and germination. All of the defects above could be overcome by Leu addition or complementation of the full-length FgLEU2A gene. ΔFgLeu2A-10 also showed significantly increased sensitivity to osmotic and oxidative stresses. Pathogenicity assay results showed that virulence of mutants lacking FgLEU2A were dramatically impaired on wheat heads and non-host cherry tomatoes. Additionally, a low level of deoxynivalenol (DON) production of ΔFgLeu2A-10 and ΔFgLeu2AB-8 in wheat kernels was also detected. Taken together, results of this study indicated a crucial role of FgLeu2A and a less important role of FgLeu2B in Leu biosynthesis and fungal infection-related morphogenesis in F. graminearum and FgLeu2A may serve as a potential target for novel antifungal development.
Collapse
|
40
|
Martho KFC, de Melo AT, Takahashi JPF, Guerra JM, Santos DCDS, Purisco SU, Melhem MDSC, Fazioli RDA, Phanord C, Sartorelli P, Vallim MA, Pascon RC. Amino Acid Permeases and Virulence in Cryptococcus neoformans. PLoS One 2016; 11:e0163919. [PMID: 27695080 PMCID: PMC5047642 DOI: 10.1371/journal.pone.0163919] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/17/2016] [Indexed: 11/19/2022] Open
Abstract
Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis), where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH) and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work unravels (i) interesting physiological property of C. neoformans regarding its amino acid uptake system; (ii) an important aspect of virulence, which is the need for amino acid permeases during thermal and oxidative stress resistance and, hence, host invasion and colonization; and (iii) provides a convenient prototype for antifungal development, which are the amino acid permeases Aap4/Aap5 and their inhibitor.
Collapse
Affiliation(s)
- Kevin Felipe Cruz Martho
- Instituto de Ciências Ambientais, Química e Farmacêuticas, Universidade Federal de São Paulo, Rua Arthur Ridel, 275, Diadema, SP, Brazil
| | - Amanda Teixeira de Melo
- Instituto de Ciências Ambientais, Química e Farmacêuticas, Universidade Federal de São Paulo, Rua Arthur Ridel, 275, Diadema, SP, Brazil
| | | | | | | | - Sônia Ueda Purisco
- Mycology Unit, Adolfo Lutz Institute, Secretary of Health, São Paulo, Brazil
| | | | | | - Clerlune Phanord
- Instituto de Ciências Ambientais, Química e Farmacêuticas, Universidade Federal de São Paulo, Rua Arthur Ridel, 275, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Instituto de Ciências Ambientais, Química e Farmacêuticas, Universidade Federal de São Paulo, Rua Arthur Ridel, 275, Diadema, SP, Brazil
| | - Marcelo A. Vallim
- Instituto de Ciências Ambientais, Química e Farmacêuticas, Universidade Federal de São Paulo, Rua Arthur Ridel, 275, Diadema, SP, Brazil
| | - Renata C. Pascon
- Instituto de Ciências Ambientais, Química e Farmacêuticas, Universidade Federal de São Paulo, Rua Arthur Ridel, 275, Diadema, SP, Brazil
- * E-mail:
| |
Collapse
|
41
|
Kingsbury JM, Shamaprasad N, Billmyre RB, Heitman J, Cardenas ME. Cancer-associated isocitrate dehydrogenase mutations induce mitochondrial DNA instability. Hum Mol Genet 2016; 25:3524-3538. [PMID: 27427385 DOI: 10.1093/hmg/ddw195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022] Open
Abstract
A major advance in understanding the progression and prognostic outcome of certain cancers, such as low-grade gliomas, acute myeloid leukaemia, and chondrosarcomas, has been the identification of early-occurring mutations in the NADP+-dependent isocitrate dehydrogenase genes IDH1 and IDH2 These mutations result in the production of the onco-metabolite D-2-hydroxyglutarate (2HG), thought to contribute to disease progression. To better understand the mechanisms of 2HG pathophysiology, we introduced the analogous glioma-associated mutations into the NADP+ isocitrate dehydrogenase genes (IDP1, IDP2, IDP3) in Saccharomyces cerevisiae Intriguingly, expression of the mitochondrial IDP1R148H mutant allele results in high levels of 2HG production as well as extensive mtDNA loss and respiration defects. We find no evidence for a reactive oxygen-mediated mechanism mediating this mtDNA loss. Instead, we show that 2HG production perturbs the iron sensing mechanisms as indicated by upregulation of the Aft1-controlled iron regulon and a concomitant increase in iron levels. Accordingly, iron chelation, or overexpression of a truncated AFT1 allele that dampens transcription of the iron regulon, suppresses the loss of respirative capacity. Additional suppressing factors include overexpression of the mitochondrial aldehyde dehydrogenase gene ALD5 or disruption of the retrograde response transcription factor RTG1 Furthermore, elevated α-ketoglutarate levels also suppress 2HG-mediated respiration loss; consistent with a mechanism by which 2HG contributes to mtDNA loss by acting as a toxic α-ketoglutarate analog. Our findings provide insight into the mechanisms that may contribute to 2HG oncogenicity in glioma and acute myeloid leukaemia progression, with the promise for innovative diagnostic and prognostic strategies and novel therapeutic modalities.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nachiketha Shamaprasad
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
42
|
Miramón P, Lorenz MC. The SPS amino acid sensor mediates nutrient acquisition and immune evasion in Candida albicans. Cell Microbiol 2016; 18:1611-1624. [PMID: 27060451 DOI: 10.1111/cmi.12600] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/12/2016] [Accepted: 03/30/2016] [Indexed: 01/20/2023]
Abstract
Candida albicans is well adapted to its host and is able to sense and respond to the nutrients available within. We have shown that C. albicans avidly utilizes amino acids as a carbon source, which allows this opportunistic pathogen to neutralize acidic environments, including the macrophage phagosome. The transcription factor Stp2 is a key regulator of this phenomenon, and we sought to understand the mechanism of activation of Stp2, focusing on the SPS sensor system previously characterized for its role in nitrogen acquisition. We generated deletion mutants of the three components, SSY1, PTR3 and SSY5 and demonstrated that these strains utilize amino acids poorly as carbon source, cannot neutralize the medium in response to these nutrients, and have reduced ammonia release. Exogenous amino acids rapidly induce proteolytic processing of Stp2 and nuclear translocation in an SPS-dependent manner. A truncated version of Stp2, lacking the amino terminal nuclear exclusion domain, could suppress the growth and pH neutralization defects of the SPS mutants. We showed that the SPS system is required for normal resistance of C. albicans to macrophages and that mutants defective in this system reside in more acidic phagosomes compared with wild type cells; however, a more equivocal contribution was observed in the murine model of disseminated candidiasis. Taken together, these results indicate that the SPS system is activated under carbon starvation conditions resembling host environments, regulating Stp2 functions necessary for amino acid catabolism and normal interactions with innate immune cells.
Collapse
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Milne N, Wahl SA, van Maris AJA, Pronk JT, Daran JM. Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metab Eng Commun 2016; 3:39-51. [PMID: 29142820 PMCID: PMC5678825 DOI: 10.1016/j.meteno.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 01/19/2016] [Indexed: 11/16/2022] Open
Abstract
It is theoretically possible to engineer Saccharomyces cerevisiae strains in which isobutanol is the predominant catabolic product and high-yielding isobutanol-producing strains are already reported by industry. Conversely, isobutanol yields of engineered S. cerevisiae strains reported in the scientific literature typically remain far below 10% of the theoretical maximum. This study explores possible reasons for these suboptimal yields by a mass-balancing approach. A cytosolically located, cofactor-balanced isobutanol pathway, consisting of a mosaic of bacterial enzymes whose in vivo functionality was confirmed by complementation of null mutations in branched-chain amino acid metabolism, was expressed in S. cerevisiae. Product formation by the engineered strain was analysed in shake flasks and bioreactors. In aerobic cultures, the pathway intermediate isobutyraldehyde was oxidized to isobutyrate rather than reduced to isobutanol. Moreover, significant concentrations of the pathway intermediates 2,3-dihydroxyisovalerate and α-ketoisovalerate, as well as diacetyl and acetoin, accumulated extracellularly. While the engineered strain could not grow anaerobically, micro-aerobic cultivation resulted in isobutanol formation at a yield of 0.018±0.003 mol/mol glucose. Simultaneously, 2,3-butanediol was produced at a yield of 0.649±0.067 mol/mol glucose. These results identify massive accumulation of pathway intermediates, as well as overflow metabolites derived from acetolactate, as an important, previously underestimated contributor to the suboptimal yields of 'academic' isobutanol strains. The observed patterns of by-product formation is consistent with the notion that in vivo activity of the iron-sulphur-cluster-requiring enzyme dihydroxyacid dehydratase is a key bottleneck in the present and previously described 'academic' isobutanol-producing yeast strains.
Collapse
Affiliation(s)
- N Milne
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - A J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J M Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
44
|
Kingsbury JM, Sen ND, Cardenas ME. Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005714. [PMID: 26659116 PMCID: PMC4684349 DOI: 10.1371/journal.pgen.1005714] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
The conserved target of rapamycin complex 1 (TORC1) integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT), which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA)-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals. In all organisms from yeasts to mammals the target of rapamycin TORC1 pathway controls growth in response to nutrients such as leucine, but the leucine sensing mechanisms are only partially characterized. We show that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, are similarly capable of activating TORC1 kinase via EGOC GTPase-dependent and -independent mechanisms. Activation of TORC1 by leucine or α-ketoisocaproate is only partially mediated via EGOC-GTPase. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT). Disruption of BCAT caused reduced TORC1 activity, which was partially restored by expression of BCAT active site mutants, arguing for both structural and catalytic roles of BCAT in TORC1 control. We find BCAT interacts with several branched-chain amino acid metabolic enzymes, and in a leucine-dependent fashion with the tricarboxylic acid (TCA)-cycle enzyme aconitase. Both aconitase mutation or TCA-cycle inhibition impaired TORC1 activity. Mutation of BCAT resulted in a TCA-cycle intermediate profile consistent with a TCA-cycle block, low ATP levels, activation of AMPK, and TORC1 inhibition. Our results suggest a model whereby BCAT coordinates leucine and TCA cycle metabolism to control TORC1 signaling. Taken together, our findings forge key insights into how the TORC1 signaling cascade senses nutrients to control cell growth.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Neelam D Sen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
45
|
Liu X, Han Q, Xu J, Wang J, Shi J. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum. Sci Rep 2015; 5:16315. [PMID: 26552344 PMCID: PMC4639788 DOI: 10.1038/srep16315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/12/2015] [Indexed: 11/10/2022] Open
Abstract
In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Jiangsu, China.,State Key Laboratory Breeding Base of Food Quality and Safety in Jiangsu Province, Jiangsu, China.,Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Jiangsu, China.,Key Laboratory of Agro-product Safety Risk Evaluation Nanjing (Ministry of Agriculture), Jiangsu, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu, China
| | - Qi Han
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Jiangsu, China
| | - Jianhong Xu
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Jiangsu, China.,State Key Laboratory Breeding Base of Food Quality and Safety in Jiangsu Province, Jiangsu, China.,Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Jiangsu, China.,Key Laboratory of Agro-product Safety Risk Evaluation Nanjing (Ministry of Agriculture), Jiangsu, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu, China
| | - Jian Wang
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Jiangsu, China
| | - Jianrong Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Jiangsu, China.,State Key Laboratory Breeding Base of Food Quality and Safety in Jiangsu Province, Jiangsu, China.,Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Jiangsu, China.,Key Laboratory of Agro-product Safety Risk Evaluation Nanjing (Ministry of Agriculture), Jiangsu, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu, China
| |
Collapse
|
46
|
Fernandes JDS, Martho K, Tofik V, Vallim MA, Pascon RC. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival. PLoS One 2015; 10:e0132369. [PMID: 26162077 PMCID: PMC4498599 DOI: 10.1371/journal.pone.0132369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/14/2015] [Indexed: 01/25/2023] Open
Abstract
Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR). We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8). The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i) quality of nitrogen (Nitrogen Catabolism Repression, NCR) and carbon sources (Carbon Catabolism Repression, CCR), (ii) amino acid availability in the extracellular environment (SPS-sensing) and (iii) nutritional deprivation (Global Amino Acid Control, GAAC). This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro.
Collapse
Affiliation(s)
- João Daniel Santos Fernandes
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
- Universidade de São Paulo, Avenida Prof. Lineu Prestes, 2415 Edifício ICB – III, Cidade Universitária, CEP 05508–900, São Paulo, SP, Brazil
| | - Kevin Martho
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
| | - Veridiana Tofik
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
| | - Marcelo A. Vallim
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
| | - Renata C. Pascon
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
- * E-mail:
| |
Collapse
|
47
|
Synthesis and evaluation of novel N-(4′-arylpyrimidin-2′-yl) sulfonylurea derivatives as potential antifungal agents. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4362-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Fungal Genet Biol 2014; 75:11-9. [PMID: 25554701 DOI: 10.1016/j.fgb.2014.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/27/2014] [Accepted: 12/20/2014] [Indexed: 01/28/2023]
Abstract
Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up-regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans.
Collapse
|
49
|
Inhibitors of amino acids biosynthesis as antifungal agents. Amino Acids 2014; 47:227-49. [PMID: 25408465 PMCID: PMC4302243 DOI: 10.1007/s00726-014-1873-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.
Collapse
|
50
|
Du Y, Hong L, Tang W, Li L, Wang X, Ma H, Wang Z, Zhang H, Zheng X, Zhang Z. Threonine deaminase MoIlv1 is important for conidiogenesis and pathogenesis in the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2014; 73:53-60. [PMID: 25307542 DOI: 10.1016/j.fgb.2014.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/28/2014] [Accepted: 10/01/2014] [Indexed: 01/01/2023]
Abstract
Threonine deaminase is the first critical enzyme in the biosynthesis of branched-chain amino acids (BCAAs), which catalyzes threonine into NH2 and ketobutyrate acid. Previously, we identified and characterized two acetolactate synthases MoIlv2 and MoIlv6 that are involved in the second step of BCAA biosynthesis. Deletion of MoILV2 and MoILV6 resulted in auxotrophy for leucine, isoleucine, and valine and defects in conidiation, appressorial penetration, and pathogenicity. Here, we identified a threonine dehydratase, named MoIlv1, from Magnaporthe oryzae. MoIlv1 is a homolog of Saccharomyces cerevisiae Ilv1p, which has an important role in the biosynthesis of isoleucine. To characterize the function of MoIlv1, a ΔMoilv1 knock-out mutant was generated and analyzed. Disruption of MoILV1 resulted in abnormal conidial morphology, reduced conidiation, limited appressorium-mediated penetration, and attenuated virulence on both barley and rice seedlings. Further analysis by domain-specific deletion revealed that the PALP domain is indispensable for MoIlv1 function. Our study indicates that MoIlv1 is a protein involved in isoleucine biosynthesis that underlies the complex process governing morphogenesis, appressorium formation, invasive hyphae growth, and pathogenicity.
Collapse
Affiliation(s)
- Yan Du
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Li Hong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Wei Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Lianwei Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Hongyu Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|