1
|
Hwang IY, Kalyuzhnaya MG, Lee EY. Quantitative assessment of methane bioconversion based on kinetics and bioenergetics. BIORESOURCE TECHNOLOGY 2024; 410:131269. [PMID: 39163949 DOI: 10.1016/j.biortech.2024.131269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
The biological conversion of methane under ambient conditions can be performed by methanotrophs that utilize methane as both a sole source of energy and a carbon source. However, compared to the established microbial chassis used for general fermentation with sugar as a feedstock, the productivity of methanotrophs is low. The fundamental knowledge of their metabolic or cellular bottlenecks is limited. In this review, the industrial-scale potential of methane bioconversion was evaluated. In particular, the enzyme kinetics associated with the oxidation and assimilation of methane were investigated to evaluate the potential of methane fermentation. The kinetics of enzymes involved in methane metabolism were compared with those used in the metabolic processes of traditional fermentation (glycolysis). Through this analysis, the current limitations of methane metabolism were identified. Methods for increasing the efficiency of methane bioconversion and directions for the industrial application of methane-based fermentation were discussed.
Collapse
Affiliation(s)
- In Yeub Hwang
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - M G Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego CA92182, USA.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
2
|
Wei L, Zhu J, Zhao D, Pei Y, Guo L, Guo J, Guo Z, Cui H, Li Y, Gao J. Microbial fungicides can positively affect aubergine photosynthetic properties, soil enzyme activity and microbial community structure. PeerJ 2024; 12:e17620. [PMID: 38952982 PMCID: PMC11216198 DOI: 10.7717/peerj.17620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background This study examined the effects of microbial agents on the enzyme activity, microbial community construction and potential functions of inter-root soil of aubergine (Fragaria × ananassa Duch.). This study also sought to clarify the adaptability of inter-root microorganisms to environmental factors to provide a theoretical basis for the stability of the microbiology of inter-root soil of aubergine and for the ecological preservation of farmland soil. Methods Eggplant inter-root soils treated with Bacillus subtilis (QZ_T1), Bacillus subtilis (QZ_T2), Bacillus amyloliquefaciens (QZ_T3), Verticillium thuringiensis (QZ_T4) and Verticillium purpureum (QZ_T5) were used to analyse the effects of different microbial agents on the inter-root soils of aubergine compared to the untreated control group (QZ_CK). The effects of different microbial agents on the characteristics and functions of inter-root soil microbial communities were analysed using 16S rRNA and ITS (internal transcribed spacer region) high-throughput sequencing techniques. Results The bacterial diversity index and fungal diversity index of the aubergine inter-root soil increased significantly with the application of microbial fungicides; gas exchange parameters and soil enzyme activities also increased. The structural and functional composition of the bacterial and fungal communities in the aubergine inter-root soil changed after fungicide treatment compared to the control, with a decrease in the abundance of phytopathogenic fungi and an increase in the abundance of beneficial fungi in the soil. Enhancement of key community functions, reduction of pathogenic fungi, modulation of environmental factors and improved functional stability of microbial communities were important factors contributing to the microbial stability of fungicide-treated aubergine inter-root soils.
Collapse
Affiliation(s)
- Longxue Wei
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jinying Zhu
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Dongbo Zhao
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Yanting Pei
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Lianghai Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jianjun Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Zhihui Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Huini Cui
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Yongjun Li
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jiansheng Gao
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| |
Collapse
|
3
|
Liu C, Schmitz RA, Pol A, Hogendoorn C, Verhagen D, Peeters SH, van Alen TA, Cremers G, Mesman RA, Op den Camp HJM. Active coexistence of the novel gammaproteobacterial methanotroph 'Ca. Methylocalor cossyra' CH1 and verrucomicrobial methanotrophs in acidic, hot geothermal soil. Environ Microbiol 2024; 26:e16602. [PMID: 38454738 DOI: 10.1111/1462-2920.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
Terrestrial geothermal ecosystems are hostile habitats, characterized by large emissions of environmentally relevant gases such as CO2 , CH4 , H2 S and H2 . These conditions provide a niche for chemolithoautotrophic microorganisms. Methanotrophs of the phylum Verrucomicrobia, which inhabit these ecosystems, can utilize these gases and grow at pH levels below 1 and temperatures up to 65°C. In contrast, methanotrophs of the phylum Proteobacteria are primarily found in various moderate environments. Previously, novel verrucomicrobial methanotrophs were detected and isolated from the geothermal soil of the Favara Grande on the island of Pantelleria, Italy. The detection of pmoA genes, specific for verrucomicrobial and proteobacterial methanotrophs in this environment, and the partially overlapping pH and temperature growth ranges of these isolates suggest that these distinct phylogenetic groups could coexist in the environment. In this report, we present the isolation and characterization of a thermophilic and acid-tolerant gammaproteobacterial methanotroph (family Methylococcaceae) from the Favara Grande. This isolate grows at pH values ranging from 3.5 to 7.0 and temperatures from 35°C to 55°C, and diazotrophic growth was demonstrated. Its genome contains genes encoding particulate and soluble methane monooxygenases, XoxF- and MxaFI-type methanol dehydrogenases, and all enzymes of the Calvin cycle. For this novel genus and species, we propose the name 'Candidatus Methylocalor cossyra' CH1.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob A Schmitz
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Arjan Pol
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Daniël Verhagen
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Theo A van Alen
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Geert Cremers
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob A Mesman
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Liu N, Kivenson V, Peng X, Cui Z, Lankiewicz TS, Gosselin KM, English CJ, Blair EM, O'Malley MA, Valentine DL. Pontiella agarivorans sp. nov., a novel marine anaerobic bacterium capable of degrading macroalgal polysaccharides and fixing nitrogen. Appl Environ Microbiol 2024; 90:e0091423. [PMID: 38265213 PMCID: PMC10880615 DOI: 10.1128/aem.00914-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2T from microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2T represents a novel species within the Pontiella genus in the Kiritimatiellota phylum (within the PVC superphylum). Strain NLcol2T is able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T (= DSM 113125T = MCCC 1K08672T) is proposed to be the type strain of a novel species in the Pontiella genus, and the name Pontiella agarivorans sp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of the Kiritimatiellota phylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2T expands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.
Collapse
Affiliation(s)
- Na Liu
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Xuefeng Peng
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, China
| | - Thomas S. Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kelsey M. Gosselin
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chance J. English
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Ecology Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Elaina M. Blair
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
- Biological Engineering Program, University of California, Santa Barbara, California, USA
| | - David L. Valentine
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
5
|
Liu C, Mesman R, Pol A, Angius F, Op den Camp HJM. Identification and characterisation of a major outer membrane protein from Methylacidiphilum fumariolicum SolV. Antonie Van Leeuwenhoek 2023; 116:1227-1245. [PMID: 37737555 PMCID: PMC10542722 DOI: 10.1007/s10482-023-01879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
The outer membrane (OM) protects Gram-negative bacteria against a hostile environment. The proteins embedded in the OM fulfil a number of tasks that are crucial to the bacterial cell. In this study, we identified and characterised a major outer membrane protein (WP_009059494) from Methylacidiphilum fumariolicum SolV. PRED-TMBB and AlphaFold2 predicted this protein to form a porin with a β-barrel structure consisting of ten antiparallel β-sheets and with a small amphipathic N-terminal α-helix in the periplasm. We purified soluble recombinant protein WP_009059494 from E. coli using Tris-HCl buffer with SDS. Antibodies were raised against two peptides in the two large extracellular loops of protein WP_009059494 and immunogold localisation showed this protein to be mainly present in the OM of strain SolV. In addition, this protein is tightly associated with the OM, and is resistant to extraction. Only a small amount can be isolated from the cell envelope using harsh conditions (SDS and boiling). Despite this resistance to extraction, WP_009059494 most likely is an outer membrane protein. A regular lattice could not be detected by negative staining TEM of strain SolV and isolated protein WP_009059494. Considering the specific ecological niche of strain SolV living in a geothermal environment with low pH and high temperatures, this major protein WP_009059494 may act as barrier to resist the extreme conditions found in its natural environment. In addition, we found an absence of the BamB, BamC and BamE proteins of the canonical BAM complex, in Methylacidiphilum and Methylacidimicrobium species. This suggests that these bacteria use a simple BAM complex for folding and transport of OM proteins.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Rob Mesman
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Federica Angius
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Awala SI, Gwak JH, Kim Y, Seo C, Strazzulli A, Kim SG, Rhee SK. Methylacidiphilum caldifontis gen. nov., sp. nov., a thermoacidophilic methane-oxidizing bacterium from an acidic geothermal environment, and descriptions of the family Methylacidiphilaceae fam. nov. and order Methylacidiphilales ord. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37791995 DOI: 10.1099/ijsem.0.006085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Strain IT6T, a thermoacidophilic and facultative methane-oxidizing bacterium, was isolated from a mud-water mixture collected from Pisciarelli hot spring in Pozzuoli, Italy. The novel strain is white when grown in liquid or solid media and forms Gram-negative rod-shaped, non-flagellated, non-motile cells. It conserves energy by aerobically oxidizing methane and hydrogen while deriving carbon from carbon dioxide fixation. Strain IT6T had three complete pmoCAB operons encoding particulate methane monooxygenase and genes encoding group 1d and 3b [NiFe] hydrogenases. Simple carbon-carbon substrates such as ethanol, 2-propanol, acetone, acetol and propane-1,2-diol were used as alternative electron donors and carbon sources. Optimal growth occurred at 50-55°C and between pH 2.0-3.0. The major fatty acids were C18 : 0, C15 : 0 anteiso, C14 : 0 iso, C16 : 0 and C14 : 0, and the main polar lipids were phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol, diphosphatidylglycerol, some unidentified phospholipids and glycolipids, and other unknown polar lipids. Strain IT6T has a genome size of 2.19 Mbp and a G+C content of 40.70 mol%. Relative evolutionary divergence using 120 conserved single-copy marker genes (bac120) and phylogenetic analyses based on bac120 and 16S rRNA gene sequences showed that strain IT6T is affiliated with members of the proposed order 'Methylacidiphilales' of the class Verrucomicrobiia in the phylum Verrucomicrobiota. It shared a 16S rRNA gene sequence identity of >96 % with cultivated isolates in the genus 'Methylacidiphilum' of the family 'Methylacidiphilaceae', which are thermoacidophilic methane-oxidizing bacteria. 'Methylacidiphilum sp.' Phi (100 %), 'Methylacidiphilum infernorum' V4 (99.02 %) and 'Methylacidiphilum sp.' RTK17.1 (99.02 %) were its closest relatives. Its physiological and genomic properties were consistent with those of other isolated 'Methylacidiphilum' species. Based on these results, we propose the name Methylacidiphilum caldifontis gen. nov., sp. nov. to accommodate strain IT6T (=KCTC 92103T=JCM 39288T). We also formally propose that the names Methylacidiphilaceae fam. nov. and Methylacidiphilales ord. nov. to accommodate the genus Methylacidiphilum gen. nov.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Yongman Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Chanmee Seo
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Song-Gun Kim
- University of Science and Technology, Yuseong-gu, Daejeon 305-850, Republic of Korea
- Biological Resource Center/ Korean Collection for Type Culture (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
7
|
Liu C, Angius F, Pol A, Mesman RA, Versantvoort W, Op den Camp HJM. Identification and characterization of an abundant lipoprotein from Methylacidiphilum fumariolicum SolV. Arch Microbiol 2023; 205:261. [PMID: 37306788 DOI: 10.1007/s00203-023-03603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Bacterial lipoproteins are characterized by the presence of a conserved N-terminal lipid-modified cysteine residue that allows the hydrophilic protein to anchor into bacterial cell membranes. These lipoproteins play essential roles in a wide variety of physiological processes. Based on transcriptome analysis of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV, we identified a highly expressed lipoprotein, WP_009060351 (139 amino acids), in its genome. The first 86 amino acids are specific for the methanotrophic genera Methylacidiphilum and Methylacidmicrobium, while the last 53 amino acids are present only in lipoproteins of members from the phylum Verrucomicrobiota (Hedlund). Heterologous expression of WP_009060351 in Escherichia coli revealed a 25-kDa dimeric protein and a 60-kDa tetrameric protein. Immunoblotting showed that WP_009060351 was present in the total membrane protein and peptidoglycan fractions of M. fumariolicum SolV. The results suggest an involvement of lipoprotein WP_009060351 in the linkage between the outer membrane and the peptidoglycan.
Collapse
Affiliation(s)
- Changqing Liu
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Federica Angius
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Arjan Pol
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Rob A Mesman
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Marković T, Karlović I, Orlić S, Kajan K, Smith AC. Tracking the nitrogen cycle in a vulnerable alluvial system using a multi proxy approach: Case study Varaždin alluvial aquifer, Croatia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158632. [PMID: 36087668 DOI: 10.1016/j.scitotenv.2022.158632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
At high concentrations nitrate is considered a serious environmental pollutant which degrades the quality of ground and surface waters. Such high nitrate concentrations (>50 mg NO3/L) have been observed for decades in the alluvial aquifer in the Varaždin region of Croatia. Here we employ a novel cross disciplinary approach (dual isotopes, chemical, bacteria diversity and mixing modelling) to determine sources of nitrate and processes that can influence nitrate concentration within this vulnerable alluvial aquifer. Ten groundwater wells were sampled across the region and in different hydrological conditions for basic chemical, stable isotopes (δ18O-H2O, δ2H-H2O, δ15N-NO3 and δ18O-NO3), and bacterial diversity analyses. In addition, solid samples, i.e. soil samples and fertilizers were collected and analysed for bulk δ15N. The primary nitrate sources were manure, sewage, soil organic N, and ammonia fertilizers, however we observe no clear evidence to indicate that synthetic fertilizers are a major contributor to groundwater nitrate concentrations. Whilst denitrification was observed in the parts of the study area with dissolved oxygen (DO) deficiency, i.e. anoxic conditions, nitrification has been identified as the major process responsible for nitrate behaviour within the aquifer system. Our results will facilitate the creation of a conceptual model of nitrate behaviour in the study area and from this, a numerical groundwater nitrate transport model. These data, understanding of nitrate dynamics and subsequent models will be critical for future sustainable water and agricultural management of the study area.
Collapse
Affiliation(s)
- Tamara Marković
- Croatian Geological Survey, Milana Sachsa 2, 10 000 Zagreb, Croatia.
| | - Igor Karlović
- Croatian Geological Survey, Milana Sachsa 2, 10 000 Zagreb, Croatia.
| | - Sandi Orlić
- Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Katarina Kajan
- Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Andrew C Smith
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK.
| |
Collapse
|
9
|
Song L, Yang T, Xia S, Yin Z, Liu X, Li S, Sun R, Gao H, Chu H, Ma C. Soil depth exerts stronger impact on bacterial community than elevation in subtropical forests of Huangshan Mountain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158438. [PMID: 36055501 DOI: 10.1016/j.scitotenv.2022.158438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The elevational distribution of bacterial communities in the surface soil of natural mountain forests has been widely studied. However, it remains unknown if microbial communities in surface and sub-surface soils exhibit a similar distribution pattern with elevation. To do so, Illumina HiSeq sequencing was applied to study the alterations in soil bacterial communities of different soil layers, along an altitudinal gradient from 500 to 1100 m on Huangshan Mountain in Anhui Province, China. Our results revealed a significant higher diversity of the bacterial communities in surface soil layers than in subsurface layers. Adonis analysis showed that soil layer had a greater influence on the composition of the bacterial communities than the elevation. The distance-based multivariate linear model suggested that soil labile organic carbon and elevation were the main element influencing the bacterial community composition in surface and subsurface soils, respectively. A remarkable difference appeared between the co-occurrence network structures of bacterial communities in different soil layers. Compared with the subsurface soil, surface soil had more edges, average degree, and much higher clustering coefficient. The two-way ANOVA results highlighted the significant impact of soil layers on the topological properties of the network compared with that of elevation. The keystone species belonged to Rhodospirillaceae in the surface soil, while the OTUs belonged to Actinomycetales in the subsurface soil. Collectively, our results demonstrate that the effects of soil depth on soil bacterial community composition and network properties of subtropical forest in Huangshan Mountain were significantly higher than those of elevation, with different keystone species in different soil layers. These findings can be served as an important basis for better understanding the microbial functions influencing the maintenance of habitat heterogeneity, biodiversity, and ecosystem services in forests ecosystems.
Collapse
Affiliation(s)
- Luyao Song
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shangguang Xia
- Anhui Huangshan National Positioning Observation and Research Station of Forest Ecosystem, Anhui Academy of Forestry, Hefei 230031, China
| | - Zhong Yin
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shaopeng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruibo Sun
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hongjian Gao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Chao Ma
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
van den Berg MF, Botha AM, Bierman A, Oberholster P. Determining biota succession in a domestic wastewater pond system after treatment with a specific consortium microalgae. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:963-981. [PMID: 36406598 PMCID: PMC9672295 DOI: 10.1007/s40201-022-00840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Wastewater stabilization ponds (WSPs) rely on the metabolic activities of the inhabiting microbiota to treat wastewater. A selected consortium of Chlorella vulgaris and Chlorella protothecoides were used to manipulate the natural resident microalgae assemblage to improve the treatment performance of a domestic wastewater pond treatment system in a coastal region. Since information is lacking about the resulting influence on the composition or succession of the phytoplankton or associated microbiota assemblage, the current study aimed to determine how dosing with the microalgae C. vulgaris and C. protothecoides change the efficiency of wastewater effluent treatment, as well as the composition and succession of the natural occurring phytoplankton and microbial assemblage throughout WSP system. After a year of specific microalgae inoculations, the effluent in part complied with the standards set by the Department of Water Affairs and Forestry (DWAF) and the USA, Environmental Protection Agency (EPA). The cyanobacteria Microcystis aeruginosa dominated the sixth (75%) and seventh pond (97%) before the inoculation with C. vulgaris and C. protothecoide commenced. After 12 inoculation events C. vulgaris and C. protothecoides were dominant in ponds three to seven while the dominant microbial groups were Bacteroidetes, Cyanobacteria, Firmicutes, Planctomycetes, Proteobacteria, Spirochaetes, Synergistetes and Verrucomicrobia. After the microalgae treatment, the WSP effluent were more compliant regarding to the set guidelines for effluent than prior to microalgae treatment. Based on the ability of the C. vulgaris and C. protothecoides to improve the effluent water quality, it was evident that the consortium of microalgae can be use improve domestic wastewater effluent in rural nutrient sensitive catchments. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-022-00840-z.
Collapse
Affiliation(s)
- M. F. van den Berg
- Department of Genetics, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - A. M. Botha
- Department of Genetics, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - A. Bierman
- Division of Bioinformatics, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - P. Oberholster
- Centre for Environmental Management, University of the Free State, Private Bag 339, Bloemfontein, 9300 South Africa
| |
Collapse
|
11
|
Yuan ZF, Pu TY, Jin CY, Feng WJ, Wang JY, Gustave W, Bridge J, Cheng YL, Tang XJ, Zhu YG, Chen Z. Sustainable removal of soil arsenic by naturally-formed iron oxides on plastic tubes. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129626. [PMID: 36104896 DOI: 10.1016/j.jhazmat.2022.129626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) pollution in paddy fields is a major threat to rice safety. Existing As remediation techniques are costly, require external chemical addition and degrade soil properties. Here, we report the use of plastic tubes as a recyclable tool to precisely extract As from contaminated soils. Following insertion into flooded paddy soils, polyethylene tube walls were covered by thin but massive Fe coatings of 76.9-367 mg Fe m-2 in 2 weeks, which adsorbed significant amounts of As. The formation of tube-wall Fe oxides was driven by local Fe-oxidizing bacteria with oxygen produced by oxygenic phototrophs (e.g., Cyanobacteria) or diffused from air through the tube wall. The tubes with As-bound Fe oxides can be easily separated from soil and then washed and reused. We tested the As removal efficiency in a pot experiment to remove As from ~ 20 cm depth/40 kg soils in a 2-year experiment and achieved an overall removal efficiency of 152 mg As m-2 soil year-1, comparable to phytoremediation with the As hyperaccumulator Pteris vittata. The cost of Fe hooks was estimated at 8325 RMB ha-1 year-1, and the profit of growing rice (around 16080 RMB ha-1 year-1 can be still maintained. The As accumulated in rice tissues was markedly decreased in the treatment (>11.1 %). This work provides a low-cost and sustainable soil remediation method for the targeted removal of As from soils and a useful tool for the study and management of the biogeochemical Fe cycle in paddy soils.
Collapse
Affiliation(s)
- Zhao-Feng Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Tong-Yao Pu
- Large Lake Observatory, University of Minnesota Duluth, Duluth MN 55812, USA
| | - Chen-Yu Jin
- Institute of Population Genetics, The University of Veterinary Medicine, Vienna 1220, Austria
| | - Wei-Jia Feng
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jia-Yue Wang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Williamson Gustave
- Chemistry, Environmental & Life Sciences, University of The Bahamas, New Providence, Nassau, The Bahamas
| | - Jonathan Bridge
- Department of Natural and Built Environment, Sheffield Hallam University, Howard St, Sheffield S1 1WB, UK
| | - Yi-Li Cheng
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xian-Jin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yong-Guan Zhu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
12
|
Zhang X, Huang Z, Zhong Z, Li Q, Bian F, Gao G, Yang C, Wen X. Evaluating the Rhizosphere and Endophytic Microbiomes of a Bamboo Plant in Response to the Long-Term Application of Heavy Organic Amendment. PLANTS (BASEL, SWITZERLAND) 2022; 11:2129. [PMID: 36015431 PMCID: PMC9412275 DOI: 10.3390/plants11162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Root-associated bacteria play a major role in plant health and productivity. However, how organic amendment influences root-associated bacteria is uncertain in Lei bamboo (Phyllostachys praecox) plantations. Here, we compared the rhizosphere and endophytic microbiomes in two Lei bamboo plantations with (IMS) and without (TMS) the application of organic amendment for 16 years. The results showed IMS significantly increased (p < 0.05) the relative abundance of Proteobacteria and significantly decreased (p < 0.05) the relative abundance of Acidobacteria, Bacteroidetes, and Verrucomicrobiota. The root endophytic Proteobacteria and Acidobacteria were significantly higher in abundance (p < 0.05) in the IMS than in the TMS, while Actinobacteria and Firmicutes were significantly lower in abundance. Five taxa were assigned to Proteobacteria and Acidobacteria, which were identified as keystones in the rhizosphere soil microbiome, while two species taxonomically affiliated with Proteobacteria were identified as keystones in the root endophytic microbiota, indicating this phylum can be an indicator for a root-associated microbiome in response to IMS. The soil pH, soil total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), and TOC:TP ratio were significantly correlated (p < 0.05) with the bacterial community composition of both rhizosphere soils and root endophytes. TMS increased the microbial network complexity of root endophytes but decreased the microbial network complexity of rhizosphere soil. Our results suggest IMS shapes the rhizosphere and endophytic bacterial community compositions and their interactions differently, which should be paid attention to when designing management practices for the sustainable development of forest ecosystems.
Collapse
Affiliation(s)
- Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
- Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Zhiyuan Huang
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Qiaoling Li
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Guibin Gao
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Chuanbao Yang
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Xing Wen
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| |
Collapse
|
13
|
Suo P, Wang K, Yu H, Fu X, An L, Bhowmick B, Zhang J, Han Q. Seasonal Variation of Midgut Bacterial Diversity in Culex quinquefasciatus Populations in Haikou City, Hainan Province, China. BIOLOGY 2022; 11:biology11081166. [PMID: 36009794 PMCID: PMC9405131 DOI: 10.3390/biology11081166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Mosquito midgut microbiota has become an interesting field in mosquito vector biology, as it has been shown to form an integral part of the mosquito life history. But less is known about seasonal variation of midgut bacterial diversity of Culex quinquefasciatus. Our results illustrate that the Bacteroidetes (Bacterial Phyla) communities have been well observed in autumn and winter seasons, suggesting that this might participate in the nutritional supply of adult mosquitoes when temperatures drop. This discovery provides a new perspective for the control of Cx. quinquefasciatus to reduce the transmission of diseases. There is much sufficiently practical significance to reduce the density of Cx. quinquefasciatus in autumn and winter when their activities are weakened, which is of absolute benefit to human beings and the natural environment. Abstract Culex quinquefasciatus, one of the most significant mosquito vectors in the world, is widespread in most parts of southern China. A variety of diseases including Bancroft’s filariasis, West Nile disease, and St. Louis encephalitis could be transmitted by the vector. Mosquitoes have been shown to host diverse bacterial communities that vary depending on environmental factors such as temperature and rainfall. In this work, 16S rDNA sequencing was used to analyze the seasonal variation of midgut bacterial diversity of Cx. Quinquefasciatus in Haikou City, Hainan Province, China. Proteobacteria was the dominant phylum, accounting for 79.7% (autumn), 73% (winter), 80.4% (spring), and 84.5% (summer). The abundance of Bacteroidetes in autumn and winter was higher than in others. Interestingly, Epsilonbacteraeota, which only exists in autumn and winter, was discovered accidentally in the midgut. We speculated that this might participate in the nutritional supply of adult mosquitoes when temperatures drop. Wolbachia is the most abundant in autumn, accounting for 31.6% of bacteria. The content of Pantoea was highest in the summer group, which might be related to the enhancement of the ability of mosquitoes as temperatures increased. Pseudomonas is carried out as the highest level in winter. On the contrary, in spring and summer, the genus in highest abundance is Enterobacter. Acinetobacter enriches in the spring when it turns from cold to hot. By studying the diversity of midgut bacteria of Cx. quinquefasciatus, we can further understand the co-evolution of mosquitoes and their symbiotic microbes. This is necessary to discuss the seasonal variation of microorganisms and ultimately provide a new perspective for the control of Cx. quinquefasciatus to reduce the spread of the diseases which have notably vital practical significance for the effective prevention of Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Penghui Suo
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (P.S.); (K.W.); (H.Y.); (X.F.); (L.A.); (B.B.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Kaixuan Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (P.S.); (K.W.); (H.Y.); (X.F.); (L.A.); (B.B.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Hongxiao Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (P.S.); (K.W.); (H.Y.); (X.F.); (L.A.); (B.B.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Xiuhao Fu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (P.S.); (K.W.); (H.Y.); (X.F.); (L.A.); (B.B.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Liping An
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (P.S.); (K.W.); (H.Y.); (X.F.); (L.A.); (B.B.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Biswajit Bhowmick
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (P.S.); (K.W.); (H.Y.); (X.F.); (L.A.); (B.B.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (P.S.); (K.W.); (H.Y.); (X.F.); (L.A.); (B.B.)
- One Health Institute, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|
14
|
Radziemska M, Gusiatin MZ, Cydzik-Kwiatkowska A, Blazejczyk A, Kumar V, Kintl A, Brtnicky M. Effect of Biochar on Metal Distribution and Microbiome Dynamic of a Phytostabilized Metalloid-Contaminated Soil Following Freeze-Thaw Cycles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3801. [PMID: 35683097 PMCID: PMC9181493 DOI: 10.3390/ma15113801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023]
Abstract
In the present paper the effectiveness of biochar-aided phytostabilization of metal/metalloid-contaminated soil under freezing-thawing conditions and using the metal tolerating test plant Lolium perenne L. is comprehensively studied. The vegetative experiment consisted of plants cultivated for over 52 days with no exposure to freezing-thawing in a glass greenhouse, followed by 64 days under freezing-thawing in a temperature-controlled apparatus and was carried out in initial soil derived from a post-industrial urban area, characterized by the higher total content of Zn, Pb, Cu, Cr, As and Hg than the limit values included in the classification provided by the Regulation of the Polish Ministry of Environment. According to the substance priority list published by the Toxic Substances and Disease Registry Agency, As, Pb, and Hg are also indicated as being among the top three most hazardous substances. The initial soil was modified by biochar obtained from willow chips. The freeze-thaw effect on the total content of metals/metalloids (metal(-loid)s) in plant materials (roots and above-ground parts) and in phytostabilized soils (non- and biochar-amended) as well as on metal(-loid) concentration distribution/redistribution between four BCR (community bureau of reference) fractions extracted from phytostabilized soils was determined. Based on metal(-loid)s redistribution in phytostabilized soils, their stability was evaluated using the reduced partition index (Ir). Special attention was paid to investigating soil microbial composition. In both cases, before and after freezing-thawing, biochar increased plant biomass, soil pH value, and metal(-loid)s accumulation in roots, and decreased metal(-loid)s accumulation in stems and total content in the soil, respectively, as compared to the corresponding non-amended series (before and after freezing-thawing, respectively). In particular, in the phytostabilized biochar-amended series after freezing-thawing, the recorded total content of Zn, Cu, Pb, and As in roots substantially increased as well as the Hg, Cu, Cr, and Zn in the soil was significantly reduced as compared to the corresponding non-amended series after freezing-thawing. Moreover, exposure to freezing-thawing itself caused redistribution of examined metal(-loid)s from mobile and/or potentially mobile into the most stable fraction, but this transformation was favored by biochar presence, especially for Cu, Pb, Cr, and Hg. While freezing-thawing greatly affected soil microbiome composition, biochar reduced the freeze-thaw adverse effect on bacterial diversity and helped preserve bacterial groups important for efficient soil nutrient conversion. In biochar-amended soil exposed to freezing-thawing, psychrotolerant and trace element-resistant genera such as Rhodococcus sp. or Williamsia sp. were most abundant.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mariusz Z. Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland; (M.Z.G.); (A.C.-K.)
| | - Agnieszka Cydzik-Kwiatkowska
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland; (M.Z.G.); (A.C.-K.)
| | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban 182144, India;
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; (A.K.); (M.B.)
- Agricultural Research, Ltd., Zahradni 400/1, 66441 Troubsko, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; (A.K.); (M.B.)
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic
| |
Collapse
|
15
|
Cui J, Zhang M, Chen L, Zhang S, Luo Y, Cao W, Zhao J, Wang L, Jia Z, Bao Z. Methanotrophs Contribute to Nitrogen Fixation in Emergent Macrophytes. Front Microbiol 2022; 13:851424. [PMID: 35479617 PMCID: PMC9036440 DOI: 10.3389/fmicb.2022.851424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Root-associated aerobic methanotroph plays an important role in reducing methane emissions from wetlands. In this study, we examined the activity of methane-dependent nitrogen fixation and active nitrogen-fixing bacterial communities on the roots of Typha angustifolia and Scirpus triqueter using a 15N-N2 feeding experiment and a cDNA-based clone library sequence of the nifH gene, respectively. A 15N-N2 feeding experiment showed that the N2 fixation rate of S. triqueter (1.74 μmol h-1 g-1 dry weight) was significantly higther than that of T. angustifolia (0.48 μmol h-1 g-1 dry weight). The presence of CH4 significantly increased the incorporation of 15N-labeled N2 into the roots of both plants, and the rate of CH4-dependent N2 fixation of S. triqueter (5.6 μmol h-1 g-1 dry weight) was fivefold higher than that of T. angustifolia (0.94 μmol h-1 g-1 dry weight). The active root-associated diazotrophic communities differed between the plant species. Diazotrophic Methylosinus of the Methylocystaceae was dominant in S. triqueter, while Rhizobium of the Rhizobiaceae was dominant in T. angustifolia. However, there were no significant differences in the copy numbers of nifH between plant species. These results suggest that N2 fixation was enhanced by the oxidation of CH4 in the roots of macrophytes grown in natural wetlands and that root-associated Methylocystacea, including Methylosinus, contribute to CH4 oxidation-dependent N2 fixation.
Collapse
Affiliation(s)
- Jing Cui
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- The High School Affiliated to Minzu University of China, Hohhot, China
| | - Meng Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Linxia Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weiwei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| |
Collapse
|
16
|
Rhizosphere Diazotrophs and Other Bacteria Associated with Native and Encroaching Legumes in the Succulent Karoo Biome in South Africa. Microorganisms 2022; 10:microorganisms10020216. [PMID: 35208671 PMCID: PMC8880511 DOI: 10.3390/microorganisms10020216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 12/10/2022] Open
Abstract
Total and diazotrophic bacteria were assessed in the rhizosphere soils of native and encroaching legumes growing in the Succulent Karoo Biome (SKB), South Africa. These were Calobota sericea, Lessertia diffusa, Vachellia karroo, and Wiborgia monoptera, of Fabaceae family near Springbok (Northern Cape Province) and neighboring refugia of the Fynbos biome for C. sericea for comparison purposes. Metabarcoding approach using 16S rRNA gene revealed Actinobacteria (26.7%), Proteobacteria (23.6%), Planctomycetes, and Acidobacteria (10%), while the nifH gene revealed Proteobacteria (70.3%) and Cyanobacteria (29.5%) of the total sequences recovered as the dominant phyla. Some of the diazotrophs measured were assigned to families; Phyllobacteriaceae (39%) and Nostocaceae (24.4%) (all legumes), Rhodospirillaceae (7.9%), Bradyrhizobiaceae (4.6%) and Methylobacteriaceae (3%) (C. sericea, V. karroo, W. monoptera), Rhizobiaceae (4.2%; C. sericea, L. diffusa, V. Karroo), Microchaetaceae (4%; W. monoptera, V. karroo), Scytonemataceae (3.1%; L. diffusa, W. monoptera), and Pseudomonadaceae (2.7%; V. karroo) of the total sequences recovered. These families have the potential to fix the atmospheric nitrogen. While some diazotrophs were specific or shared across several legumes, a member of Mesorhizobium species was common in all rhizosphere soils considered. V. karroo had statistically significantly higher Alpha and distinct Beta-diversity values, than other legumes, supporting its influence on soil microbes. Overall, this work showed diverse bacteria that support plant life in harsh environments such as the SKB, and shows how they are influenced by legumes.
Collapse
|
17
|
Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. mBio 2021; 12:e0170821. [PMID: 34544276 PMCID: PMC8546591 DOI: 10.1128/mbio.01708-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methane-oxidizing bacterium Methylacidimicrobium thermophilum AP8 thrives in acidic geothermal ecosystems that are characterized by high degassing of methane (CH4), H2, H2S, and by relatively high lanthanide concentrations. Lanthanides (atomic numbers 57 to 71) are essential in a variety of high-tech devices, including mobile phones. Remarkably, the same elements are actively taken up by methanotrophs/methylotrophs in a range of environments, since their XoxF-type methanol dehydrogenases require lanthanides as a metal cofactor. Lanthanide-dependent enzymes seem to prefer the lighter lanthanides (lanthanum, cerium, praseodymium, and neodymium), as slower methanotrophic/methylotrophic growth is observed in medium supplemented with only heavier lanthanides. Here, we purified XoxF1 from the thermoacidophilic methanotroph Methylacidimicrobium thermophilum AP8, which was grown in medium supplemented with neodymium as the sole lanthanide. The neodymium occupancy of the enzyme is 94.5% ± 2.0%, and through X-ray crystallography, we reveal that the structure of the active site shows interesting differences from the active sites of other methanol dehydrogenases, such as an additional aspartate residue in close proximity to the lanthanide. Nd-XoxF1 oxidizes methanol at a maximum rate of metabolism (Vmax) of 0.15 ± 0.01 μmol · min-1 · mg protein-1 and an affinity constant (Km) of 1.4 ± 0.6 μM. The structural analysis of this neodymium-containing XoxF1-type methanol dehydrogenase will expand our knowledge in the exciting new field of lanthanide biochemistry. IMPORTANCE Lanthanides comprise a group of 15 elements with atomic numbers 57 to 71 that are essential in a variety of high-tech devices, such as mobile phones, but were considered biologically inert for a long time. The biological relevance of lanthanides became evident when the acidophilic methanotroph Methylacidiphilum fumariolicum SolV, isolated from a volcanic mud pot, could only grow when lanthanides were supplied to the growth medium. We expanded knowledge in the exciting and rapidly developing field of lanthanide biochemistry by the purification and characterization of a neodymium-containing methanol dehydrogenase from a thermoacidophilic methanotroph.
Collapse
|
18
|
Liu Y, Ma W, He H, Wang Z, Cao Y. Effects of Sugarcane and Soybean Intercropping on the Nitrogen-Fixing Bacterial Community in the Rhizosphere. Front Microbiol 2021; 12:713349. [PMID: 34659143 PMCID: PMC8515045 DOI: 10.3389/fmicb.2021.713349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Intercropping between sugarcane and soybean is widely used to increase crop yield and promote the sustainable development of the sugarcane industry. However, our understanding of the soil microenvironment in intercropping systems, especially the effect of crop varieties on rhizosphere soil bacterial communities, remains poor. We selected two excellent sugarcane cultivars, Zhongzhe1 (ZZ1) and Zhongzhe9 (ZZ9), from Guangxi and the local soybean variety GUIZAO2 from Guangxi for field interplanting experiments. These two cultivars of sugarcane have good drought resistance. Rhizosphere soil samples were collected from the two intercropping systems to measure physicochemical properties and soil enzyme activities and to extract total soil DNA for high-throughput sequencing. We found that the diversity of the rhizosphere bacterial community was significantly different between the two intercropping systems. Compared with ZZ1, the ZZ9 intercropping system enriched the nitrogen-fixing bacteria, increasing the available nitrogen content by 18% compared with that with ZZ1. In addition, ZZ9 intercropping with soybean formed a more compact rhizosphere environment than ZZ1, thus providing favorable conditions for sugarcane growth. These results provide guidance for the sugarcane industry, especially for the management of sugarcane and soybean intercropping in Guangxi, China.
Collapse
Affiliation(s)
- Yue Liu
- College of Agronomy, Guangxi University, Nanning, China
| | - Wenqing Ma
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, China
| | - Hongliang He
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, China
| | - Yanhong Cao
- Guangxi Key Laboratory of Livestock Genetic Improvement, The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
19
|
Koirala A, Brözel VS. Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights into the Origin and Distribution of Nitrogen Fixation across Bacteria and Archaea. Microorganisms 2021; 9:microorganisms9081662. [PMID: 34442741 PMCID: PMC8399215 DOI: 10.3390/microorganisms9081662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
The phylogeny of nitrogenase has only been analyzed using the structural proteins NifHDK. As nifHDKENB has been established as the minimum number of genes necessary for in silico prediction of diazotrophy, we present an updated phylogeny of diazotrophs using both structural (NifHDK) and cofactor assembly proteins (NifENB). Annotated Nif sequences were obtained from InterPro from 963 culture-derived genomes. Nif sequences were aligned individually and concatenated to form one NifHDKENB sequence. Phylogenies obtained using PhyML, FastTree, RapidNJ, and ASTRAL from individuals and concatenated protein sequences were compared and analyzed. All six genes were found across the Actinobacteria, Aquificae, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Deferribacteres, Firmicutes, Fusobacteria, Nitrospira, Proteobacteria, PVC group, and Spirochaetes, as well as the Euryarchaeota. The phylogenies of individual Nif proteins were very similar to the overall NifHDKENB phylogeny, indicating the assembly proteins have evolved together. Our higher resolution database upheld the three cluster phylogeny, but revealed undocumented horizontal gene transfers across phyla. Only 48% of the 325 genera containing all six nif genes are currently supported by biochemical evidence of diazotrophy. In addition, this work provides reference for any inter-phyla comparison of Nif sequences and a quality database of Nif proteins that can be used for identifying new Nif sequences.
Collapse
Affiliation(s)
- Amrit Koirala
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA;
| | - Volker S. Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA;
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
- Correspondence: ; Tel.: +1-605-688-6144
| |
Collapse
|
20
|
Picone N, Blom P, Hogendoorn C, Frank J, van Alen T, Pol A, Gagliano AL, Jetten MSM, D'Alessandro W, Quatrini P, Op den Camp HJM. Metagenome Assembled Genome of a Novel Verrucomicrobial Methanotroph From Pantelleria Island. Front Microbiol 2021; 12:666929. [PMID: 34093485 PMCID: PMC8170126 DOI: 10.3389/fmicb.2021.666929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Verrucomicrobial methanotrophs are a group of aerobic bacteria isolated from volcanic environments. They are acidophiles, characterized by the presence of a particulate methane monooxygenase (pMMO) and a XoxF-type methanol dehydrogenase (MDH). Metagenomic analysis of DNA extracted from the soil of Favara Grande, a geothermal area on Pantelleria Island, Italy, revealed the presence of two verrucomicrobial Metagenome Assembled Genomes (MAGs). One of these MAGs did not phylogenetically classify within any existing genus. After extensive analysis of the MAG, we propose the name of "Candidatus Methylacidithermus pantelleriae" PQ17 gen. nov. sp. nov. The MAG consisted of 2,466,655 bp, 71 contigs and 3,127 predicted coding sequences. Completeness was found at 98.6% and contamination at 1.3%. Genes encoding the pMMO and XoxF-MDH were identified. Inorganic carbon fixation might use the Calvin-Benson-Bassham cycle since all genes were identified. The serine and ribulose monophosphate pathways were incomplete. The detoxification of formaldehyde could follow the tetrahydrofolate pathway. Furthermore, "Ca. Methylacidithermus pantelleriae" might be capable of nitric oxide reduction but genes for dissimilatory nitrate reduction and nitrogen fixation were not identified. Unlike other verrucomicrobial methanotrophs, genes encoding for enzymes involved in hydrogen oxidation could not be found. In conclusion, the discovery of this new MAG expands the diversity and metabolism of verrucomicrobial methanotrophs.
Collapse
Affiliation(s)
- Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Pieter Blom
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Jeroen Frank
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Theo van Alen
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Antonina L Gagliano
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Walter D'Alessandro
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy
| | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
21
|
Picone N, Blom P, Wallenius AJ, Hogendoorn C, Mesman R, Cremers G, Gagliano AL, D'Alessandro W, Quatrini P, Jetten MSM, Pol A, Op den Camp HJM. Methylacidimicrobium thermophilum AP8, a Novel Methane- and Hydrogen-Oxidizing Bacterium Isolated From Volcanic Soil on Pantelleria Island, Italy. Front Microbiol 2021; 12:637762. [PMID: 33643272 PMCID: PMC7907005 DOI: 10.3389/fmicb.2021.637762] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Favara Grande is a geothermal area located on Pantelleria Island, Italy. The area is characterized high temperatures in the top layer of the soil (60°C), low pH (3–5) and hydrothermal gas emissions mainly composed of carbon dioxide (CO2), methane (CH4), and hydrogen (H2). These geothermal features may provide a suitable niche for the growth of chemolithotrophic thermoacidophiles, including the lanthanide-dependent methanotrophs of the phylum Verrucomicrobia. In this study, we started enrichment cultures inoculated with soil of the Favara Grande at 50 and 60°C with CH4 as energy source and medium containing sufficient lanthanides at pH 3 and 5. From these cultures, a verrucomicrobial methanotroph could be isolated via serial dilution and floating filters techniques. The genome of strain AP8 was sequenced and based on phylogenetic analysis we propose to name this new species Methylacidimicrobium thermophilum AP8. The transcriptome data at μmax (0.051 ± 0.001 h−1, doubling time ~14 h) of the new strain showed a high expression of the pmoCAB2 operon encoding the membrane-bound methane monooxygenase and of the gene xoxF1, encoding the lanthanide-dependent methanol dehydrogenase. A second pmoCAB operon and xoxF2 gene were not expressed. The physiology of strain AP8 was further investigated and revealed an optimal growth in a pH range of 3–5 at 50°C, representing the first thermophilic strain of the genus Methylacidimicrobium. Moreover, strain AP8 had a KS(app) for methane of 8 ± 1 μM. Beside methane, a type 1b [NiFe] hydrogenase enabled hydrogen oxidation at oxygen concentrations up to 1%. Taken together, our results expand the knowledge on the characteristics and adaptations of verrucomicrobial methanotrophs in hydrothermal environments and add a new thermophilic strain to the genus Methylacidimicrobium.
Collapse
Affiliation(s)
- Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Pieter Blom
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Anna J Wallenius
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Rob Mesman
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | | | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
22
|
Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, Op den Camp HJM. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev 2021; 45:6125968. [PMID: 33524112 PMCID: PMC8498564 DOI: 10.1093/femsre/fuab007] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
Methanotrophs are an important group of microorganisms that counteract methane emissions to the atmosphere. Methane-oxidising bacteria of the Alpha- and Gammaproteobacteria have been studied for over a century, while methanotrophs of the phylum Verrucomicrobia are a more recent discovery. Verrucomicrobial methanotrophs are extremophiles that live in very acidic geothermal ecosystems. Currently, more than a dozen strains have been isolated, belonging to the genera Methylacidiphilum and Methylacidimicrobium. Initially, these methanotrophs were thought to be metabolically confined. However, genomic analyses and physiological and biochemical experiments over the past years revealed that verrucomicrobial methanotrophs, as well as proteobacterial methanotrophs, are much more metabolically versatile than previously assumed. Several inorganic gases and other molecules present in acidic geothermal ecosystems can be utilised, such as methane, hydrogen gas, carbon dioxide, ammonium, nitrogen gas and perhaps also hydrogen sulfide. Verrucomicrobial methanotrophs could therefore represent key players in multiple volcanic nutrient cycles and in the mitigation of greenhouse gas emissions from geothermal ecosystems. Here, we summarise the current knowledge on verrucomicrobial methanotrophs with respect to their metabolic versatility and discuss the factors that determine their diversity in their natural environment. In addition, key metabolic, morphological and ecological characteristics of verrucomicrobial and proteobacterial methanotrophs are reviewed.
Collapse
Affiliation(s)
- Rob A Schmitz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM, Pol A, Op den Camp HJM. More Than a Methanotroph: A Broader Substrate Spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol 2020; 11:604485. [PMID: 33381099 PMCID: PMC7768010 DOI: 10.3389/fmicb.2020.604485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023] Open
Abstract
Volcanic areas emit a number of gases including methane and other short chain alkanes, that may serve as energy source for the prevailing microorganisms. The verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV was isolated from a volcanic mud pot, and is able to grow under thermoacidophilic conditions on different gaseous substrates. Its genome contains three operons encoding a particulate methane monooxygenase (pMMO), the enzyme that converts methane to methanol. The expression of two of these pmo operons is subjected to oxygen-dependent regulation, whereas the expression of the third copy (pmoCAB3) has, so far, never been reported. In this study we investigated the ability of strain SolV to utilize short-chain alkanes and monitored the expression of the pmo operons under different conditions. In batch cultures and in carbon-limited continuous cultures, strain SolV was able to oxidize and grow on C1–C3 compounds. Oxidation of ethane did occur simultaneously with methane, while propane consumption only started once methane and ethane became limited. Butane oxidation was not observed. Transcriptome data showed that pmoCAB1 and pmoCAB3 were induced in the absence of methane and the expression of pmoCAB3 increased upon propane addition. Together the results of our study unprecedently show that a pMMO-containing methanotroph is able to co-metabolize other gaseous hydrocarbons, beside methane. Moreover, it expands the substrate spectrum of verrucomicrobial methanotrophs, supporting their high metabolic flexibility and adaptation to the harsh and dynamic conditions in volcanic ecosystems.
Collapse
Affiliation(s)
- Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Sepehr S Mohammadi
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Annemiek C Waajen
- School of Physics and Astronomy, Institute for Condensed Matter and Complex Systems, Edinburgh University, Edinburgh, United Kingdom
| | - Theo A van Alen
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
24
|
Abstract
Volcanic and geothermal environments are characterized by low pH, high temperatures, and gas emissions consisting of mainly CO2 and varied CH4, H2S, and H2 contents which allow the formation of chemolithoautotrophic microbial communities. To determine the link between the emitted gases and the microbial community composition, geochemical and metagenomic analysis were performed. Soil samples of the geothermic region Favara Grande (Pantelleria, Italy) were taken at various depths (1 to 50 cm). Analysis of the gas composition revealed that CH4 and H2 have the potential to serve as the driving forces for the microbial community. Our metagenomic analysis revealed a high relative abundance of Bacteria in the top layer (1 to 10 cm), but the relative abundance of Archaea increased with depth from 32% to 70%. In particular, a putative hydrogenotrophic methanogenic archaeon, related to Methanocella conradii, appeared to have a high relative abundance (63%) in deeper layers. A variety of [NiFe]-hydrogenase genes were detected, showing that H2 was an important electron donor for microaerobic microorganisms in the upper layers. Furthermore, the bacterial population included verrucomicrobial and proteobacterial methanotrophs, the former showing an up to 7.8 times higher relative abundance. Analysis of the metabolic potential of this microbial community showed a clear capacity to oxidize CH4 aerobically, as several genes for distinct particulate methane monooxygenases and lanthanide-dependent methanol dehydrogenases (XoxF-type) were retrieved. Analysis of the CO2 fixation pathways showed the presence of the Calvin-Benson-Bassham cycle, the Wood-Ljungdahl pathway, and the (reverse) tricarboxylic acid (TCA) cycle, the latter being the most represented carbon fixation pathway. This study indicates that the methane emissions in the Favara Grande might be a combination of geothermal activity and biological processes and further provides insights into the diversity of the microbial population thriving on CH4 and H2 IMPORTANCE The Favara Grande nature reserve on the volcanic island of Pantelleria (Italy) is known for its geothermal gas emissions and high soil temperatures. These volcanic soil ecosystems represent "hot spots" of greenhouse gas emissions. The unique community might be shaped by the hostile conditions in the ecosystem, and it is involved in the cycling of elements such as carbon, hydrogen, sulfur, and nitrogen. Our metagenome study revealed that most of the microorganisms in this extreme environment are only distantly related to cultivated bacteria. The results obtained profoundly increased the understanding of these natural hot spots of greenhouse gas production/degradation and will help to enrich and isolate the microbial key players. After isolation, it will become possible to unravel the molecular mechanisms by which they adapt to extreme (thermo/acidophilic) conditions, and this may lead to new green enzymatic catalysts and technologies for industry.
Collapse
|
25
|
Versantvoort W, Pol A, Jetten MSM, van Niftrik L, Reimann J, Kartal B, Op den Camp HJM. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Proc Natl Acad Sci U S A 2020; 117:24459-24463. [PMID: 32913059 PMCID: PMC7533708 DOI: 10.1073/pnas.2011299117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aerobic and nitrite-dependent methanotrophs make a living from oxidizing methane via methanol to carbon dioxide. In addition, these microorganisms cometabolize ammonia due to its structural similarities to methane. The first step in both of these processes is catalyzed by methane monooxygenase, which converts methane or ammonia into methanol or hydroxylamine, respectively. Methanotrophs use methanol for energy conservation, whereas toxic hydroxylamine is a potent inhibitor that needs to be rapidly removed. It is suggested that many methanotrophs encode a hydroxylamine oxidoreductase (mHAO) in their genome to remove hydroxylamine, although biochemical evidence for this is lacking. HAOs also play a crucial role in the metabolism of aerobic and anaerobic ammonia oxidizers by converting hydroxylamine to nitric oxide (NO). Here, we purified an HAO from the thermophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV and characterized its kinetic properties. This mHAO possesses the characteristic P460 chromophore and is active up to at least 80 °C. It catalyzes the rapid oxidation of hydroxylamine to NO. In methanotrophs, mHAO efficiently removes hydroxylamine, which severely inhibits calcium-dependent, and as we show here, lanthanide-dependent methanol dehydrogenases, which are more prevalent in the environment. Our results indicate that mHAO allows methanotrophs to thrive under high ammonia concentrations in natural and engineered ecosystems, such as those observed in rice paddy fields, landfills, or volcanic mud pots, by preventing the accumulation of inhibitory hydroxylamine. Under oxic conditions, methanotrophs mainly oxidize ammonia to nitrite, whereas in hypoxic and anoxic environments reduction of both ammonia-derived nitrite and NO could lead to nitrous oxide (N2O) production.
Collapse
Affiliation(s)
- Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
26
|
Methanol Production by " Methylacidiphilum fumariolicum" SolV under Different Growth Conditions. Appl Environ Microbiol 2020; 86:AEM.01188-20. [PMID: 32631865 PMCID: PMC7480378 DOI: 10.1128/aem.01188-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
The production of methanol, an important chemical, is completely dependent on natural gas. The current multistep chemical process uses high temperature and pressure to convert methane in natural gas to methanol. In this study, we used the methanotroph “Methylacidiphilum fumariolicum” SolV to achieve continuous methanol production from methane as the substrate. The production rate was highly dependent on the growth rate of this microorganism, and high conversion efficiencies were obtained. Using microorganisms for the production of methanol might enable the use of more sustainable sources of methane, such as biogas, rather than natural gas. Industrial methanol production converts methane from natural gas into methanol through a multistep chemical process. Biological methane-to-methanol conversion under moderate conditions and using biogas would be more environmentally friendly. Methanotrophs, bacteria that use methane as an energy source, convert methane into methanol in a single step catalyzed by the enzyme methane monooxygenase, but inhibition of methanol dehydrogenase, which catalyzes the subsequent conversion of methanol into formaldehyde, is a major challenge. In this study, we used the thermoacidophilic methanotroph “Methylacidiphilum fumariolicum” SolV for biological methanol production. This bacterium possesses a XoxF-type methanol dehydrogenase that is dependent on rare earth elements for activity. By using a cultivation medium nearly devoid of lanthanides, we reduced methanol dehydrogenase activity and obtained a continuous methanol-producing microbial culture. The methanol production rate and conversion efficiency were growth-rate dependent. A maximal conversion efficiency of 63% mol methanol produced per mol methane consumed was obtained at a relatively high growth rate, with a methanol production rate of 0.88 mmol/g (dry weight)/h. This study demonstrates that methanotrophs can be used for continuous methanol production. Full-scale application will require additional increases in the titer, production rate, and efficiency, which can be achieved by further decreasing the lanthanide concentration through the use of increased biomass concentrations and novel reactor designs to supply sufficient gases, including methane, oxygen, and hydrogen. IMPORTANCE The production of methanol, an important chemical, is completely dependent on natural gas. The current multistep chemical process uses high temperature and pressure to convert methane in natural gas to methanol. In this study, we used the methanotroph “Methylacidiphilum fumariolicum” SolV to achieve continuous methanol production from methane as the substrate. The production rate was highly dependent on the growth rate of this microorganism, and high conversion efficiencies were obtained. Using microorganisms for the production of methanol might enable the use of more sustainable sources of methane, such as biogas, rather than natural gas.
Collapse
|
27
|
Jean M, Holland-Moritz H, Melvin AM, Johnstone JF, Mack MC. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. THE NEW PHYTOLOGIST 2020; 227:1335-1349. [PMID: 32299141 DOI: 10.1111/nph.16611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N2 )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2 -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2 -fixation rates of Hylocomium splendens and Pleurozium schreberi. We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2 -fixation rates using stable isotopes (15 N2 ) and measured environmental covariates. Mosses native to and transplanted into spruce stands supported generally higher N2 -fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2 -fixation rates for H. splendens, which had the highest rates. N2 -fixation was positively associated with several bacterial taxa, including cyanobacteria. The moss microbiome and environmental conditions controlled N2 -fixation at the stand and transplant scales. Predicted shifts from spruce- to deciduous-dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2 -fixation rates, which could affect stand-level N inputs.
Collapse
Affiliation(s)
- Mélanie Jean
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences and Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - April M Melvin
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Independent researcher, Washington, DC, 20001, USA
| | - Jill F Johnstone
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
28
|
Malard LA, Anwar MZ, Jacobsen CS, Pearce DA. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol Ecol 2020; 95:5552140. [PMID: 31429869 PMCID: PMC6736398 DOI: 10.1093/femsec/fiz128] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 11/14/2022] Open
Abstract
The considerable microbial diversity of soils and key role in biogeochemical cycling have led to growing interest in their global distribution and the impact that environmental change might have at the regional level. In the broadest study of Arctic soil bacterial communities to date, we used high-throughput DNA sequencing to investigate the bacterial diversity from 200 independent Arctic soil samples from 43 sites. We quantified the impact of spatial and environmental factors on bacterial community structure using variation partitioning analysis, illustrating a nonrandom distribution across the region. pH was confirmed as the key environmental driver structuring Arctic soil bacterial communities, while total organic carbon (TOC), moisture and conductivity were shown to have little effect. Specialist taxa were more abundant in acidic and alkaline soils while generalist taxa were more abundant in acidoneutral soils. Of the 48 147 bacterial taxa, a core microbiome composed of only 13 taxa that were ubiquitously distributed and present within 95% of samples was identified, illustrating the high potential for endemism in the region. Overall, our results demonstrate the importance of spatial and edaphic factors on the structure of Arctic soil bacterial communities.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
| | - Muhammad Z Anwar
- Department of Environmental Sciences, Aarhus University, 4000 Roskilde, Denmark
| | - Carsten S Jacobsen
- Department of Environmental Sciences, Aarhus University, 4000 Roskilde, Denmark
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.,British Antarctic Survey, High Cross Madingley Road, Cambridge CB3 0ET, United Kingdom
| |
Collapse
|
29
|
Draft Genome Sequences of Two Acidophilic, Mesophilic Verrucomicrobial Methanotrophs Contain Only One pmoCAB Operon. Microbiol Resour Announc 2020; 9:9/16/e00315-20. [PMID: 32299887 PMCID: PMC7163025 DOI: 10.1128/mra.00315-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylacidimicrobium cyclopophantes 3B and Methylacidimicrobium tartarophylax 4AC are Gram-negative rod-shaped mesophilic methanotrophs isolated from soil samples with low pH at the Solfatara Crater, near Naples, Italy. The genomes of these extremophilic verrucomicrobia were sequenced using Illumina technology, and both species possess one pmoCAB operon and two xoxF genes.
Collapse
|
30
|
Marmen S, Blank L, Al-Ashhab A, Malik A, Ganzert L, Lalzar M, Grossart HP, Sher D. The Role of Land Use Types and Water Chemical Properties in Structuring the Microbiomes of a Connected Lake System. Front Microbiol 2020; 11:89. [PMID: 32117119 PMCID: PMC7029742 DOI: 10.3389/fmicb.2020.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/15/2020] [Indexed: 02/04/2023] Open
Abstract
Lakes and other freshwater bodies are intimately connected to the surrounding land, yet to what extent land-use affects the quality of freshwater and the microbial communities living in various freshwater environments is largely unknown. We address this question through an analysis of the land use surrounding 46 inter-connected lakes located within seven different drainage basins in northern Germany, and the microbiomes of these lakes during early summer. Lake microbiome structure was not correlated with the specific drainage basin or by basin size, and bacterial distribution did not seem to be limited by distance. Instead, land use within the drainage basin could predict, to some extent, NO2 + NO3 concentrations in the water, which (together with temperature, chlorophyll a and total phosphorus) correlated to some extent with the water microbiome structure. Land use directly surrounding the water bodies, however, had little observable effects on water quality or the microbiome. Several microbial lineages, including Cyanobacteria and Verrucomicrobia, were differentially partitioned between the lakes. Significantly more data, including time-series measurements of land use and water chemical properties, are needed to fully understand the interaction between the environment and the organization of microbial communities.
Collapse
Affiliation(s)
- Sophi Marmen
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lior Blank
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon Lezion, Israel
| | - Ashraf Al-Ashhab
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Lars Ganzert
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
31
|
Genome-Resolved Metagenomics Extends the Environmental Distribution of the Verrucomicrobia Phylum to the Deep Terrestrial Subsurface. mSphere 2019; 4:4/6/e00613-19. [PMID: 31852806 PMCID: PMC6920513 DOI: 10.1128/msphere.00613-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought. Bacteria of the phylum Verrucomicrobia are prevalent and are particularly common in soil and freshwater environments. Their cosmopolitan distribution and reported capacity for polysaccharide degradation suggests members of Verrucomicrobia are important contributors to carbon cycling across Earth’s ecosystems. Despite their prevalence, the Verrucomicrobia are underrepresented in isolate collections and genome databases; consequently, their ecophysiological roles may not be fully realized. Here, we expand genomic sampling of the Verrucomicrobia phylum by describing a novel genus, “Candidatus Marcellius,” belonging to the order Opitutales. “Ca. Marcellius” was recovered from a shale-derived produced fluid metagenome collected 313 days after hydraulic fracturing, the deepest environment from which a member of the Verrucomicrobia has been recovered to date. We uncover genomic attributes that may explain the capacity of this organism to inhabit a shale gas well, including the potential for utilization of organic polymers common in hydraulic fracturing fluids, nitrogen fixation, adaptation to high salinities, and adaptive immunity via CRISPR-Cas. To illuminate the phylogenetic and environmental distribution of these metabolic and adaptive traits across the Verrucomicrobia phylum, we performed a comparative genomic analysis of 31 publicly available, nearly complete Verrucomicrobia genomes. Our genomic findings extend the environmental distribution of the Verrucomicrobia 2.3 kilometers into the terrestrial subsurface. Moreover, we reveal traits widely encoded across members of the Verrucomicrobia, including the capacity to degrade hemicellulose and to adapt to physical and biological environmental perturbations, thereby contributing to the expansive habitat range reported for this phylum. IMPORTANCE The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought.
Collapse
|
32
|
Carere CR, McDonald B, Peach HA, Greening C, Gapes DJ, Collet C, Stott MB. Hydrogen Oxidation Influences Glycogen Accumulation in a Verrucomicrobial Methanotroph. Front Microbiol 2019; 10:1873. [PMID: 31474959 PMCID: PMC6706786 DOI: 10.3389/fmicb.2019.01873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
Metabolic flexibility in aerobic methane oxidizing bacteria (methanotrophs) enhances cell growth and survival in instances where resources are variable or limiting. Examples include the production of intracellular compounds (such as glycogen or polyhydroxyalkanoates) in response to unbalanced growth conditions and the use of some energy substrates, besides methane, when available. Indeed, recent studies show that verrucomicrobial methanotrophs can grow mixotrophically through oxidation of hydrogen and methane gases via respiratory membrane-bound group 1d [NiFe] hydrogenases and methane monooxygenases, respectively. Hydrogen metabolism is particularly important for adaptation to methane and oxygen limitation, suggesting this metabolic flexibility may confer growth and survival advantages. In this work, we provide evidence that, in adopting a mixotrophic growth strategy, the thermoacidophilic methanotroph, Methylacidiphilum sp. RTK17.1 changes its growth rate, biomass yields and the production of intracellular glycogen reservoirs. Under nitrogen-fixing conditions, removal of hydrogen from the feed-gas resulted in a 14% reduction in observed growth rates and a 144% increase in cellular glycogen content. Concomitant with increases in glycogen content, the total protein content of biomass decreased following the removal of hydrogen. Transcriptome analysis of Methylacidiphilum sp. RTK17.1 revealed a 3.5-fold upregulation of the Group 1d [NiFe] hydrogenase in response to oxygen limitation and a 4-fold upregulation of nitrogenase encoding genes (nifHDKENX) in response to nitrogen limitation. Genes associated with glycogen synthesis and degradation were expressed constitutively and did not display evidence of transcriptional regulation. Collectively these data further challenge the belief that hydrogen metabolism in methanotrophic bacteria is primarily associated with energy conservation during nitrogen fixation and suggests its utilization provides a competitive growth advantage within hypoxic habitats.
Collapse
Affiliation(s)
- Carlo R. Carere
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Ben McDonald
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand
| | - Hanna A. Peach
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, New Zealand
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | | | | - Matthew B. Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
33
|
Kruse T, Ratnadevi CM, Erikstad HA, Birkeland NK. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph "Candidatus Methylacidiphilum kamchatkense" strain Kam1 and comparison with its closest relatives. BMC Genomics 2019; 20:642. [PMID: 31399023 PMCID: PMC6688271 DOI: 10.1186/s12864-019-5995-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The candidate genus "Methylacidiphilum" comprises thermoacidophilic aerobic methane oxidizers belonging to the Verrucomicrobia phylum. These are the first described non-proteobacterial aerobic methane oxidizers. The genes pmoCAB, encoding the particulate methane monooxygenase do not originate from horizontal gene transfer from proteobacteria. Instead, the "Ca. Methylacidiphilum" and the sister genus "Ca. Methylacidimicrobium" represent a novel and hitherto understudied evolutionary lineage of aerobic methane oxidizers. Obtaining and comparing the full genome sequences is an important step towards understanding the evolution and physiology of this novel group of organisms. RESULTS Here we present the closed genome of "Ca. Methylacidiphilum kamchatkense" strain Kam1 and a comparison with the genomes of its two closest relatives "Ca. Methylacidiphilum fumariolicum" strain SolV and "Ca. Methylacidiphilum infernorum" strain V4. The genome consists of a single 2,2 Mbp chromosome with 2119 predicted protein coding sequences. Genome analysis showed that the majority of the genes connected with metabolic traits described for one member of "Ca. Methylacidiphilum" is conserved between all three genomes. All three strains encode class I CRISPR-cas systems. The average nucleotide identity between "Ca. M. kamchatkense" strain Kam1 and strains SolV and V4 is ≤95% showing that they should be regarded as separate species. Whole genome comparison revealed a high degree of synteny between the genomes of strains Kam1 and SolV. In contrast, comparison of the genomes of strains Kam1 and V4 revealed a number of rearrangements. There are large differences in the numbers of transposable elements found in the genomes of the three strains with 12, 37 and 80 transposable elements in the genomes of strains Kam1, V4 and SolV respectively. Genomic rearrangements and the activity of transposable elements explain much of the genomic differences between strains. For example, a type 1h uptake hydrogenase is conserved between strains Kam1 and SolV but seems to have been lost from strain V4 due to genomic rearrangements. CONCLUSIONS Comparing three closed genomes of "Ca. Methylacidiphilum" spp. has given new insights into the evolution of these organisms and revealed large differences in numbers of transposable elements between strains, the activity of these explains much of the genomic differences between strains.
Collapse
Affiliation(s)
- Thomas Kruse
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway.
| | | | - Helge-André Erikstad
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Nils-Kåre Birkeland
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway.
| |
Collapse
|
34
|
Versantvoort W, Pol A, Daumann LJ, Larrabee JA, Strayer AH, Jetten MS, van Niftrik L, Reimann J, Op den Camp HJ. Characterization of a novel cytochrome c as the electron acceptor of XoxF-MDH in the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:595-603. [DOI: 10.1016/j.bbapap.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 11/29/2022]
|
35
|
Lin YT, Lin YF, Tsai IJ, Chang EH, Jien SH, Lin YJ, Chiu CY. Structure and Diversity of Soil Bacterial Communities in Offshore Islands. Sci Rep 2019; 9:4689. [PMID: 30894580 PMCID: PMC6426884 DOI: 10.1038/s41598-019-41170-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/01/2019] [Indexed: 11/09/2022] Open
Abstract
The effects of biogeographical separation and parent material differences in soil bacterial structure and diversity in offshore islands remain poorly understood. In the current study, we used next-generation sequencing to characterize the differences in soil bacterial communities in five offshore subtropical granite islands (Matsu Islets, MI) of mainland China and two offshore tropical andesite islands (Orchid [OI] and Green Islands [GI]) of Taiwan. The soils of OI and GI were more acidic and had higher organic carbon and total nitrogen content than MI soils. The bacterial communities were dominated by Acidobacteria and Proteobacteria but had different relative abundance because soils were derived from different parent material and because of geographic distance. Non-metric multi-dimensional scaling revealed that the communities formed different clusters among different parent material and geographically distributed soils. The alpha-diversity in bacterial communities was higher in tropical than subtropical soils. Mantel test and redundancy analysis indicated that bacterial diversity and compositions of OI and GI soils, respectively, were positively correlated with soil pH, organic carbon, total nitrogen, microbial biomass carbon and nitrogen. These results suggest that variations in soil properties of offshore islands could result from differences in soil parent material. Distinct soils derived from different parent material and geographic distance could in turn alter the bacterial communities.
Collapse
Affiliation(s)
- Yu-Te Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yu-Fei Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Ed-Haun Chang
- Mackay Junior College of Medicine, Nursing and Management, Beitou, Taipei, 11260, Taiwan
| | - Shih-Hao Jien
- Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Yen-Ju Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Chih-Yu Chiu
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
36
|
Baquiran JIP, Conaco C. Sponge-microbe partnerships are stable under eutrophication pressure from mariculture. MARINE POLLUTION BULLETIN 2018; 136:125-134. [PMID: 30509793 DOI: 10.1016/j.marpolbul.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 06/09/2023]
Abstract
Sponges harbor a great diversity of symbiotic microorganisms. However, environmental stresses can affect this partnership and influence the health and abundance of the host sponges. In Bolinao, Pangasinan, Philippines, chronic input of organic materials from mariculture activities contributes to a eutrophic coastal environment. To understand how these conditions might affect sponge-microbial partnerships, transplantation experiments were conducted with the marine sponge Gelliodes obtusa. High-throughput sequencing of 16S rRNA revealed that the associated microbial community of the sponges did not exhibit significant shifts after six weeks of transplantation at a eutrophic fish farm site compared to sponges grown at a coral reef or a seagrass area. However, sponges at the fish farm revealed higher abundance of the amoA gene, suggesting that microbiome members are responsive to increased ammonium levels at the site. The stable association between G. obtusa and its microbiome indicates that the sponge holobiont can withstand eutrophication pressure from mariculture.
Collapse
Affiliation(s)
- Jake Ivan P Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines.
| |
Collapse
|
37
|
Kox MAR, Aalto SL, Penttilä T, Ettwig KF, Jetten MSM, van Kessel MAHJ. The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses. AMB Express 2018; 8:76. [PMID: 29730829 PMCID: PMC5936483 DOI: 10.1186/s13568-018-0607-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/28/2018] [Indexed: 11/10/2022] Open
Abstract
Biological nitrogen fixation is an important source of bioavailable nitrogen in Sphagnum dominated peatlands. Sphagnum mosses harbor a diverse microbiome including nitrogen-fixing and methane (CH4) oxidizing bacteria. The inhibitory effect of oxygen on microbial nitrogen fixation is documented for many bacteria. However, the role of nitrogen-fixing methanotrophs in nitrogen supply to Sphagnum peat mosses is not well explored. Here, we investigated the role of both oxygen and methane on nitrogen fixation in subarctic Sphagnum peat mosses. Five species of Sphagnum mosses were sampled from two mesotrophic and three oligotrophic sites within the Lakkasuo peatland in Orivesi, central Finland. Mosses were incubated under either ambient or low oxygen conditions in the presence or absence of methane. Stable isotope activity assays revealed considerable nitrogen-fixing and methane-assimilating rates at all sites (1.4 ± 0.2 µmol 15N-N2 g-1 DW day-1 and 12.0 ± 1.1 µmol 13C-CH4 g-1 DW day-1, respectively). Addition of methane did not stimulate incorporation of 15N-nitrogen into biomass, whereas oxygen depletion increased the activity of the nitrogen-fixing community. Analysis of the 16S rRNA genes at the bacterial community level showed a very diverse microbiome that was dominated by Alphaproteobacteria in all sites. Bona fide methane-oxidizing taxa were not very abundant (relative abundance less than 0.1%). Based on our results we conclude that methanotrophs did not contribute significantly to nitrogen fixation in the investigated peatlands.
Collapse
Affiliation(s)
- Martine A. R. Kox
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Sanni L. Aalto
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Timo Penttilä
- Natural Resources Institute Finland, PO Box 2, 00791 Helsinki, Finland
| | | | - Mike S. M. Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
38
|
Chiang E, Schmidt ML, Berry MA, Biddanda BA, Burtner A, Johengen TH, Palladino D, Denef VJ. Verrucomicrobia are prevalent in north-temperate freshwater lakes and display class-level preferences between lake habitats. PLoS One 2018; 13:e0195112. [PMID: 29590198 PMCID: PMC5874073 DOI: 10.1371/journal.pone.0195112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/17/2018] [Indexed: 01/10/2023] Open
Abstract
The bacterial phylum Verrucomicrobia was formally described two decades ago and originally believed to be a minor member of many ecosystems; however, it is now recognized as ubiquitous and abundant in both soil and aquatic systems. Nevertheless, knowledge of the drivers of its relative abundance and within-phylum habitat preferences remains sparse, especially in lake systems. Here, we documented the distribution of Verrucomicrobia in 12 inland lakes in Southeastern Michigan, a Laurentian Great Lake (Lake Michigan), and a freshwater estuary, which span a gradient in lake sizes, depths, residence times, and trophic states. A wide range of physical and geochemical parameters was covered by sampling seasonally from the surface and bottom of each lake, and by separating samples into particle-associated and free-living fractions. On average, Verrucomicrobia was the 4th most abundant phylum (range 1.7–41.7%). Fraction, season, station, and depth explained up to 70% of the variance in Verrucomicrobia community composition and preference for these habitats was phylogenetically conserved at the class-level. When relative abundance was linearly modeled against environmental data, Verrucomicrobia and non-Verrucomicrobia bacterial community composition correlated to similar quantitative environmental parameters, although there were lake system-dependent differences and > 55% of the variance remained unexplained. A majority of the phylum exhibited preference for the particle-associated fraction and two classes (Opitutae and Verrucomicrobiae) were identified to be more abundant during the spring season. This study highlights the high relative abundance of Verrucomicrobia in north temperate lake systems and expands insights into drivers of within-phylum habitat preferences of the Verrucomicrobia.
Collapse
Affiliation(s)
- Edna Chiang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Marian L. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michelle A. Berry
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Bopaiah A. Biddanda
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, United States of America
| | - Ashley Burtner
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Thomas H. Johengen
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Danna Palladino
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
39
|
Weisener C, Lee J, Chaganti SR, Reid T, Falk N, Drouillard K. Investigating sources and sinks of N 2O expression from freshwater microbial communities in urban watershed sediments. CHEMOSPHERE 2017; 188:697-705. [PMID: 28934707 DOI: 10.1016/j.chemosphere.2017.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Wastewater treatment plants (WWTPs) serve as point-source inputs for a variety of nutrients often dominated by nitrogenous compounds as a result of anthropogenic influence. These effluents can impact biogeochemical cycles in freshwater estuaries, influencing microbial communities in both the water and sediment compartments. To assess the impact of point source nutrients, a transect of sediment and pore water samples were collected from 4 locations in the Little River Sub-watershed including locations above and below the Little River Pollution Control Plant (LRPCP). Variation in chemistry and microbial community/gene expression revealed significant influences of the effluent discharge on the adjacent sediments. Phosphorus and sulfur showed high concentrations within plume sediments compared to the reference sediments while nitrate concentrations were low. Increased abundance of denitrifiers Dechloromonas, Dok59 and Thermomonas correlating with increased expression of nitrous-oxide reductase suggests a conversion of N2O to N2 within the LRPCP effluent sediments. This study provides valuable insight into the gene regulation of microbes involved in N metabolism (denitrification, nitrification, and nitrite reduction to ammonia) within the sediment compartment influenced by wastewater effluent.
Collapse
Affiliation(s)
- Christopher Weisener
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| | - Jumin Lee
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada; Earth Science Department, Western University, London, Ontario, Canada
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Thomas Reid
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Nick Falk
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Ken Drouillard
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
40
|
Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-Valera F. Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs. Front Microbiol 2017; 8:2131. [PMID: 29163419 PMCID: PMC5673642 DOI: 10.3389/fmicb.2017.02131] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
The phylum Verrucomicrobia contains freshwater representatives which remain poorly studied at the genomic, taxonomic, and ecological levels. In this work we present eighteen new reconstructed verrucomicrobial genomes from two freshwater reservoirs located close to each other (Tous and Amadorio, Spain). These metagenome-assembled genomes (MAGs) display a remarkable taxonomic diversity inside the phylum and comprise wide ranges of estimated genome sizes (from 1.8 to 6 Mb). Among all Verrucomicrobia studied we found some of the smallest genomes of the Spartobacteria and Opitutae classes described so far. Some of the Opitutae family MAGs were small, cosmopolitan, with a general heterotrophic metabolism with preference for carbohydrates, and capable of xylan, chitin, or cellulose degradation. Besides, we assembled large copiotroph genomes, which contain a higher number of transporters, polysaccharide degrading pathways and in general more strategies for the uptake of nutrients and carbohydrate-based metabolic pathways in comparison with the representatives with the smaller genomes. The diverse genomes revealed interesting features like green-light absorbing rhodopsins and a complete set of genes involved in nitrogen fixation. The large diversity in genome sizes and physiological properties emphasize the diversity of this clade in freshwaters enlarging even further the already broad eco-physiological range of these microbes.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
41
|
Mohammadi SS, Pol A, van Alen T, Jetten MSM, Op den Camp HJM. Ammonia Oxidation and Nitrite Reduction in the Verrucomicrobial Methanotroph Methylacidiphilum fumariolicum SolV. Front Microbiol 2017; 8:1901. [PMID: 29021790 PMCID: PMC5623727 DOI: 10.3389/fmicb.2017.01901] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/15/2017] [Indexed: 01/12/2023] Open
Abstract
The Solfatara volcano near Naples (Italy), the origin of the recently discovered verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV was shown to contain ammonium ([Formula: see text]) at concentrations ranging from 1 to 28 mM. Ammonia (NH3) can be converted to toxic hydroxylamine (NH2OH) by the particulate methane monooxygenase (pMMO), the first enzyme of the methane (CH4) oxidation pathway. Methanotrophs rapidly detoxify the intermediate NH2OH. Here, we show that strain SolV performs ammonium oxidation to nitrite at a rate of 48.2 nmol [Formula: see text].h-1.mg DW-1 under O2 limitation in a continuous culture grown on hydrogen (H2) as an electron donor. In addition, strain SolV carries out nitrite reduction at a rate of 74.4 nmol [Formula: see text].h-1.mg DW-1 under anoxic condition at pH 5-6. This range of pH was selected to minimize the chemical conversion of nitrite ([Formula: see text]) potentially occurring at more acidic pH values. Furthermore, at pH 6, we showed that the affinity constants (K s ) of the cells for NH3 vary from 5 to 270 μM in the batch incubations with 0.5-8% (v/v) CH4, respectively. Detailed kinetic analysis showed competitive substrate inhibition between CH4 and NH3. Using transcriptome analysis, we showed up-regulation of the gene encoding hydroxylamine dehydrogenase (haoA) cells grown on H2/[Formula: see text] compared to the cells grown on CH4/[Formula: see text] which do not have to cope with reactive N-compounds. The denitrifying genes nirk and norC showed high expression in H2/[Formula: see text] and CH4/[Formula: see text] grown cells compared to cells growing at μmax (with no limitation) while the norB gene showed downregulation in CH4/[Formula: see text] grown cells. These cells showed a strong upregulation of the genes in nitrate/nitrite assimilation. Our results demonstrate that strain SolV can perform ammonium oxidation producing nitrite. At high concentrations of ammonium this may results in toxic effects. However, at low oxygen concentrations strain SolV is able to reduce nitrite to N2O to cope with this toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Huub J. M. Op den Camp
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
42
|
Methylacidiphilum fumariolicum SolV, a thermoacidophilic 'Knallgas' methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME JOURNAL 2016; 11:945-958. [PMID: 27935590 PMCID: PMC5364354 DOI: 10.1038/ismej.2016.171] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/26/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022]
Abstract
Methanotrophs play a key role in balancing the atmospheric methane concentration. Recently, the microbial methanotrophic diversity was extended by the discovery of thermoacidophilic methanotrophs belonging to the Verrucomicrobia phylum in geothermal areas. Here we show that a representative of this new group, Methylacidiphilum fumariolicum SolV, is able to grow as a real 'Knallgas' bacterium on hydrogen/carbon dioxide, without addition of methane. The full genome of strain SolV revealed the presence of two hydrogen uptake hydrogenases genes, encoding an oxygen-sensitive (hup-type) and an oxygen-insensitive enzyme (hhy-type). The hhy-type hydrogenase was constitutively expressed and active and supported growth on hydrogen alone up to a growth rate of 0.03 h-1, at O2 concentrations below 1.5%. The oxygen-sensitive hup-type hydrogenase was expressed when oxygen was reduced to below 0.2%. This resulted in an increase of the growth rate to a maximum of 0.047 h-1, that is 60% of the rate on methane. The results indicate that under natural conditions where both hydrogen and methane might be limiting strain SolV may operate primarily as a methanotrophic 'Knallgas' bacterium. These findings argue for a revision of the role of hydrogen in methanotrophic ecosystems, especially in soil and related to consumption of atmospheric methane.
Collapse
|
43
|
Vekeman B, Speth D, Wille J, Cremers G, De Vos P, Op den Camp HJM, Heylen K. Genome Characteristics of Two Novel Type I Methanotrophs Enriched from North Sea Sediments Containing Exclusively a Lanthanide-Dependent XoxF5-Type Methanol Dehydrogenase. MICROBIAL ECOLOGY 2016; 72:503-509. [PMID: 27457652 DOI: 10.1007/s00248-016-0808-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Microbial methane oxidizers play a crucial role in the oxidation of methane in marine ecosystems, as such preventing the escape of excessive methane to the atmosphere. Despite the important role of methanotrophs in marine ecosystems, only a limited number of isolates are described, with only four genomes available. Here, we report on two genomes of gammaproteobacterial methanotroph cultures, affiliated with the deep-sea cluster 2, obtained from North Sea sediment. Initial enrichments using methane as sole source of carbon and energy and mimicking the in situ conditions followed by serial subcultivations and multiple extinction culturing events over a period of 3 years resulted in a highly enriched culture. The draft genomes of the methane oxidizer in both cultures showed the presence of genes typically found in type I methanotrophs, including genes encoding particulate methane monooxygenase (pmoCAB), genes for tetrahydromethanopterin (H4MPT)- and tetrahydrofolate (H4F)-dependent C1-transfer pathways, and genes of the ribulose monophosphate (RuMP) pathway. The most distinctive feature, when compared to other available gammaproteobacterial genomes, is the absence of a calcium-dependent methanol dehydrogenase. Both genomes reported here only have a xoxF gene encoding a lanthanide-dependent XoxF5-type methanol dehydrogenase. Thus, these genomes offer novel insight in the genomic landscape of uncultured diversity of marine methanotrophs.
Collapse
Affiliation(s)
- Bram Vekeman
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Ghent, Belgium.
| | - Daan Speth
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jasper Wille
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Geert Cremers
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul De Vos
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kim Heylen
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
44
|
Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems. Appl Environ Microbiol 2016. [PMID: 27129964 DOI: 10.1128/aem.00902-16/suppl_file/zam999117249so1.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
UNLABELLED Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e.g., Nitrospira) may further alleviate concerns regarding the use of alternative feeds in RAS operations. IMPORTANCE The growth of the aquaculture industry has outpaced terrestrial livestock production and wild-capture fisheries for over 2 decades, currently producing nearly 50% of all seafood consumed globally. As wild-capture fisheries continue to decline, aquaculture's role in food production will grow, and it will produce an estimated 62% of all seafood consumed in 2020. A significant environmental concern of the industry is the reliance on fishmeal as a primary feed ingredient, as its production still requires harvest from wild fisheries. Our study adds to the growing body of literature on the feasibility of alternative, fishmeal-free diets. Specifically, we asked how fishmeal-free diets influence microbial communities in recirculating salmon farms. Unlike previous studies, we extended our investigation beyond the microbiome of the fish itself and asked how alterative diets influence microbial communities in water and critical biofilter habitats. We found no evidence for adverse effects of alternative diets on any microbial habitat within the farm.
Collapse
|
45
|
Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems. Appl Environ Microbiol 2016; 82:4470-4481. [PMID: 27129964 PMCID: PMC4984271 DOI: 10.1128/aem.00902-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/22/2016] [Indexed: 12/31/2022] Open
Abstract
Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e.g., Nitrospira) may further alleviate concerns regarding the use of alternative feeds in RAS operations. IMPORTANCE The growth of the aquaculture industry has outpaced terrestrial livestock production and wild-capture fisheries for over 2 decades, currently producing nearly 50% of all seafood consumed globally. As wild-capture fisheries continue to decline, aquaculture's role in food production will grow, and it will produce an estimated 62% of all seafood consumed in 2020. A significant environmental concern of the industry is the reliance on fishmeal as a primary feed ingredient, as its production still requires harvest from wild fisheries. Our study adds to the growing body of literature on the feasibility of alternative, fishmeal-free diets. Specifically, we asked how fishmeal-free diets influence microbial communities in recirculating salmon farms. Unlike previous studies, we extended our investigation beyond the microbiome of the fish itself and asked how alterative diets influence microbial communities in water and critical biofilter habitats. We found no evidence for adverse effects of alternative diets on any microbial habitat within the farm.
Collapse
|
46
|
Cheung S, Xia X, Guo C, Liu H. Diazotroph community structure in the deep oxygen minimum zone of the Costa Rica Dome. JOURNAL OF PLANKTON RESEARCH 2016; 38:380-391. [PMID: 27275037 PMCID: PMC4889993 DOI: 10.1093/plankt/fbw003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 01/11/2016] [Indexed: 05/10/2023]
Abstract
Oxygen minimum zones (OMZs), characterized by depleted dissolved oxygen concentration in the intermediate depth of the water column, are predicted to expand under the influence of global warming. Recent studies in the Eastern Tropical South Pacific Ocean and Arabian Sea have reported that heterotrophic nitrogen fixation is active in the OMZs. In this study, we investigated the community structure of diazotrophs in the OMZ of the Costa Rica Dome (CRD) upwelling region in the Eastern Tropical North Pacific Ocean, using 454-pyrosequencing of nifH gene amplicons. Comparing diazotroph assemblages in different depth strata of the OMZ (200-1000 m in depth), we found a unique diazotroph community in the OMZ core, which was mainly dominated by methanotroph-like diazotrophs, suggesting a potential coupling of nitrogen cycle and methane assimilation. In addition, some OTUs revealed in this study, especially those belonging to the large sub-cluster Vibrio diazotrophicus, were reported to be abundant and expressing the nifH gene in other OMZs. Our results suggest that the unique hydrographic conditions in OMZs may support similar assemblages of diazotrophs, and heterotrophic nitrogen fixation could also be occurring in our studied region. Our study provides the first insight into the composition and distribution of putative diazotrophs in the CRD OMZ.
Collapse
|
47
|
Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, Op den Camp HJ. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genomics 2014; 15:914. [PMID: 25331649 PMCID: PMC4210602 DOI: 10.1186/1471-2164-15-914] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023] Open
Abstract
Background Aerobic methanotrophs can grow in hostile volcanic environments and use methane as their sole source of energy. The discovery of three verrucomicrobial Methylacidiphilum strains has revealed diverse metabolic pathways used by these methanotrophs, including mechanisms through which methane is oxidized. The basis of a complete understanding of these processes and of how these bacteria evolved and are able to thrive in such extreme environments partially resides in the complete characterization of their genome and its architecture. Results In this study, we present the complete genome sequence of Methylacidiphilum fumariolicum SolV, obtained using Pacific Biosciences single-molecule real-time (SMRT) sequencing technology. The genome assembles to a single 2.5 Mbp chromosome with an average GC content of 41.5%. The genome contains 2,741 annotated genes and 314 functional subsystems including all key metabolic pathways that are associated with Methylacidiphilum strains, including the CBB pathway for CO2 fixation. However, it does not encode the serine cycle and ribulose monophosphate pathways for carbon fixation. Phylogenetic analysis of the particulate methane mono-oxygenase operon separates the Methylacidiphilum strains from other verrucomicrobial methanotrophs. RNA-Seq analysis of cell cultures growing in three different conditions revealed the deregulation of two out of three pmoCAB operons. In addition, genes involved in nitrogen fixation were upregulated in cell cultures growing in nitrogen fixing conditions, indicating the presence of active nitrogenase. Characterization of the global methylation state of M. fumariolicum SolV revealed methylation of adenines and cytosines mainly in the coding regions of the genome. Methylation of adenines was predominantly associated with 5′-m6ACN4GT-3′ and 5′-CCm6AN5CTC-3′ methyltransferase recognition motifs whereas methylated cytosines were not associated with any specific motif. Conclusions Our findings provide novel insights into the global methylation state of verrucomicrobial methanotroph M. fumariolicum SolV. However, partial conservation of methyltransferases between M. fumariolicum SolV and M. infernorum V4 indicates potential differences in the global methylation state of Methylacidiphilum strains. Unravelling the M. fumariolicum SolV genome and its epigenetic regulation allow for robust characterization of biological processes that are involved in oxidizing methane. In turn, they offer a better understanding of the evolution, the underlying physiological and ecological properties of SolV and other Methylacidiphilum strains. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-914) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 2014; 80:6782-91. [PMID: 25172849 DOI: 10.1128/aem.01838-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methanotrophic Verrucomicrobia have been found in geothermal environments characterized by high temperatures and low pH values. However, it has recently been hypothesized that methanotrophic Verrucomicrobia could be present under a broader range of environmental conditions. Here we describe the isolation and characterization of three new species of mesophilic acidophilic verrucomicrobial methanotrophs from a volcanic soil in Italy. The three new species showed 97% to 98% 16S rRNA gene identity to each other but were related only distantly (89% to 90% on the 16S rRNA level) to the thermophilic genus Methylacidiphilum. We propose the new genus Methylacidimicrobium, including the novel species Methylacidimicrobium fagopyrum, Methylacidimicrobium tartarophylax, and Methylacidimicrobium cyclopophantes. These mesophilic Methylacidimicrobium spp. were more acid tolerant than their thermophilic relatives; the most tolerant species, M. tartarophylax, still grew at pH 0.5. The variation in growth temperature optima (35 to 44°C) and maximum growth rates (µmax; 0.013 to 0.040 h(-1)) suggested that all species were adapted to a specific niche within the geothermal environment. All three species grew autotrophically using the Calvin cycle. The cells of all species contained glycogen particles and electron-dense particles in their cytoplasm as visualized by electron microscopy. In addition, the cells of one of the species (M. fagopyrum) contained intracytoplasmic membrane stacks. The discovery of these three new species and their growth characteristics expands the known diversity of verrucomicrobial methanotrophs and shows that they are present in many more ecosystems than previously assumed.
Collapse
|
49
|
Hoefman S, van der Ha D, Boon N, Vandamme P, De Vos P, Heylen K. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiol 2014; 14:83. [PMID: 24708438 PMCID: PMC3997834 DOI: 10.1186/1471-2180-14-83] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. RESULTS We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. CONCLUSIONS Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning.
Collapse
Affiliation(s)
- Sven Hoefman
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - David van der Ha
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Paul De Vos
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- BCCM/LMG Bacteria Collection, Ghent, Belgium
| | - Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Dam B, Dam S, Blom J, Liesack W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. PLoS One 2013; 8:e74767. [PMID: 24130670 PMCID: PMC3794950 DOI: 10.1371/journal.pone.0074767] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/28/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Methylocystis sp. strain SC2 can adapt to a wide range of methane concentrations. This is due to the presence of two isozymes of particulate methane monooxygenase exhibiting different methane oxidation kinetics. To gain insight into the underlying genetic information, its genome was sequenced and found to comprise a 3.77 Mb chromosome and two large plasmids. PRINCIPAL FINDINGS We report important features of the strain SC2 genome. Its sequence is compared with those of seven other methanotroph genomes, comprising members of the Alphaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. While the pan-genome of all eight methanotroph genomes totals 19,358 CDS, only 154 CDS are shared. The number of core genes increased with phylogenetic relatedness: 328 CDS for proteobacterial methanotrophs and 1,853 CDS for the three alphaproteobacterial Methylocystaceae members, Methylocystis sp. strain SC2 and strain Rockwell, and Methylosinus trichosporium OB3b. The comparative study was coupled with physiological experiments to verify that strain SC2 has diverse nitrogen metabolism capabilities. In correspondence to a full complement of 34 genes involved in N2 fixation, strain SC2 was found to grow with atmospheric N2 as the sole nitrogen source, preferably at low oxygen concentrations. Denitrification-mediated accumulation of 0.7 nmol (30)N2/hr/mg dry weight of cells under anoxic conditions was detected by tracer analysis. N2 production is related to the activities of plasmid-borne nitric oxide and nitrous oxide reductases. CONCLUSIONS/PERSPECTIVES Presence of a complete denitrification pathway in strain SC2, including the plasmid-encoded nosRZDFYX operon, is unique among known methanotrophs. However, the exact ecophysiological role of this pathway still needs to be elucidated. Detoxification of toxic nitrogen compounds and energy conservation under oxygen-limiting conditions are among the possible roles. Relevant features that may stimulate further research are, for example, absence of CRISPR/Cas systems in strain SC2, high number of iron acquisition systems in strain OB3b, and large number of transposases in strain Rockwell.
Collapse
Affiliation(s)
- Bomba Dam
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Somasri Dam
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Jochen Blom
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|