1
|
Rastkhah E, Fatemi F, Maghami P. Optimizing the Metal Bioreduction Process in Recombinant Shewanella azerbaijanica Bacteria: A Novel Approach via mtrC Gene Cloning and Nitrate-Reducing Pathway Destruction. Mol Biotechnol 2024; 66:3150-3163. [PMID: 37917324 DOI: 10.1007/s12033-023-00920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Environmental pollution is growing every day in terms of the increase in population, industrialization, and urbanization. Shewanella azerbaijanica is introduced as a highly potent bacterium in metal bioremediation. The mtrC gene was selected as a cloning target to improve electron flux chains in the EET (extracellular electron transfer) pathway. Using the SDM (site-directed mutagenesis) technique, the unique gene assembly featured the mtrC gene sandwiched between two napD/B genes to disrupt the nitrate reduction pathway, which serves as the primary metal reduction competitor. Shew-mtrC gene construction was transferred to expression plasmid pET28a (+) in the expression host bacteria (E. coli BL21 and S. azerbaijanica), in pUC57, cloning plasmid, which was transferred to the cloning host bacteria E. coli Top10 and S. azerbaijanica. All cloning procedures (i.e., synthesis, insertion, transformation, cloning, and protein expression) were verified and confirmed by precise tests. ATR-FTIR analysis, CD, western blotting, affinity chromatography, SDS-PAGE, and other techniques were used to confirm the expression and structure of the MtrC protein. The genome sequence and primers were designed according to the submitted Shewanella oneidensis MR-1 genome, the most similar bacteria to this native species. The performance of recombinant S. azerbaijanica bacterium in metal bioremediation, as sustainable strategy, has to be verified by more research.
Collapse
Affiliation(s)
- Elham Rastkhah
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faezeh Fatemi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Xu N, Zhang X, Guo PC, Xie DH, Sheng GP. Biological self-protection inspired engineering of nanomaterials to construct a robust bio-nano system for environmental applications. SCIENCE ADVANCES 2024; 10:eadp2179. [PMID: 39292775 PMCID: PMC11409965 DOI: 10.1126/sciadv.adp2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Nanomaterials can empower microbial-based chemical production or pollutant removal, e.g., nano zero-valent iron (nZVI) as an electron source to enhance microbial reducing pollutants. Constructing bio-nano interfaces is critical for bio-nano system operation, but low interfacial compatibility due to nanotoxicity challenges the system performance. Inspired by microorganisms' resistance to nanotoxicity by secreting extracellular polymeric substances (EPS), which can act as electron shuttling media, we design a highly compatible bio-nano interface by modifying nZVI with EPS, markedly improving the performance of a bio-nano system consisting of nZVI and bacteria. EPS modification reduced membrane damage and oxidative stress induced by nZVI. Moreover, EPS alleviated nZVI agglomeration and probably reduced bacterial rejection of nZVI by wrapping camouflage, contributing to the bio-nano interface formation, thereby facilitating nZVI to provide electrons for bacterial reducing pollutant via membrane-anchoring cytochrome c. This work provides a strategy for designing a highly biocompatible interface to construct robust and efficient bio-nano systems for environmental implication.
Collapse
Affiliation(s)
- Nuo Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Can Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Shi C, He M, Xue Q, Wang C, Liu A. Parasedimentitalea denitrificans sp. nov., a novel denitrifying bacteria isolated from the Yellow Sea and transfer of Zongyanglinia huanghaiensis and Zongyanglinia marina to the genus Parasedimentitalea as Parasedimentitalea huanghaiensis comb. nov. and Parasedimentitalea maritima nom. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38728208 DOI: 10.1099/ijsem.0.006377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
A Gram-stain-negative and rod-shaped bacterium, designated strain CY04T, was isolated from a sediment sample collected from the Yellow Sea. CY04T exhibited the highest 16S rRNA gene sequence similarity of 98.7 % to Zongyanglinia huanghaiensis CY05T, followed by the similarities of 98.6 %, 98.0 and 98.0 % to Zongyanglinia marina DSW4-44T, Parasedimentitalea marina W43T and Parasedimentitalea psychrophila QS115T respectively. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on genome sequences revealed that CY04T formed a robust cluster with Z. huanghaiensis CY05T, Z. marina DSW4-44T, P. marina W43T and P. psychrophila QS115T. Calculated digital DNA-DNA hybridisation and average nucleotide identity values between CY04T and its closely related species were 22.2-23.7 % and 79.0-81.2 % respectively. Cells of CY04T were strictly aerobic, non-motile and positive for catalase, oxidase and denitrification. CY04T harboured a set of genes encoding the enzymes involved in denitrification. Growth occurred at 10-30 °C (optimum, 20 °C), at pH 6.5-9.5 (optimum, pH 8.0) and with 1-6 % (w/v) (optimum, 2.5 %,) NaCl. The major component of the fatty acids was summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The isoprenoid quinone was Q-10. Results of the phenotypic, chemotaxonomic and molecular study indicate that strain CY04T represents a novel species of the genus Parasedimentitalea, for which the name Parasedimentitalea denitrificans sp. nov. is proposed. The type strain is CY04T (=MCCC 1K08635T=KCTC 62199T). It is also proposed that Zongyanglinia huanghaiensis and Zongyanglinia marina should be reclassified as Parasedimentitalea huanghaiensis comb. nov. and Parasedimentitalea maritima nom. nov. An emended description of the genus Parasedimentitalea is also proposed.
Collapse
Affiliation(s)
- Caixing Shi
- College of Basic Medicine, Jining Medical University, Jining 272067, Shandong, PR China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Jining 272067, Shandong, PR China
| | - Mengdan He
- College of Basic Medicine, Jining Medical University, Jining 272067, Shandong, PR China
- College of Basic Medicine, Weifang Medical University, Weifang 261042, Shandong, PR China
| | - Qingjie Xue
- College of Basic Medicine, Jining Medical University, Jining 272067, Shandong, PR China
| | - Chuangong Wang
- College of Basic Medicine, Jining Medical University, Jining 272067, Shandong, PR China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Jining 272067, Shandong, PR China
| | - Ang Liu
- College of Basic Medicine, Jining Medical University, Jining 272067, Shandong, PR China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Jining 272067, Shandong, PR China
| |
Collapse
|
4
|
Liu Y, Pei T, Du J, Zhu H. Polyphasic Characterization and Genomic Insights into an Aerobic Denitrifying Bacterium, Shewanella zhuhaiensis sp. nov., Isolated from a Tidal Flat Sediment. Microorganisms 2023; 11:2870. [PMID: 38138013 PMCID: PMC10745330 DOI: 10.3390/microorganisms11122870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
A new, facultatively anaerobic, light-yellow, and rod-shaped bacterium designated as 3B26T isolated from Qi'ao Island's tidal flat sediment was identified. Strain 3B26T can hydrolyze gelatin, aesculin, and skim milk. The major cellular fatty acids were identified as iso-C15:0, referred to as summed feature 3, and C16:0; the polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, and phospholipid; and the quinones contained Q-7, Q-8, MK-7, and MMK7. The genomic size of strain 3B26T was 4,682,650 bp, and its genomic DNA G + C content was 54.8%. While a 16S rRNA gene-based phylogenetic analysis confirmed that strain 3B26T belongs to the genus Shewanella, both phylogenomic inference and genomic comparison revealed that strain 3B26T is distinguishable from its relatives, and digital DNA-DNA hybridization (dDDH) values of 24.4-62.6% and average nucleotide identities (ANIs) of 83.5-95.6% between them were below the 70% dDDH and 96% ANI thresholds for bacterial species delineation. Genomic functional analysis demonstrated that strain 3B26T possesses complete gene clusters of eicosapentaenoic acid biosynthesis and denitrification. Based on the evidence above, strain 3B26T is considered to represent a novel species of the genus Shewanella, and the name Shewanella zhuhaiensis sp. nov. (type strain 3B26T = GDMCC 1.2057T = KCTC 82339T) is proposed.
Collapse
Affiliation(s)
| | | | | | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.L.); (T.P.); (J.D.)
| |
Collapse
|
5
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
6
|
Liu GH, Yang S, Narsing Rao MP, Han S, Xie CJ, Alwathnani HA, Herzberg M, Rensing C, Zhou SG. Isolation and genomics of ten novel Shewanella species from mangrove wetland. Int J Syst Evol Microbiol 2023; 73. [PMID: 37327059 DOI: 10.1099/ijsem.0.005929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Mangrove bacteria largely compose the microbial community of the coastal ecosystem and are directly associated with nutrient cycling. In the present study, 12 Gram-negative and motile strains were isolated from a mangrove wetland in Zhangzhou, China. Pairwise comparisons (based on 16S rRNA gene sequences) and phylogenetic analysis indicated that these 12 strains belong to the genus Shewanella. The 16S rRNA gene sequence similarities among the 12 Shewanella strains and their related type strains ranged from 98.8 to 99.8 %, but they still could not be considered as known species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the 12 strains and their related type strains were below the cut-off values (ANI 95-96% and dDDH 70 %) for prokaryotic species delineation. The DNA G+C contents of the present study strains ranged from 44.4 to 53.8 %. The predominant menaquinone present in all strains was MK-7. The present study strains (except FJAT-53532T) also contained ubiquinones (Q-8 and Q-7). The polar lipid phosphatidylglycerol and fatty acid iso-C15 : 0 was noticed in all strains. Based on phenotypic, chemotaxonomic, phylogenetic and genomic comparisons, we propose that these 12 strains represent 10 novel species within the genus Shewanella, with the names Shewanella psychrotolerans sp. nov. (FJAT-53749T=GDMCC 1.2398T=KCTC 82649T), Shewanella zhangzhouensis sp. nov. (FJAT-52072T=MCCC 1K05363T=KCTC 82447T), Shewanella rhizosphaerae sp. nov. (FJAT-53764T=GDMCC 1.2349T=KCTC 82648T), Shewanella mesophila sp. nov. (FJAT-53870T=GDMCC 1.2346T= KCTC 82640T), Shewanella halotolerans sp. nov. (FJAT-53555T=GDMCC 1.2344T=KCTC 82645T), Shewanella aegiceratis sp. nov. (FJAT-53532T=GDMCC 1.2343T=KCTC 82644T), Shewanella alkalitolerans sp. nov. (FJAT-54031T=GDMCC 1.2347T=KCTC 82642T), Shewanella spartinae sp. nov. (FJAT-53681T=GDMCC 1.2345T=KCTC 82641T), Shewanella acanthi sp. nov. (FJAT-51860T=GDMCC 1.2342T=KCTC 82650T) and Shewanella mangrovisoli sp. nov. (FJAT-51754T=GDMCC 1.2341T= KCTC 82647T).
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou City, Fujian Province, 350003, PR China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Manik Prabhu Narsing Rao
- Programa de Doctorado en Ciencias Aplicadas, Universidad Autónoma de Chile, Talca, 3460000, Chile
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| |
Collapse
|
7
|
Ding DW, Huang WF, Lei LL, Wu P. Co-fitness analysis identifies a diversity of signal proteins involved in the utilization of specific c-type cytochromes. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
c-Type cytochromes are essential for extracellular electron transfer (EET) in electroactive microorganisms. The expression of appropriate c-type cytochromes is an important feature of these microorganisms in response to different extracellular electron acceptors. However, how these diverse c-type cytochromes are tightly regulated is still poorly understood.
Methods
In this study, we identified the high co-fitness genes that potentially work with different c-type cytochromes by using genome-wide co-fitness analysis. We also constructed and studied the co-fitness networks that composed of c-type cytochromes and the top 20 high co-fitness genes of them.
Results
We found that high co-fitness genes of c-type cytochromes were enriched in signal transduction processes in Shewanella oneidensis MR-1 cells. We then checked the top 20 co-fitness proteins for each of the 41 c-type cytochromes and identified the corresponding signal proteins for different c-type cytochromes. In particular, through the analysis of the high co-fitness signal protein for CymA, we further confirmed the cooperation between signal proteins and c-type cytochromes and identified a novel signal protein that is putatively involved in the regulation of CymA. In addition, we showed that these signal proteins form two signal transduction modules.
Conclusion
Taken together, these findings provide novel insights into the coordinated utilization of different c-type cytochromes under diverse conditions.
Collapse
|
8
|
Nitrate Removal from Groundwater by Heterotrophic and Electro-Autotrophic Denitrification. WATER 2022. [DOI: 10.3390/w14111759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A heterotrophic and autotrophic denitrification (HAD) system shows satisfactory performance for groundwater with nitrate contamination. In this study, an HAD system combining solid-phase heterotrophic denitrification and electrochemical hydrogen autotrophic denitrification (SHD-EHD) was developed for the treatment of nitrate-contaminated groundwater, in which polycaprolactone (PCL) was used as the carbon source to enhance the nitrate removal performance and prevent secondary pollution of the electrochemical hydrogen autotrophic denitrification (EHD) system. The denitrification performance, microbial community structure and nitrogen metabolism were investigated. The results showed that a high nitrate removal rate of 99.04% was achieved with an influent nitrate concentration of 40 mg/L, a current of 40 mA and a hydraulic retention time (HRT) of 4 h. By comparing the performance with the EHD system, it was found that the HAD system with PCL promoted the complete denitrification and reduced the accumulation of NO2−-N. Analysis of the microbial community structure identified the key denitrifying bacteria: Dechloromonas, Thauera and Hydrogenophaga. A comparison of microbial communities from SHD-EHD and solid-phase heterotrophic denitrification (SHD) demonstrated that electrical stimulation promoted the abundance of the dominant denitrifying bacteria and the electroactive bacteria. Analysis of the nitrogen metabolic pathway revealed that the conversion of NO to N2O was the rate-limiting step in the overall denitrification pathway. The SHD-EHD developed in this study showed great potential for groundwater nitrate removal.
Collapse
|
9
|
Guo K, Feng X, Sun W, Han S, Wu S, Gao H. NapB Restores cytochrome c biosynthesis in bacterial dsbD-deficient mutants. Commun Biol 2022; 5:87. [PMID: 35064202 PMCID: PMC8782879 DOI: 10.1038/s42003-022-03034-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cytochromes c (cyts c), essential for respiration and photosynthesis in eukaryotes, confer bacteria respiratory versatility for survival and growth in natural environments. In bacteria having a cyt c maturation (CCM) system, DsbD is required to mediate electron transport from the cytoplasm to CcmG of the Ccm apparatus. Here with cyt c-rich Shewanella oneidensis as the research model, we identify NapB, a cyt c per se, that suppresses the CCM defect of a dsbD mutant during anaerobiosis, when NapB is produced at elevated levels, a result of activation by cAMP-Crp. Data are then presented to suggest that NapB reduces CcmG, leading to the suppression. We further show that NapB proteins capable of rescuing CCM in the dsbD mutant form a small distinct clade. The study sheds light on multifunctionality of cyts c, and more importantly, unravels a self-salvation strategy through which bacteria have evolved to better adjust to the natural world. The DsbD protein is normally required for cytochrome c maturation (Ccm) in bacteria. With cytochrome c-rich Shewanella oneidensis as the research model, NapB, the small subunit of the nitrate reductase which is a cytochrome c per se, was found to suppress the Ccm defect resulting from DsbD loss under anaerobic conditions.
Collapse
|
10
|
Martín-Rodríguez AJ, Reyes-Darias JA, Martín-Mora D, González JM, Krell T, Römling U. Reduction of alternative electron acceptors drives biofilm formation in Shewanella algae. NPJ Biofilms Microbiomes 2021; 7:9. [PMID: 33504806 PMCID: PMC7840931 DOI: 10.1038/s41522-020-00177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
Shewanella spp. possess a broad respiratory versatility, which contributes to the occupation of hypoxic and anoxic environmental or host-associated niches. Here, we observe a strain-specific induction of biofilm formation in response to supplementation with the anaerobic electron acceptors dimethyl sulfoxide (DMSO) and nitrate in a panel of Shewanella algae isolates. The respiration-driven biofilm response is not observed in DMSO and nitrate reductase deletion mutants of the type strain S. algae CECT 5071, and can be restored upon complementation with the corresponding reductase operon(s) but not by an operon containing a catalytically inactive nitrate reductase. The distinct transcriptional changes, proportional to the effect of these compounds on biofilm formation, include cyclic di-GMP (c-di-GMP) turnover genes. In support, ectopic expression of the c-di-GMP phosphodiesterase YhjH of Salmonella Typhimurium but not its catalytically inactive variant decreased biofilm formation. The respiration-dependent biofilm response of S. algae may permit differential colonization of environmental or host niches.
Collapse
Affiliation(s)
| | - José A. Reyes-Darias
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - David Martín-Mora
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M. González
- grid.10041.340000000121060879Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Tino Krell
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Ute Römling
- grid.465198.7Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
11
|
Dissimilatory Nitrate Reduction to Ammonium (DNRA) and Denitrification Pathways Are Leveraged by Cyclic AMP Receptor Protein (CRP) Paralogues Based on Electron Donor/Acceptor Limitation in Shewanella loihica PV-4. Appl Environ Microbiol 2021; 87:AEM.01964-20. [PMID: 33158888 DOI: 10.1128/aem.01964-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Under anoxic conditions, many bacteria, including Shewanella loihica strain PV-4, could use nitrate as an electron acceptor for dissimilatory nitrate reduction to ammonium (DNRA) and/or denitrification. Previous and current studies have shown that DNRA is favored under higher ambient carbon-to-nitrogen (C/N) ratios, whereas denitrification is upregulated under lower C/N ratios, which is consistent with our bioenergetics calculations. Interestingly, computational analyses indicate that the common cyclic AMP receptor protein (designated CRP1) and its paralogue CRP2 might both be involved in the regulation of two competing dissimilatory nitrate reduction pathways, DNRA and denitrification, in S. loihica PV-4 and several other denitrifying Shewanella species. To explore the regulatory mechanism underlying the dissimilatory nitrate reduction (DNR) pathways, nitrate reduction of a series of in-frame deletion mutants was analyzed under different C/N ratios. Deletion of crp1 could accelerate the reduction of nitrite to NO under both low and high C/N ratios. CRP1 is not required for denitrification and actually suppresses production of NO and N2O gases. Deletion of either of the NO-forming nitrite reductase genes nirK or crp2 blocked production of NO gas. Furthermore, real-time PCR and electrophoretic mobility shift assays (EMSAs) demonstrated that the transcription levels of DNRA-relevant genes such as nap-β (napDABGH), nrfA, and cymA were upregulated by CRP1, while nirK transcription was dependent on CRP2. There are tradeoffs between the different physiological roles of nitrate/lactate, as nitrogen nutrient/carbon source and electron acceptor/donor and CRPs may leverage dissimilatory nitrate reduction pathways for maximizing energy yield and bacterial survival under ambient environmental conditions.IMPORTANCE Some microbes utilize different dissimilatory nitrate reduction (DNR) pathways, including DNR to ammonia (DNRA) and denitrification pathways, for anaerobic respiration in response to ambient carbon/nitrogen ratio changes. Large-scale industrial nitrogen fixation and fertilizer application raise the concern of emission of N2O, a stable gas with potent global warming potential, as consequence of microbial respiration, thereby aggravating global warming and climate change. However, little is known about the molecular mechanism underlying the choice of two competing DNR pathways. We demonstrate that the global regulator CRP1, which is widely encoded in bacteria, is required for DNRA in S. loihica PV-4 strain, while the CRP2 paralogue is required for transcription of the nitrite reductase gene nirK for denitrification. Sufficient carbon source lead to the predominance of DNRA, while carbon source/electron donor deficiency may result in an incomplete denitrification process, raising the concern of high levels of N2O emission from nitrate-rich and carbon source-poor waters and soils.
Collapse
|
12
|
Benaiges-Fernandez R, Offeddu FG, Margalef-Marti R, Palau J, Urmeneta J, Carrey R, Otero N, Cama J. Geochemical and isotopic study of abiotic nitrite reduction coupled to biologically produced Fe(II) oxidation in marine environments. CHEMOSPHERE 2020; 260:127554. [PMID: 32688313 DOI: 10.1016/j.chemosphere.2020.127554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Estuarine sediments are often characterized by abundant iron oxides, organic matter, and anthropogenic nitrogen compounds (e.g., nitrate and nitrite). Anoxic dissimilatory iron reducing bacteria (e.g., Shewanella loihica) are ubiquitous in these environments where they can catalyze the reduction of Fe(III) (oxyhydr)oxides, thereby releasing aqueous Fe(II). The biologically produced Fe(II) can later reduce nitrite to form nitrous oxide. The effect on nitrite reduction by both biologically produced and artificially amended Fe(II) was examined experimentally. Ferrihydrite was reduced by Shewanella loihica in a batch reaction with an anoxic synthetic sea water medium. Some of the Fe(II) released by S. loihica adsorbed onto ferrihydrite, which was involved in the transformation of ferrihydrite to magnetite. In a second set of experiments with identical medium, no microorganism was present, instead, Fe(II) was amended. The amount of solid-bound Fe(II) in the experiments with bioproduced Fe(II) increased the rate of abiotic NO2- reduction with respect to that with synthetic Fe(II), yielding half-lives of 0.07 and 0.47 d, respectively. The δ18O and δ15N of NO2- was measured through time for both the abiotic and innoculated experiments. The ratio of ε18O/ε15N was 0.6 for the abiotic experiments and 3.1 when NO2- was reduced by S. loihica, thus indicating two different mechanisms for the NO2- reduction. Notably, there is a wide range of the ε18O/ε15N values in the literature for abiotic and biotic NO2- reduction, as such, the use of this ratio to distinguish between reduction mechanisms in natural systems should be taken with caution. Therefore, we suggest an additional constraint to identify the mechanisms (i.e. abiotic/biotic) controlling NO2- reduction in natural settings through the correlation of δ15N-NO2- and the aqueous Fe(II) concentration.
Collapse
Affiliation(s)
- R Benaiges-Fernandez
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain.
| | - F G Offeddu
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain
| | - R Margalef-Marti
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - J Palau
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain; Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - J Urmeneta
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain; Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - R Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - N Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain; Serra Húnter Fellowship. Generalitat de Catalunya, Catalonia, Spain
| | - J Cama
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Exploration of Electrochemcially Active Bacterial Strains for Microbial Fuel Cells: An Innovation in Bioelectricity Generation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Li J, Tang Q, Li Y, Fan YY, Li FH, Wu JH, Min D, Li WW, Lam PKS, Yu HQ. Rediverting Electron Flux with an Engineered CRISPR-ddAsCpf1 System to Enhance the Pollutant Degradation Capacity of Shewanella oneidensis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3599-3608. [PMID: 32062962 DOI: 10.1021/acs.est.9b06378] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pursuing efficient approaches to promote the extracellular electron transfer (EET) of extracellular respiratory bacteria is essential to their application in environmental remediation and waste treatment. Here, we report a new strategy of tuning electron flux by clustered regularly interspaced short palindromic repeat (CRISPR)-ddAsCpf1-based rediverting (namely STAR) to enhance the EET capacity of Shewanella oneidensis MR-1, a model extracellular respiratory bacterium widely present in the environment. The developed CRISPR-ddAsCpf1 system enabled approximately 100% gene repression with the green fluorescent protein (GFP) as a reporter. Using a WO3 probe, 10 representative genes encoding for putative competitive electron transfer proteins were screened, among which 7 genes were identified as valid targets for EET enhancement. Repressing the valid genes not only increased the transcription level of the l-lactate metabolism genes but also affected the genes involved in direct and indirect EET. Increased riboflavin production was also observed. The feasibility of this strategy to enhance the bioreduction of methyl orange, an organic pollutant, and chromium, a typical heavy metal, was demonstrated. This work implies a great potential of the STAR strategy with the CIRPSR-ddAsCpf1 system for enhancing bacterial EET to favor more efficient environmental remediation applications.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou 215123, China
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Qiang Tang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Yang Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Feng-He Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou 215123, China
| | - Paul K S Lam
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou 215123, China
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou 215123, China
| |
Collapse
|
15
|
Lemaire ON, Méjean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol Rev 2020; 44:155-170. [DOI: 10.1093/femsre/fuz031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
The Gram-negative Shewanella bacterial genus currently includes about 70 species of mostly aquatic γ-proteobacteria, which were isolated around the globe in a multitude of environments such as surface freshwater and the deepest marine trenches. Their survival in such a wide range of ecological niches is due to their impressive physiological and respiratory versatility. Some strains are among the organisms with the highest number of respiratory systems, depending on a complex and rich metabolic network. Implicated in the recycling of organic and inorganic matter, they are important components of organism-rich oxic/anoxic interfaces, but they also belong to the microflora of a broad group of eukaryotes from metazoans to green algae. Examples of long-term biological interactions like mutualism or pathogeny have been described, although molecular determinants of such symbioses are still poorly understood. Some of these bacteria are key organisms for various biotechnological applications, especially the bioremediation of hydrocarbons and metallic pollutants. The natural ability of these prokaryotes to thrive and detoxify deleterious compounds explains their use in wastewater treatment, their use in energy generation by microbial fuel cells and their importance for resilience of aquatic ecosystems.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| |
Collapse
|
16
|
Torrez Lamberti MF, Ballesteros MF, López FE, Pescaretti MDLM, Delgado MA. RcsB-dependent effects on nar operon regulation during the aerobic growth of Salmonella Typhimurium. Biochimie 2019; 167:152-161. [PMID: 31563538 DOI: 10.1016/j.biochi.2019.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
The intracellular pathogen Salmonella is an important cause of human foodborne diseases worldwide. Salmonella takes advantage of the phosphorelay regulatory systems to survive in the hostile environment of the host's gastrointestinal tract. It has been reported that the nitrate reductase Z (NR-Z), encoded by the narUZYV operon, is required during Salmonella transition to anaerobic environments and is constitutively produced at low levels, but little is known about the regulatory mechanism involved in the operon gene expression. In this work, we found that the RcsCDB system is activated by high concentrations of specific sugars as a carbon source. In this activation state, the RcsCDB system participates in the negative control of narUZYWV expression. This control strategy occurs during exponential growth when the carbon source is high, allowing for normal aerobic respiration. The RcsCDB system's participation in aerobic respiration is necessary to ensure efficient metabolism and optimal energy consumption when the bacteria are growing exponentially.
Collapse
Affiliation(s)
- Mónica F Torrez Lamberti
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - María Florencia Ballesteros
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Fabián E López
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina; Universidad Nacional de Chilecito (UNdeC), 9 de Julio 22, F5360CKB, Chilecito, La Rioja, Argentina
| | - María de Las Mercedes Pescaretti
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
| | - Mónica A Delgado
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
| |
Collapse
|
17
|
Mintmier B, McGarry JM, Sparacino-Watkins CE, Sallmen J, Fischer-Schrader K, Magalon A, McCormick JR, Stolz JF, Schwarz G, Bain DJ, Basu P. Molecular cloning, expression and biochemical characterization of periplasmic nitrate reductase from Campylobacter jejuni. FEMS Microbiol Lett 2019; 365:5040225. [PMID: 29931366 DOI: 10.1093/femsle/fny151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni, a human gastrointestinal pathogen, uses nitrate for growth under microaerophilic conditions using periplasmic nitrate reductase (Nap). The catalytic subunit, NapA, contains two prosthetic groups, an iron sulfur cluster and a molybdenum cofactor. Here we describe the cloning, expression, purification, and Michaelis-Menten kinetics (kcat of 5.91 ± 0.18 s-1 and a KM (nitrate) of 3.40 ± 0.44 μM) in solution using methyl viologen as an electron donor. The data suggest that the high affinity of NapA for nitrate could support growth of C. jejuni on nitrate in the gastrointestinal tract. Site-directed mutagenesis was used and the codon for the molybdenum coordinating cysteine residue has been exchanged for serine. The resulting variant NapA is 4-fold less active than the native enzyme confirming the importance of this residue. The properties of the C. jejuni enzyme reported here represent the first isolation and characterization of an epsilonproteobacterial NapA. Therefore, the fundamental knowledge of Nap has been expanded.
Collapse
Affiliation(s)
- Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Jennifer M McGarry
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | - Joseph Sallmen
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, 13402 Marseille, France
| | - Joseph R McCormick
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Günter Schwarz
- Institute for Biochemistry, University of Cologne, Cologne 50674, Germany
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, PA 15260, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Aigle A, Bonin P, Fernandez-Nunez N, Loriod B, Guasco S, Bergon A, Armougom F, Iobbi-Nivol C, Imbert J, Michotey V. The nature of the electron acceptor (MnIV/NO3) triggers the differential expression of genes associated with stress and ammonium limitation responses in Shewanella algae C6G3. FEMS Microbiol Lett 2019; 365:4939474. [PMID: 29566166 DOI: 10.1093/femsle/fny068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/15/2018] [Indexed: 01/05/2023] Open
Abstract
Shewanella algae C6G3 can dissimilatively reduce nitrate into ammonium and manganese oxide (MnIV) into MnII. It has the unusual ability to anaerobically produce nitrite from ammonium in the presence of MnIV. To gain insight into their metabolic capabilities, global mRNA expression patterns were investigated by RNA-seq and qRT-PCR in cells growing with lactate and ammonium as carbon and nitrogen sources, and with either MnIV or nitrate as electron acceptors. Genes exhibiting higher expression levels in the presence of MnIV belonged to functional categories of carbohydrate, coenzyme, lipid metabolisms and inorganic ion transport. The comparative transcriptomic pattern between MnIV and NO3 revealed that the strain presented an ammonium limitation status with MnIV, despite the presence of a non-limiting concentration of ammonium under both culture conditions. In addition, in the presence of MnIV, ntrB/nrtC regulators, ammonium channel, nitrogen regulatory protein P-II, glutamine synthetase and asparagine synthetase glutamine-dependent genes were over-represented. Under the nitrate condition, the expression of genes involved in the synthesis of several amino acids was increased. Finally, the expression level of genes associated with the general stress response was also amplified in both conditions and among them, katE, a putative catalase/peroxidase present on several Shewanella genomes, was highly expressed with a median value relatively higher in the MnIV condition.
Collapse
Affiliation(s)
- Axel Aigle
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Patricia Bonin
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | | | - Béatrice Loriod
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Sophie Guasco
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Aurélie Bergon
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Fabrice Armougom
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, CNRS, BIP Bioénergétique et Ingénierie des Protéines UMR 7281, 13402, Marseille, France
| | - Jean Imbert
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Valérie Michotey
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| |
Collapse
|
19
|
Villemur R, Payette G, Geoffroy V, Mauffrey F, Martineau C. Dynamics of a methanol-fed marine denitrifying biofilm: 2-impact of environmental changes on the microbial community. PeerJ 2019; 7:e7467. [PMID: 31423359 PMCID: PMC6697039 DOI: 10.7717/peerj.7467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The biofilm of a methanol-fed, marine denitrification system is composed of a multi-species microbial community, among which Hyphomicrobium nitrativorans and Methylophaga nitratireducenticrescens are the principal bacteria involved in the denitrifying activities. To assess its resilience to environmental changes, the biofilm was cultivated in artificial seawater (ASW) under anoxic conditions and exposed to a range of specific environmental conditions. We previously reported the impact of these changes on the denitrifying activities and the co-occurrence of H. nitrativorans strain NL23 and M. nitratireducenticrescens in the biofilm cultures. Here, we report the impact of these changes on the dynamics of the overall microbial community of the denitrifying biofilm. METHODS The original biofilm (OB) taken from the denitrification system was cultivated in ASW under anoxic conditions with a range of NaCl concentrations, and with four combinations of nitrate/methanol concentrations and temperatures. The OB was also cultivated in the commercial Instant Ocean seawater (IO). The bacterial diversity of the biofilm cultures and the OB was determined by 16S ribosomal RNA gene sequences. Culture approach was used to isolate other denitrifying bacteria from the biofilm cultures. The metatranscriptomes of selected biofilm cultures were derived, along with the transcriptomes of planktonic pure cultures of H. nitrativorans strain NL23 and M. nitratireducenticrescens strain GP59. RESULTS High proportions of M. nitratireducenticrescens occurred in the biofilm cultures. H. nitrativorans strain NL23 was found in high proportion in the OB, but was absent in the biofilm cultures cultivated in the ASW medium at 2.75% NaCl. It was found however in low proportions in the biofilm cultures cultivated in the ASW medium at 0-1% NaCl and in the IO biofilm cultures. Denitrifying bacterial isolates affiliated to Marinobacter spp. and Paracoccus spp. were isolated. Up regulation of the denitrification genes of strains GP59 and NL23 occurred in the biofilm cultures compared to the planktonic pure cultures. Denitrifying bacteria affiliated to the Stappia spp. were metabolically active in the biofilm cultures. CONCLUSIONS These results illustrate the dynamics of the microbial community in the denitrifying biofilm cultures in adapting to different environmental conditions. The NaCl concentration is an important factor affecting the microbial community in the biofilm cultures. Up regulation of the denitrification genes of M. nitratireducenticrescens strain GP59 and H. nitrativorans strain NL23 in the biofilm cultures suggests different mechanisms of regulation of the denitrification pathway in the biofilm. Other denitrifying heterotrophic bacteria are present in low proportions, suggesting that the biofilm has the potential to adapt to heterotrophic, non-methylotrophic environments.
Collapse
Affiliation(s)
- Richard Villemur
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | - Geneviève Payette
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | | | | | | |
Collapse
|
20
|
Liu Y, Ai GM, Wu MR, Li SS, Miao LL, Liu ZP. Photobacterium sp. NNA4, an efficient hydroxylamine-transforming heterotrophic nitrifier/aerobic denitrifier. J Biosci Bioeng 2019; 128:64-71. [DOI: 10.1016/j.jbiosc.2018.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/06/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022]
|
21
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
22
|
Li XG, Zhang WJ, Xiao X, Jian HH, Jiang T, Tang HZ, Qi XQ, Wu LF. Pressure-Regulated Gene Expression and Enzymatic Activity of the Two Periplasmic Nitrate Reductases in the Deep-Sea Bacterium Shewanella piezotolerans WP3. Front Microbiol 2018; 9:3173. [PMID: 30622525 PMCID: PMC6308320 DOI: 10.3389/fmicb.2018.03173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Shewanella species are widely distributed in marine environments, from the shallow coasts to the deepest sea bottom. Most Shewanella species possess two isoforms of periplasmic nitrate reductases (NAP-α and NAP-β) and are able to generate energy through nitrate reduction. However, the contributions of the two NAP systems to bacterial deep-sea adaptation remain unclear. In this study, we found that the deep-sea denitrifier Shewanella piezotolerans WP3 was capable of performing nitrate respiration under high hydrostatic pressure (HHP) conditions. In the wild-type strain, NAP-β played a dominant role and was induced by both the substrate and an elevated pressure, whereas NAP-α was constitutively expressed at a relatively lower level. Genetic studies showed that each NAP system alone was sufficient to fully sustain nitrate-dependent growth and that both NAP systems exhibited substrate and pressure inducible expression patterns when the other set was absent. Biochemical assays further demonstrated that NAP-α had a higher tolerance to elevated pressure. Collectively, we report for the first time the distinct properties and contributions of the two NAP systems to nitrate reduction under different pressure conditions. The results will shed light on the mechanisms of bacterial HHP adaptation and nitrogen cycling in the deep-sea environment.
Collapse
Affiliation(s)
- Xue-Gong Li
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Wei-Jia Zhang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Hua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Jiang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhi Tang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qing Qi
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China.,Aix Marseille Université, CNRS, LCB, Marseille, France
| |
Collapse
|
23
|
Le QAT, Kim HG, Kim YH. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst. Enzyme Microb Technol 2018; 116:1-5. [DOI: 10.1016/j.enzmictec.2018.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 01/19/2023]
|
24
|
Brenzinger S, Pecina A, Mrusek D, Mann P, Völse K, Wimmi S, Ruppert U, Becker A, Ringgaard S, Bange G, Thormann KM. ZomB is essential for flagellar motor reversals in Shewanella putrefaciens and Vibrio parahaemolyticus. Mol Microbiol 2018; 109:694-709. [PMID: 29995998 DOI: 10.1111/mmi.14070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
The ability of most bacterial flagellar motors to reverse the direction of rotation is crucial for efficient chemotaxis. In Escherichia coli, motor reversals are mediated by binding of phosphorylated chemotaxis protein CheY to components of the flagellar rotor, FliM and FliN, which induces a conformational switch of the flagellar C-ring. Here, we show that for Shewanella putrefaciens, Vibrio parahaemolyticus and likely a number of other species an additional transmembrane protein, ZomB, is critically required for motor reversals as mutants lacking ZomB exclusively exhibit straightforward swimming also upon full phosphorylation or overproduction of CheY. ZomB is recruited to the cell poles by and is destabilized in the absence of the polar landmark protein HubP. ZomB also co-localizes to and may thus interact with the flagellar motor. The ΔzomB phenotype was suppressed by mutations in the very C-terminal region of FliM. We propose that the flagellar motors of Shewanella, Vibrio and numerous other species harboring orthologs to ZomB are locked in counterclockwise rotation and may require interaction with ZomB to enable the conformational switch required for motor reversals. Regulation of ZomB activity or abundance may provide these species with an additional means to modulate chemotaxis efficiency.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Anna Pecina
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Devid Mrusek
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Petra Mann
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Kerstin Völse
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Ulrike Ruppert
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Biology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Simon Ringgaard
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Kai M Thormann
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| |
Collapse
|
25
|
Wang O, Melnyk RA, Mehta-Kolte MG, Youngblut MD, Carlson HK, Coates JD. Functional Redundancy in Perchlorate and Nitrate Electron Transport Chains and Rewiring Respiratory Pathways to Alter Terminal Electron Acceptor Preference. Front Microbiol 2018; 9:376. [PMID: 29559962 PMCID: PMC5845722 DOI: 10.3389/fmicb.2018.00376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/19/2018] [Indexed: 02/01/2023] Open
Abstract
Most dissimilatory perchlorate reducing bacteria (DPRB) are also capable of respiratory nitrate reduction, and preferentially utilize nitrate over perchlorate as a terminal electron acceptor. The similar domain architectures and phylogenetic relatedness of the nitrate and perchlorate respiratory complexes suggests a common evolutionary history and a potential for functionally redundant electron carriers. In this study, we identify key genetic redundancies in the electron transfer pathways from the quinone pool(s) to the terminal nitrate and perchlorate reductases in Azospira suillum PS (hereafter referred to as PS). We show that the putative quinol dehydrogenases, (PcrQ and NapC) and the soluble cytochrome electron carriers (PcrO and NapO) are functionally redundant under anaerobic growth conditions. We demonstrate that, when grown diauxically with both nitrate and perchlorate, the endogenous expression of NapC and NapO during the nitrate reduction phase was sufficient to completely erase any growth defect in the perchlorate reduction phase caused by deletion of pcrQ and/or pcrO. We leveraged our understanding of these genetic redundancies to make PS mutants with altered electron acceptor preferences. Deletion of the periplasmic nitrate reductase catalytic subunit, napA, led to preferential utilization of perchlorate even in the presence of equimolar nitrate, and deletion of the electron carrier proteins napQ and napO, resulted in concurrent reduction of nitrate and perchlorate. Our results demonstrate that nitrate and perchlorate respiratory pathways in PS share key functionally redundant electron transfer proteins and that mutagenesis of these proteins can be utilized as a strategy to alter the preferential usage of nitrate over perchlorate.
Collapse
Affiliation(s)
- Ouwei Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Ryan A Melnyk
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Misha G Mehta-Kolte
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew D Youngblut
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Hans K Carlson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
26
|
A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation. mSystems 2017; 2:mSystems00165-16. [PMID: 28382331 PMCID: PMC5371395 DOI: 10.1128/msystems.00165-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/04/2017] [Indexed: 01/10/2023] Open
Abstract
The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy conservation. The Shewanella phylogeny is diverged into two major branches, referred to as group 1 and group 2. While the genotype-phenotype connections of group 2 species have been extensively studied with metabolic modeling, a genome-scale model has been missing for the group 1 species. The metabolic reconstruction of Shewanella piezotolerans strain WP3 represented the first model for Shewanella group 1 and the first model among piezotolerant and psychrotolerant deep-sea bacteria. The model brought insights into the mechanisms of energy conservation in WP3 under anaerobic conditions and highlighted its metabolic flexibility in using diverse carbon sources. Overall, the model opens up new opportunities for investigating energy conservation and metabolic adaptation, and it provides a prototype for systems-level modeling of other deep-sea microorganisms. Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy conservation. The Shewanella phylogeny is diverged into two major branches, referred to as group 1 and group 2. While the genotype-phenotype connections of group 2 species have been extensively studied with metabolic modeling, a genome-scale model has been missing for the group 1 species. The metabolic reconstruction of Shewanella piezotolerans strain WP3 represented the first model for Shewanella group 1 and the first model among piezotolerant and psychrotolerant deep-sea bacteria. The model brought insights into the mechanisms of energy conservation in WP3 under anaerobic conditions and highlighted its metabolic flexibility in using diverse carbon sources. Overall, the model opens up new opportunities for investigating energy conservation and metabolic adaptation, and it provides a prototype for systems-level modeling of other deep-sea microorganisms.
Collapse
|
27
|
Aigle A, Bonin P, Iobbi-Nivol C, Méjean V, Michotey V. Physiological and transcriptional approaches reveal connection between nitrogen and manganese cycles in Shewanella algae C6G3. Sci Rep 2017; 7:44725. [PMID: 28317859 PMCID: PMC5357785 DOI: 10.1038/srep44725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
To explain anaerobic nitrite/nitrate production at the expense of ammonium mediated by manganese oxide (Mn(IV)) in sediment, nitrate and manganese respirations were investigated in a strain (Shewanella algae C6G3) presenting these features. In contrast to S. oneidensis MR-1, a biotic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during anaerobic growth with Mn(IV) under condition of limiting electron acceptor, concomitantly, with a higher electron donor stoichiometry than expected. This low and reproducible transitory accumulation is the result of production and consumption since the strain is able to dissimilative reduce nitrate into ammonium. Nitrite production in Mn(IV) condition is strengthened by comparative expression of the nitrate/nitrite reductase genes (napA, nrfA, nrfA-2), and rates of the nitrate/nitrite reductase activities under Mn(IV), nitrate or fumarate conditions. Compared with S. oneidensis MR-1, S. algae contains additional genes that encode nitrate and nitrite reductases (napA-α and nrfA-2) and an Outer Membrane Cytochrome (OMC)(mtrH). Different patterns of expression of the OMC genes (omcA, mtrF, mtrH and mtrC) were observed depending on the electron acceptor and growth phase. Only gene mtrF-2 (SO1659 homolog) was specifically expressed under the Mn(IV) condition. Nitrate and Mn(IV) respirations seem connected at the physiological and transcriptional levels.
Collapse
Affiliation(s)
- Axel Aigle
- Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO UMR 110, 13288, Marseille, France
| | - Patricia Bonin
- Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO UMR 110, 13288, Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, CNRS, BIP Bioénergétique et Ingénierie des Protéines UMR 7281, 13402, Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, CNRS, BIP Bioénergétique et Ingénierie des Protéines UMR 7281, 13402, Marseille, France
| | - Valérie Michotey
- Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO UMR 110, 13288, Marseille, France
| |
Collapse
|
28
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
NapB in excess inhibits growth of Shewanella oneidensis by dissipating electrons of the quinol pool. Sci Rep 2016; 6:37456. [PMID: 27857202 PMCID: PMC5114592 DOI: 10.1038/srep37456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023] Open
Abstract
Shewanella, a group of ubiquitous bacteria renowned for respiratory versatility, thrive in environments where various electron acceptors (EAs) of different chemical and physiological characteristics coexist. Despite being extensively studied, we still know surprisingly little about strategies by which multiple EAs and their interaction define ecophysiology of these bacteria. Previously, we showed that nitrite inhibits growth of the genus representative Shewanella oneidensis on fumarate and presumably some other CymA (quinol dehydrogenase)-dependent EAs by reducing cAMP production, which in turn leads to lowered expression of nitrite and fumarate reductases. In this study, we demonstrated that inhibition of fumarate growth by nitrite is also attributable to overproduction of NapB, the cytochrome c subunit of nitrate reductase. Further investigations revealed that excessive NapB per se inhibits growth on all EAs tested, including oxygen. When overproduced, NapB acts as an electron shuttle to dissipate electrons of the quinol pool, likely to extracellullar EAs, because the Mtr system, the major electron transport pathway for extracellular electron transport, is implicated. The study not only sheds light on mechanisms by which certain EAs, especially toxic ones, impact the bacterial ecophysiology, but also provides new insights into how electron shuttle c-type cytochromes regulate multi-branched respiratory networks.
Collapse
|
30
|
Jin M, Fu H, Yin J, Yuan J, Gao H. Molecular Underpinnings of Nitrite Effect on CymA-Dependent Respiration in Shewanella oneidensis. Front Microbiol 2016; 7:1154. [PMID: 27493647 PMCID: PMC4954811 DOI: 10.3389/fmicb.2016.01154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs). In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP) production, a second messenger required for activation of cAMP-receptor protein (Crp) which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass.
Collapse
Affiliation(s)
- Miao Jin
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Jianhua Yin
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Jie Yuan
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
31
|
Wei H, Dai J, Xia M, Romine MF, Shi L, Beliav A, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J, Qiu D. Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1. MICROBIOLOGY-SGM 2016; 162:930-941. [PMID: 27010745 DOI: 10.1099/mic.0.000285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.
Collapse
Affiliation(s)
- Hehong Wei
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingcheng Dai
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ming Xia
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Alex Beliav
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Plant Biology and Microbiology, University of Oklahoma, OK, Norman, OK 73019, USA
| | - Dongru Qiu
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
32
|
Visser M, Pieterse MM, Pinkse MWH, Nijsse B, Verhaert PDEM, de Vos WM, Schaap PJ, Stams AJM. Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis. Environ Microbiol 2015; 18:2843-55. [PMID: 26147498 DOI: 10.1111/1462-2920.12973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 01/06/2023]
Abstract
The Sporomusa genus comprises anaerobic spore-forming acetogenic bacteria that stain Gram-negative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved. In addition, Sporomusa species can grow autotrophically with H2 and CO2 , and use a variety of sugars for acetogenic growth. Here we describe a genome analysis of Sporomusa strain An4 and a proteome analysis of cells grown under five different conditions. Comparison of the genomes of Sporomusa strain An4 and Sporomusa ovata strain H1 indicated that An4 is a S. ovata strain. Proteome analysis showed a high abundance of several methyltransferases, predominantly trimethylamine methyltransferases, during growth with betaine, whereas trimethylamine is one of the main end-products of betaine degradation. In methanol degradation methyltransferases are also involved. In methanol-utilizing methanogens, two methyltransferases catalyse methanol conversion, methyltransferase 1 composed of subunits MtaB and MtaC and methyltransferase 2, also called MtaA. The two methyltransferase 1 subunits MtaB and MtaC were highly abundant when strain An4 was grown with methanol. However, instead of MtaA a methyltetrahydrofolate methyltransferase was synthesized. We propose a novel methanol degradation pathway in Sporomusa strain An4 that uses a methyltetrahydrofolate methyltransferase instead of MtaA.
Collapse
Affiliation(s)
- Michael Visser
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Mervin M Pieterse
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Martijn W H Pinkse
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Peter D E M Verhaert
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Veterinary Biosciences, Helsinki University, Helsinki, Finland.,Department of Bacteriology and Immunology, Helsinki University, Helsinki, Finland
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
33
|
Aigle A, Michotey V, Bonin P. Draft-genome sequence of Shewanella algae strain C6G3. Stand Genomic Sci 2015; 10:43. [PMID: 26380631 PMCID: PMC4572631 DOI: 10.1186/s40793-015-0022-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 05/20/2015] [Indexed: 11/16/2022] Open
Abstract
Shewanella algae strain C6G3, isolated from the 2 uppermost centimeters of muddy sediment of Arcachon Bay (SW Atlantic French coast, sampled in October 2007) has the capability to use a large panel of terminal electron acceptors under anaerobic condition, such as nitrate, nitrite and metal-oxide, and presents a great metabolic versatility. Here, we present the non-contiguous draft-genome sequence of Shewanella algae C6G3, which consists of a 4,879,425 bp. The chromosome contains 5792 predicted genes. In total, the genome consists of 24 rRNA genes, 86 tRNA genes and 5660 genes assigned as protein-coding genes.
Collapse
Affiliation(s)
- Axel Aigle
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288 Marseille, France
| | - Valerie Michotey
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288 Marseille, France
| | - Patricia Bonin
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288 Marseille, France
| |
Collapse
|
34
|
Kracke F, Vassilev I, Krömer JO. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front Microbiol 2015; 6:575. [PMID: 26124754 PMCID: PMC4463002 DOI: 10.3389/fmicb.2015.00575] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/25/2015] [Indexed: 12/23/2022] Open
Abstract
Microbial electrochemical techniques describe a variety of emerging technologies that use electrode–bacteria interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and the production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyze the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bioelectrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g., cytochromes, ferredoxin, quinones, flavins) are identified and analyzed regarding their possible role in electrode–microbe interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bioelectrochemical techniques.
Collapse
Affiliation(s)
- Frauke Kracke
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| | - Igor Vassilev
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| | - Jens O Krömer
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| |
Collapse
|
35
|
Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl Environ Microbiol 2015; 81:5003-14. [PMID: 25979892 DOI: 10.1128/aem.00848-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Hyphomicrobium spp. are commonly identified as major players in denitrification systems supplied with methanol as a carbon source. However, denitrifying Hyphomicrobium species are poorly characterized, and very few studies have provided information on the genetic and physiological aspects of denitrification in pure cultures of these bacteria. This is a comparative study of three denitrifying Hyphomicrobium species, H. denitrificans ATCC 51888, H. zavarzinii ZV622, and a newly described species, H. nitrativorans NL23, which was isolated from a denitrification system treating seawater. Whole-genome sequence analyses revealed that although they share numerous orthologous genes, these three species differ greatly in their nitrate reductases, with gene clusters encoding a periplasmic nitrate reductase (Nap) in H. nitrativorans, a membrane-bound nitrate reductase (Nar) in H. denitrificans, and one Nap and two Nar enzymes in H. zavarzinii. Concurrently with these differences observed at the genetic level, important differences in the denitrification capacities of these Hyphomicrobium species were determined. H. nitrativorans grew and denitrified at higher nitrate and NaCl concentrations than did the two other species, without significant nitrite accumulation. Significant increases in the relative gene expression levels of the nitrate (napA) and nitrite (nirK) reductase genes were also noted for H. nitrativorans at higher nitrate and NaCl concentrations. Oxygen was also found to be a strong regulator of denitrification gene expression in both H. nitrativorans and H. zavarzinii, although individual genes responded differently in these two species. Taken together, the results presented in this study highlight the potential of H. nitrativorans as an efficient and adaptable bacterium that is able to perform complete denitrification under various conditions.
Collapse
|
36
|
Reimann J, Jetten MSM, Keltjens JT. Metal enzymes in "impossible" microorganisms catalyzing the anaerobic oxidation of ammonium and methane. Met Ions Life Sci 2015; 15:257-313. [PMID: 25707470 DOI: 10.1007/978-3-319-12415-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world.
Collapse
Affiliation(s)
- Joachim Reimann
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University of Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
37
|
Clark IC, Melnyk RA, Iavarone AT, Novichkov PS, Coates JD. Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress. Mol Microbiol 2014; 94:107-25. [PMID: 25099177 DOI: 10.1111/mmi.12746] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 12/25/2022]
Abstract
Previous work on respiratory chlorate reduction has biochemically identified the terminal reductase ClrABC and the chlorite detoxifying enzyme Cld. In Shewanella algae ACDC, genes encoding these enzymes reside on composite transposons whose core we refer to as the chlorate reduction composite transposon interior (CRI). To better understand this metabolism in ACDC, we used RNA-seq and proteomics to predict carbon and electron flow during chlorate reduction and posit that formate is an important electron carrier with lactate as the electron donor, but that NADH predominates on acetate. Chlorate-specific transcription of electron transport chain components or the CRI was not observed, but clr and cld transcription was attenuated by oxygen. The major chlorate-specific response related to oxidative stress and was indicative of reactive chlorine species production. A genetic system based on rpsL-streptomycin counter selection was developed to further dissect the metabolism, but ACDC readily lost the CRI via homologous recombination of the composite transposon's flanking insertion sequences. An engineered strain containing a single chromosomal CRI did not grow on chlorate, but overexpression of cld and its neighbouring cytochrome c restored growth. We postulate that the recently acquired CRI underwent copy-number expansion to circumvent insufficient expression of key genes in the pathway.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | | | | | | | | |
Collapse
|
38
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
39
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
40
|
Van Doan T, Lee TK, Shukla SK, Tiedje JM, Park J. Increased nitrous oxide accumulation by bioelectrochemical denitrification under autotrophic conditions: kinetics and expression of denitrification pathway genes. WATER RESEARCH 2013; 47:7087-7097. [PMID: 24210359 DOI: 10.1016/j.watres.2013.08.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/07/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
Under autotrophic conditions, we investigated the effects of different current densities on bioelectrochemical denitrification (BED). In this study, nitrate consumption and nitrous oxide (N2O) production, microbial diversity and population dynamics, and denitrification pathway gene expressions were explored in continuous flow BED reactors at different current densities (0.2, 1, 5, 10 and 20 A/m(2)). We found that, under the autotrophic conditions, N2O accumulation was increased with increase in current density. The maximum rate of denitrification was 1.65 NO3(-)-N (g/NCCm(3).h), and approximately 70% of the reduced N was accumulated as N2O. After each current density was applied, pyrosequencing of the expressed 16S rRNA genes amplified from the cathodic biofilms revealed that that 16 genera were active and in common at all currents, and that eight of those showed a statistically significant correlation with particular current densities. The relative expression of napA and narG was highest, whereas nosZ was low relative to its level in the inoculum suggesting that this could have contributed the high N2O accumulation. Kinetic analysis of nitrate reduction and N2O accumulation followed Michaelis-Menten kinetics. The Vmax for nitrate consumption and N2O accumulation were similar, however the Km values determined as A/m(2) were not. This study provides better understanding of the community and kinetics of a current-fed, autotrophic, cathodic biofilm for evaluating its potential for scale-up and for N2O recovery.
Collapse
Affiliation(s)
- Tuan Van Doan
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
MacGregor BJ, Biddle JF, Harbort C, Matthysse AG, Teske A. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. Mar Genomics 2013; 11:53-65. [PMID: 24012537 DOI: 10.1016/j.margen.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022]
Abstract
A near-complete draft genome has been obtained for a single vacuolated orange Beggiatoa (Cand. Maribeggiatoa) filament from a Guaymas Basin seafloor microbial mat, the third relatively complete sequence for the Beggiatoaceae. Possible pathways for sulfide oxidation; nitrate respiration; inorganic carbon fixation by both Type II RuBisCO and the reductive tricarboxylic acid cycle; acetate and possibly formate uptake; and energy-generating electron transport via both oxidative phosphorylation and the Rnf complex are discussed here. A role in nitrite reduction is suggested for an abundant orange cytochrome produced by the Guaymas strain; this has a possible homolog in Beggiatoa (Cand. Isobeggiatoa) sp. PS, isolated from marine harbor sediment, but not Beggiatoa alba B18LD, isolated from a freshwater rice field ditch. Inferred phylogenies for the Calvin-Benson-Bassham (CBB) cycle and the reductive (rTCA) and oxidative (TCA) tricarboxylic acid cycles suggest that genes encoding succinate dehydrogenase and enzymes for carboxylation and/or decarboxylation steps (including RuBisCO) may have been introduced to (or exported from) one or more of the three genomes by horizontal transfer, sometimes by different routes. Sequences from the two marine strains are generally more similar to each other than to sequences from the freshwater strain, except in the case of RuBisCO: only the Guaymas strain encodes a Type II enzyme, which (where studied) discriminates less against oxygen than do Type I RuBisCOs. Genes subject to horizontal transfer may represent key steps for adaptation to factors such as oxygen and carbon dioxide concentration, organic carbon availability, and environmental variability.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
42
|
Combined genomics and experimental analyses of respiratory characteristics of Shewanella putrefaciens W3-18-1. Appl Environ Microbiol 2013; 79:5250-7. [PMID: 23811511 DOI: 10.1128/aem.00619-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been shown that the Shewanella putrefaciens W3-18-1 strain produces remarkably high current in microbial fuel cells (MFCs) and can form magnetite at 0°C. To explore the underlying mechanisms, we developed a genetic manipulation method by deleting the restriction-modification system genes of the SGI1 (Salmonella genome island 1)-like prophage and analyzed the key genes involved in bacterial respiration. W3-18-1 has less respiratory flexibility than the well-characterized S. oneidensis MR-1 strain, as it possesses fewer cytochrome c genes and lacks the ability to oxidize sulfite or reduce dimethyl sulfoxide (DMSO) and timethylamine oxide (TMAO). W3-18-1 lacks the hydrogen-producing Fe-only hydrogenase, and the hydrogen-oxidizing Ni-Fe hydrogenase genes were split into two separate clusters. Two periplasmic nitrate reductases (NapDAGHB and NapDABC) were functionally redundant in anaerobic growth of W3-18-1 with nitrate as the electron acceptor, though napDABC was not regulated by Crp. Moreover, nitrate respiration started earlier in W3-18-1 than in MR-1 (with NapDAGHB only) under microoxic conditions. These results indicate that Shewanella putrefaciens W3-18-1 is well adapted to habitats with higher oxygen levels. Taken together, the results of this study provide valuable insights into bacterial genome evolution.
Collapse
|
43
|
Zhang H, Fu H, Wang J, Sun L, Jiang Y, Zhang L, Gao H. Impacts of nitrate and nitrite on physiology of Shewanella oneidensis. PLoS One 2013; 8:e62629. [PMID: 23626841 PMCID: PMC3633839 DOI: 10.1371/journal.pone.0062629] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/22/2013] [Indexed: 12/17/2022] Open
Abstract
Shewanella oneidensis exhibits a remarkable versatility in anaerobic respiration, which largely relies on its diverse respiratory pathways. Some of these are expressed in response to the existence of their corresponding electron acceptors (EAs) under aerobic conditions. However, little is known about respiration and the impact of non-oxygen EAs on the physiology of the microorganism when oxygen is present. Here we undertook a study to elucidate the basis for nitrate and nitrite inhibition of growth under aerobic conditions. We discovered that nitrate in the form of NaNO3 exerts its inhibitory effects as a precursor to nitrite at low concentrations and as an osmotic-stress provider (Na(+)) at high concentrations. In contrast, nitrite is extremely toxic, with 25 mM abolishing growth completely. We subsequently found that oxygen represses utilization of all EAs but nitrate. To order to utilize EAs with less positive redox potential, such as nitrite and fumarate, S. oneidensis must enter the stationary phase, when oxygen respiration becomes unfavorable. In addition, we demonstrated that during aerobic respiration the cytochrome bd oxidase confers S. oneidensis resistance to nitrite, which likely functions via nitric oxide (NO).
Collapse
Affiliation(s)
- Haiyan Zhang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jixuan Wang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaoming Jiang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Zhang
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Canion A, Prakash O, Green SJ, Jahnke L, Kuypers MMM, Kostka JE. Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway). Environ Microbiol 2013; 15:1606-18. [DOI: 10.1111/1462-2920.12110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Andy Canion
- Earth Ocean and Atmospheric Science Department; Florida State University; Tallahassee; FL; USA
| | - Om Prakash
- Earth Ocean and Atmospheric Science Department; Florida State University; Tallahassee; FL; USA
| | | | - Linda Jahnke
- NASA Astrobiology Institute; Ames Research Center; Moffett Field; CA; USA
| | | | - Joel E. Kostka
- School of Biology; Georgia Institute of Technology; Atlanta; GA; USA
| |
Collapse
|
45
|
Gonzalez PJ, Rivas MG, Mota CS, Brondino CD, Moura I, Moura JJ. Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Dong Y, Wang J, Fu H, Zhou G, Shi M, Gao H. A Crp-dependent two-component system regulates nitrate and nitrite respiration in Shewanella oneidensis. PLoS One 2012; 7:e51643. [PMID: 23240049 PMCID: PMC3519889 DOI: 10.1371/journal.pone.0051643] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/02/2012] [Indexed: 11/21/2022] Open
Abstract
We have previously illustrated the nitrate/nitrite respiratory pathway of Shewanella oneidensis, which is renowned for its remarkable versatility in respiration. Here we investigated the systems regulating the pathway with a reliable approach which enables characterization of mutants impaired in nitrate/nitrite respiration by guaranteeing biomass. The S. oneidensis genome encodes an Escherichia coli NarQ/NarX homolog SO3981 and two E. coli NarP/NarL homologs SO1860 and SO3982. Results of physiological characterization and mutational analyses demonstrated that S. oneidensis possesses a single two-component system (TCS) for regulation of nitrate/nitrite respiration, consisting of the sensor kinase SO3981(NarQ) and the response regulator SO3982(NarP). The TCS directly controls the transcription of nap and nrfA (genes encoding nitrate and nitrite reductases, respectively) but regulates the former less tightly than the latter. Additionally, phosphorylation at residue 57 of SO3982 is essential for its DNA-binding capacity. At the global control level, Crp is found to regulate expression of narQP as well as nap and nrfA. In contrast to NarP-NarQ, Crp is more essential for nap rather than nrfA.
Collapse
Affiliation(s)
- Yangyang Dong
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jixuan Wang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangqi Zhou
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miaomiao Shi
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
47
|
Soe CZ, Pakchung AAH, Codd R. Directing the Biosynthesis of Putrebactin or Desferrioxamine B in Shewanella putrefaciens through the Upstream Inhibition of Ornithine Decarboxylase. Chem Biodivers 2012; 9:1880-90. [DOI: 10.1002/cbdv.201200014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Li Y, Katzmann E, Borg S, Schüler D. The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol 2012; 194:4847-56. [PMID: 22730130 PMCID: PMC3430331 DOI: 10.1128/jb.00903-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022] Open
Abstract
The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for nitrate (nap), nitrite (nir), nitric oxide (nor), and nitrous oxide reduction (nos), was identified. Transcriptional gusA fusions as reporters revealed that except for nap, the highest expression of the denitrification genes coincided with conditions permitting maximum magnetite synthesis. Whereas microaerobic denitrification overlapped with oxygen respiration, nitrate was the only electron acceptor supporting growth in the entire absence of oxygen, and only the deletion of nap genes, encoding a periplasmic nitrate reductase, and not deletion of nor or nos genes, abolished anaerobic growth and also delayed aerobic growth in both nitrate and ammonium media. While loss of nosZ or norCB had no or relatively weak effects on magnetosome synthesis, deletion of nap severely impaired magnetite biomineralization and resulted in fewer, smaller, and irregular crystals during denitrification and also microaerobic respiration, probably by disturbing the proper redox balance required for magnetite synthesis. In contrast to the case for the wild type, biomineralization in Δnap cells was independent of the oxidation state of carbon substrates. Altogether, our data demonstrate that in addition to its essential role in anaerobic respiration, the periplasmic nitrate reductase Nap has a further key function by participating in redox reactions required for magnetite biomineralization.
Collapse
Affiliation(s)
- Yingjie Li
- Ludwig-Maximilians-Universität München, Department Biologie I, Mikrobiologie, Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
49
|
Simpson PJ, Codd R. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Biochem Biophys Res Commun 2011; 414:783-8. [DOI: 10.1016/j.bbrc.2011.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/03/2011] [Indexed: 11/28/2022]
|
50
|
Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025). J Bacteriol 2011; 193:6483-9. [PMID: 21949073 DOI: 10.1128/jb.05324-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth.
Collapse
|