1
|
Pospíšil J, Schwarz M, Ziková A, Vítovská D, Hradilová M, Kolář M, Křenková A, Hubálek M, Krásný L, Vohradský J. σ E of Streptomyces coelicolor can function both as a direct activator or repressor of transcription. Commun Biol 2024; 7:46. [PMID: 38184746 PMCID: PMC10771440 DOI: 10.1038/s42003-023-05716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
σ factors are considered as positive regulators of gene expression. Here we reveal the opposite, inhibitory role of these proteins. We used a combination of molecular biology methods and computational modeling to analyze the regulatory activity of the extracytoplasmic σE factor from Streptomyces coelicolor. The direct activator/repressor function of σE was then explored by experimental analysis of selected promoter regions in vivo. Additionally, the σE interactome was defined. Taken together, the results characterize σE, its regulation, regulon, and suggest its direct inhibitory function (as a repressor) in gene expression, a phenomenon that may be common also to other σ factors and organisms.
Collapse
Affiliation(s)
- Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alice Ziková
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 542/2, 160 00, Prague 6, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 542/2, 160 00, Prague 6, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jiří Vohradský
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
2
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
3
|
A Second Gamma-Glutamylpolyamine Synthetase, GlnA2, Is Involved in Polyamine Catabolism in Streptomyces coelicolor. Int J Mol Sci 2022; 23:ijms23073752. [PMID: 35409114 PMCID: PMC8998196 DOI: 10.3390/ijms23073752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Streptomyces coelicolor is a soil bacterium living in a habitat with very changeable nutrient availability. This organism possesses a complex nitrogen metabolism and is able to utilize the polyamines putrescine, cadaverine, spermidine, and spermine and the monoamine ethanolamine. We demonstrated that GlnA2 (SCO2241) facilitates S. coelicolor to survive under high toxic polyamine concentrations. GlnA2 is a gamma-glutamylpolyamine synthetase, an enzyme catalyzing the first step in polyamine catabolism. The role of GlnA2 was confirmed in phenotypical studies with a glnA2 deletion mutant as well as in transcriptional and biochemical analyses. Among all GS-like enzymes in S. coelicolor, GlnA2 possesses the highest specificity towards short-chain polyamines (putrescine and cadaverine), while its functional homolog GlnA3 (SCO6962) prefers long-chain polyamines (spermidine and spermine) and GlnA4 (SCO1613) accepts only monoamines. The genome-wide RNAseq analysis in the presence of the polyamines putrescine, cadaverine, spermidine, or spermine revealed indication of the occurrence of different routes for polyamine catabolism in S. coelicolor involving GlnA2 and GlnA3. Furthermore, GlnA2 and GlnA3 are differently regulated. From our results, we can propose a complemented model of polyamine catabolism in S. coelicolor, which involves the gamma-glutamylation pathway as well as other alternative utilization pathways.
Collapse
|
4
|
Oh GS, Yoo JS, Park JH, Roe JH. Activity modulation of anti-sigma factor via cysteine alkylation in Actinobacteria. Mol Microbiol 2021; 117:539-550. [PMID: 34927290 DOI: 10.1111/mmi.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
σR (SigR) is an alternative sigma factor that enables gene expression in Streptomyces coelicolor to cope with thiol oxidation and antibiotic stresses. Its activity is repressed by a zinc-containing anti-sigma (ZAS) factor RsrA that senses thiol oxidants and electrophiles. Inactivation of RsrA by disulfide formation has been well studied. Here we investigated another pathway of RsrA inactivation by electrophiles. Mass spectrometry revealed alkylation of RsrA in vivo by N-ethylmaleimide (NEM) at C61 and C62 located in the C-terminal loop. Substitution mutation (C61S/C62S) in RsrA decreased the induction of σR target genes by electrophiles and made cells more sensitive to electrophiles. In contrast to stable protein of oxidized RsrA, alkylated RsrA is subjected to degradation partly mediated by ClpP proteases. RsrA2, a redox-sensitive homolog of RsrA in S. coelicolor lacking cysteine in the terminal loop, did not respond to electrophiles. However, redox-sensitive RsrA homologs in other Actinobacteria also harboring terminal loop cysteines all responded to electrophiles. These results indicate that the activity of RsrA can be modulated via cysteine alkylation, apart from disulfide formation of zinc-coordinating cysteines. This pathway expands the spectrum of signals that the σR -RsrA system can sense and reveals another intricate regulatory layer for optimal survival of Actinobacteria.
Collapse
Affiliation(s)
- Gyeong-Seok Oh
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Ji-Sun Yoo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Joo-Hong Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Jung-Hye Roe
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Szczepanowski P, Noszka M, Żyła-Uklejewicz D, Pikuła F, Nowaczyk-Cieszewska M, Krężel A, Stingl K, Zawilak-Pawlik A. HP1021 is a redox switch protein identified in Helicobacter pylori. Nucleic Acids Res 2021; 49:6863-6879. [PMID: 34139017 PMCID: PMC8266642 DOI: 10.1093/nar/gkab440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a gram-negative, microaerophilic, pathogenic bacterium and a widespread colonizer of humans. H. pylori has developed mechanisms that enable it to overcome the harsh environment of the human stomach, including reactive oxygen species (ROS). Interestingly, up to now no typical regulator dedicated to the oxidative-stress response has been discovered. In this work, we reveal that the inhibitor of replication initiation HP1021 functions as a redox switch protein in H. pylori and plays an important role in response to oxidative stress of the gastric pathogen. Each of the two predicted HP1021 domains contains three cysteine residues. We show that the cysteine residues of HP1021 are sensitive to oxidation both in vitro and in vivo, and we demonstrate that HP1021 DNA-binding activity to oriC depends on the redox state of the protein. Moreover, Zn2+ modulates HP1021 affinity towards oriC template DNA. Transcription analysis of selected H. pylori genes by RT-qPCR indicated that HP1021 is directly involved in the oxygen-dependent control of H. pylori fecA3 and gluP genes, which are implicated in response to oxidative stress. In conclusion, HP1021 is a redox switch protein and could be a target for H. pylori control strategies.
Collapse
Affiliation(s)
- Piotr Szczepanowski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Dorota Żyła-Uklejewicz
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Fabian Pikuła
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Malgorzata Nowaczyk-Cieszewska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin 12277, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| |
Collapse
|
6
|
Wang Q, Lu X, Yang H, Yan H, Wen Y. Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. Microb Biotechnol 2021; 15:561-576. [PMID: 33951287 PMCID: PMC8867992 DOI: 10.1111/1751-7915.13813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
The redox‐sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol‐oxidative stress response in industrially important species Streptomycesavermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18‐nt SoxR‐binding site, 5′‐VSYCNVVMHNKVKDGMGB‐3′, was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol‐oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaorui Lu
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haixin Yang
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Yan
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Bednarz B, Millan-Oropeza A, Kotowska M, Świat M, Quispe Haro JJ, Henry C, Pawlik K. Coelimycin Synthesis Activatory Proteins Are Key Regulators of Specialized Metabolism and Precursor Flux in Streptomyces coelicolor A3(2). Front Microbiol 2021; 12:616050. [PMID: 33897632 PMCID: PMC8062868 DOI: 10.3389/fmicb.2021.616050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
Many microbial specialized metabolites are industrially relevant agents but also serve as signaling molecules in intra-species and even inter-kingdom interactions. In the antibiotic-producing Streptomyces, members of the SARP (Streptomyces antibiotic regulatory proteins) family of regulators are often encoded within biosynthetic gene clusters and serve as their direct activators. Coelimycin is the earliest, colored specialized metabolite synthesized in the life cycle of the model organism Streptomyces coelicolor A3(2). Deletion of its two SARP activators cpkO and cpkN abolished coelimycin synthesis and resulted in dramatic changes in the production of the later, stationary-phase antibiotics. The underlying mechanisms of these phenotypes were deregulation of precursor flux and quorum sensing, as shown by label-free, bottom-up shotgun proteomics. Detailed profiling of promoter activities demonstrated that CpkO is the upper-level cluster activator that induces CpkN, while CpkN activates type II thioesterase ScoT, necessary for coelimycin synthesis. What is more, we show that cpkN is regulated by quorum sensing gamma-butyrolactone receptor ScbR.
Collapse
Affiliation(s)
- Bartosz Bednarz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aaron Millan-Oropeza
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Magdalena Kotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Świat
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Juan J Quispe Haro
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Krzysztof Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Nasreen M, Fletcher A, Hosmer J, Zhong Q, Essilfie AT, McEwan AG, Kappler U. The Alternative Sigma Factor RpoE2 Is Involved in the Stress Response to Hypochlorite and in vivo Survival of Haemophilus influenzae. Front Microbiol 2021; 12:637213. [PMID: 33643271 PMCID: PMC7907618 DOI: 10.3389/fmicb.2021.637213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors underpin the ability of bacteria to adapt to changing environmental conditions, a process that is particularly relevant in human pathogens that inhabit niches where human immune cells contribute to high levels of extracellular stress. Here, we have characterized the previously unstudied RpoE2 ECF sigma factor from the human respiratory pathogen H. influenzae (Hi) and its role in hypochlorite-induced stress. Exposure of H. influenzae to oxidative stress (HOCl, H2O2) increased rpoE2 gene expression, and the activity of RpoE2 was controlled by a cytoplasmic 67-aa anti-sigma factor, HrsE. RpoE2 regulated the expression of the periplasmic MsrAB peptide methionine sulfoxide reductase that, in H. influenzae, is required for HOCl resistance, thus linking RpoE2 to HOCl stress. Interestingly, a HiΔrpoE2 strain had wild-type levels of resistance to oxidative stress in vitro, but HiΔrpoE2 survival was reduced 26-fold in a mouse model of lung infection, demonstrating the relevance of this sigma factor for H. influenzae pathogenesis. The HiRpoE2 system has some similarity to the ECF sigma factors described in Streptomyces and Neisseria sp. that also control the expression of msr genes. However, HiRpoE2 regulation extended to genes encoding other periplasmic damage repair proteins, an operon containing a DoxX-like protein, and also included selected OxyR-controlled genes. Based on our results, we propose that the highly conserved HiRpoE2 sigma factor is a key regulator of H. influenzae responses to oxidative damage in the cell envelope region that controls a variety of target genes required for survival in the host.
Collapse
Affiliation(s)
- Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Aidan Fletcher
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Jennifer Hosmer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | - Alastair G McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
9
|
Dou Y, Rutanhira H, Schormann N, Deivanayagam C, Fletcher HM. PG1659 functions as anti-sigma factor to extracytoplasmic function sigma factor RpoE in Porphyromonas gingivalis W83. Mol Oral Microbiol 2021; 36:80-91. [PMID: 33377315 DOI: 10.1111/omi.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Anti-sigma factors play a critical role in regulating the expression of sigma factors in response to environmental stress signals. PG1659 is cotranscribed with an upstream gene PG1660 (rpoE), which encodes for a sigma factor that plays an important role in oxidative stress resistance and the virulence regulatory network of P. gingivalis. PG1659, which is annotated as a hypothetical gene, is evaluated in this study. PG1659, composed of 130 amino acids, is predicted to be transmembrane protein with a single calcium (Ca2+ ) binding site. In P. gingivalis FLL358 (ΔPG1659::ermF), the rpoE gene was highly upregulated compared to the wild-type W83 strain. RpoE-induced genes were also upregulated in the PG1659-defective isogenic mutant. Both protein-protein pull-down and bacterial two-hybrid assays revealed that the PG1659 protein could interact with/bind RpoE. The N-terminal domain of PG1659, representing the cytoplasmic fragment of the protein, is critical for interaction with RpoE. In the presence of PG1659, the initiation of transcription by the RpoE sigma factor was inhibited. Taken together, our data suggest that PG1659 is an anti-sigma factor which plays an important regulatory role in the modulation of the sigma factor RpoE in P. gingivalis.
Collapse
Affiliation(s)
- Yuetan Dou
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hiel Rutanhira
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Norbert Schormann
- Department of Biochemistry and Molecular Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hansel M Fletcher
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
10
|
Millan-Oropeza A, Henry C, Lejeune C, David M, Virolle MJ. Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Sci Rep 2020; 10:8492. [PMID: 32444655 PMCID: PMC7244524 DOI: 10.1038/s41598-020-65087-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Most currently used antibiotics originate from Streptomycetes and phosphate limitation is an important trigger of their biosynthesis. Understanding the molecular processes underpinning such regulation is of crucial importance to exploit the great metabolic diversity of these bacteria and get a better understanding of the role of these molecules in the physiology of the producing bacteria. To contribute to this field, a comparative proteomic analysis of two closely related model strains, Streptomyces lividans and Streptomyces coelicolor was carried out. These strains possess identical biosynthetic pathways directing the synthesis of three well-characterized antibiotics (CDA, RED and ACT) but only S. coelicolor expresses them at a high level. Previous studies established that the antibiotic producer, S. coelicolor, is characterized by an oxidative metabolism and a reduced triacylglycerol content compared to the none producer, S. lividans, characterized by a glycolytic metabolism. Our proteomic data support these findings and reveal that these drastically different metabolic features could, at least in part, due to the weaker abundance of proteins of the two component system PhoR/PhoP in S. coelicolor compared to S. lividans. In condition of phosphate limitation, PhoR/PhoP is known to control positively and negatively, respectively, phosphate and nitrogen assimilation and our study revealed that it might also control the expression of some genes of central carbon metabolism. The tuning down of the regulatory role of PhoR/PhoP in S. coelicolor is thus expected to be correlated with low and high phosphate and nitrogen availability, respectively and with changes in central carbon metabolic features. These changes are likely to be responsible for the observed differences between S. coelicolor and S. lividans concerning energetic metabolism, triacylglycerol biosynthesis and antibiotic production. Furthermore, a novel view of the contribution of the bio-active molecules produced in this context, to the regulation of the energetic metabolism of the producing bacteria, is proposed and discussed.
Collapse
Affiliation(s)
- Aaron Millan-Oropeza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Lejeune
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Michelle David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie-Joelle Virolle
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Huang X, Wang P, Li T, Tian X, Guo W, Xu B, Huang G, Cai D, Zhou F, Zhang H, Lei H. Self-Assemblies Based on Traditional Medicine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2020; 12:227-237. [PMID: 31829617 DOI: 10.1021/acsami.9b17722] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
S. aureus is resistant to various first-line antibiotics, and seeking multifarious strategies aimed at effective control of antibiotic-resistant behavior is urgently needed. Here, we report a two-component directed self-assembly mode: the phytochemicals berberine and cinnamic acid can directly self-assemble into nanoparticles (NPs) displaying good bacteriostastic activity. Compared with several first-line antibiotics, the obtained nanostructures have a better inhibitory effect on multidrug-resistant S. aureus (MRSA) and stronger ability for biofilm removal. These qualities are attributed to the fact that organic assemblies can first spontaneously adhere to the surface of the bacteria, infiltrate into the cell, and then lead to converging attack against MRSA; thereafter, multipath bactericidal mechanisms of NPs on MRSA are found by both transcriptomic analysis and quantitative Polymerase Chain Reaction analysis. Moreover, when combined with spectral data and single crystal X-ray diffraction, the NPs' self-assembly mechanism governed by hydrogen bonds and π-π stacking interactions is clearly elucidated. These non-covalent interactions induce the NPs' formation of butterfly-like one-dimensional self-assembled units and finally layered three-dimensional spatial configuration. In addition, biocompatibility tests show that the NPs are nonhemolytic with little toxicity in vitro and in vivo. This directed self-assembly mode can offer a new perspective toward the design of biocompatible antimicrobial nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Xuemei Huang
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Penglong Wang
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Tong Li
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Xuehao Tian
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Wenbo Guo
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Bing Xu
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Guangrui Huang
- School of Life Science , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Desheng Cai
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Fei Zhou
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Hao Zhang
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Haimin Lei
- School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| |
Collapse
|
12
|
Distinct Roles of Shewanella oneidensis Thioredoxin in Regulation of Cellular Responses to Hydrogen and Organic Peroxides. Appl Environ Microbiol 2019; 85:AEM.01700-19. [PMID: 31444207 DOI: 10.1128/aem.01700-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The thioredoxin (Trx) and glutaredoxin (Grx) antioxidant systems are deeply involved in bacterial response to oxidative stress, but to date, we know surprisingly little about the roles of these systems in response to reactive oxygen species (ROS) other than hydrogen peroxide (H2O2). In this study, we used Shewanella oneidensis, an environmental bacterium, as a research model to investigate the roles of Trx and Grx in oxidative stress response because it has functionally intertwined ROS responsive regulators OxyR and OhrR. We found that Trx1 is the major thiol/disulfide redox system and that in its absence a Grx system becomes essential under normal conditions. Although overshadowed by Trx1 in the wild type, Trx2 can fully replace Trx1 in physiology when overproduced. Trx1 is required for OxyR to function as a repressor but, more importantly, plays a critical role in the cellular response to organic peroxide (OP) by mediating the redox status of OhrR but not OP scavenger OhrA. While none of the trx and grx genes are OxyR dependent, trxA and trxC are affected by OhrR indirectly. Additional data suggest that depletion of glutathione is likely the cue to trigger induced expression of trxA and trxC These findings underscore the particular importance of Trx in the bacterial OP stress response.IMPORTANCE The Trx and Grx systems are deeply involved in bacterial responses to H2O2-induced oxidative stress. However, little is known about their roles in response to other ROS, such as organic peroxides (OPs). In this study, we used S. oneidensis as a research model to investigate the interplay between Trx/Grx and OxyR/OhrR. We show that Trxs mediate the redox status of transcriptional OP-responding regulator OhrR. Although none of the trx or grx genes are directly controlled by OxyR or OhrR, expression of trxA and trxC is induced by tert-butyl hydroperoxide (t-BHP). We further show that the trxA and trxC genes respond to effects of glutathione (GSH) depletion rather than oxidation. These findings underscore the particular importance of Trx in the bacterial OP stress response.
Collapse
|
13
|
Moody S, Bull J, Dudley E, Loveridge E. The impact of combinatorial stress on the growth dynamics and metabolome of
Burkholderia mesoacidophila
demonstrates the complexity of tolerance mechanisms. J Appl Microbiol 2019; 127:1521-1531. [DOI: 10.1111/jam.14404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- S.C. Moody
- College of Science Swansea University Swansea UK
- School of Sport, Health and Social Sciences Solent University Southampton UK
| | - J.C. Bull
- College of Science Swansea University Swansea UK
| | - E. Dudley
- College of Medicine Swansea University Swansea UK
| | | |
Collapse
|
14
|
Park JH, Lee JH, Roe JH. SigR, a hub of multilayered regulation of redox and antibiotic stress responses. Mol Microbiol 2019; 112:420-431. [PMID: 31269533 DOI: 10.1111/mmi.14341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 02/01/2023]
Abstract
Signal-specific activation of alternative sigma factors redirects RNA polymerase to induce transcription of distinct sets of genes conferring protection against the damage the signal and the related stresses incur. In Streptomyces coelicolor, σR (SigR), a member of ECF12 subfamily of Group IV sigma factors, responds to thiol-perturbing signals such as oxidants and electrophiles, as well as to translation-blocking antibiotics. Oxidants and electrophiles interact with and inactivate the zinc-containing anti-sigma factor, RsrA, via disulfide bond formation or alkylation of reactive cysteines, subsequently releasing σR for target gene induction. Translation-blocking antibiotics induce the synthesis of σR , via the WhiB-like transcription factor, WblC/WhiB7. Signal transduction via RsrA produces a dramatic transient response that involves positive feedback to produce more SigR as an unstable isoform σ R ' and negative feedbacks to degrade σ R ' , and reduce oxidized RsrA that subsequently sequester σR and σ R ' . Antibiotic stress brings about a prolonged response by increasing stable σR levels. The third negative feedback, which occurs via IF3, lowers the translation efficiency of the sigRp1 transcript that utilizes a non-canonical start codon. σR is a global regulator that directly activates > 100 transcription units in S. coelicolor, including genes for thiol homeostasis, protein quality control, sulfur metabolism, ribosome modulation and DNA repair. Close homologues in Actinobacteria, such as σH in Mycobacteria and Corynebacteria, show high conservation of the signal transduction pathways and target genes, thus reflecting the robustness of this type of regulation in response to redox and antibiotic stresses.
Collapse
Affiliation(s)
- Joo-Hong Park
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Ju-Hyung Lee
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jung-Hye Roe
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Bucca G, Pothi R, Hesketh A, Möller-Levet C, Hodgson DA, Laing EE, Stewart GR, Smith CP. Translational control plays an important role in the adaptive heat-shock response of Streptomyces coelicolor. Nucleic Acids Res 2019; 46:5692-5703. [PMID: 29746664 PMCID: PMC6009599 DOI: 10.1093/nar/gky335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/18/2018] [Indexed: 12/29/2022] Open
Abstract
Stress-induced adaptations require multiple levels of regulation in all organisms to repair cellular damage. In the present study we evaluated the genome-wide transcriptional and translational changes following heat stress exposure in the soil-dwelling model actinomycete bacterium, Streptomyces coelicolor. The combined analysis revealed an unprecedented level of translational control of gene expression, deduced through polysome profiling, in addition to transcriptional changes. Our data show little correlation between the transcriptome and ‘translatome’; while an obvious downward trend in genome wide transcription was observed, polysome associated transcripts following heat-shock showed an opposite upward trend. A handful of key protein players, including the major molecular chaperones and proteases were highly induced at both the transcriptional and translational level following heat-shock, a phenomenon known as ‘potentiation’. Many other transcripts encoding cold-shock proteins, ABC-transporter systems, multiple transcription factors were more highly polysome-associated following heat stress; interestingly, these protein families were not induced at the transcriptional level and therefore were not previously identified as part of the stress response. Thus, stress coping mechanisms at the level of gene expression in this bacterium go well beyond the induction of a relatively small number of molecular chaperones and proteases in order to ensure cellular survival at non-physiological temperatures.
Collapse
Affiliation(s)
- Giselda Bucca
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - Radhika Pothi
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Andrew Hesketh
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - Carla Möller-Levet
- Bioinformatics facility, Faculty of Health and Medical Sciences, University of Surrey, UK
| | | | - Emma E Laing
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Graham R Stewart
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Colin P Smith
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| |
Collapse
|
16
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
17
|
Modrák M, Vohradský J. Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data. BMC Bioinformatics 2018; 19:137. [PMID: 29653518 PMCID: PMC5899412 DOI: 10.1186/s12859-018-2138-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. RESULTS We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. CONCLUSIONS Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.
Collapse
Affiliation(s)
- Martin Modrák
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
| | - Jiří Vohradský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| |
Collapse
|
18
|
Ishizuka M, Imai Y, Mukai K, Shimono K, Hamauzu R, Ochi K, Hosaka T. A possible mechanism for lincomycin induction of secondary metabolism in Streptomyces coelicolor A3(2). Antonie van Leeuwenhoek 2018; 111:705-716. [PMID: 29372424 DOI: 10.1007/s10482-018-1021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
Lincomycin forms cross-links within the peptidyl transferase loop region of the 23S ribosomal RNA (rRNA) of the 50S subunit of the bacterial ribosome, which is the site of peptide bond formation, thereby inhibiting protein synthesis. We have previously reported that lincomycin at concentrations below the minimum inhibitory concentration potentiates the production of secondary metabolites in actinomycete strains, suggesting that activation of these strains by utilizing the dose-dependent response of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. Here, we aimed to elucidate the fundamental mechanisms underlying lincomycin induction of secondary metabolism in actinomycetes. In the present study, the dose-dependent response of lincomycin on gene expression of the model actinomycete Streptomyces coelicolor A3(2) and possible relationships to secondary metabolism were investigated. RNA sequencing analysis indicated that lincomycin produced enormous changes in gene expression profiles. Moreover, reverse transcription PCR and/or comparative proteome analysis revealed that in S. coelicolor A3(2), lincomycin, which was used at concentrations for markedly increased blue-pigmented antibiotic actinorhodin production, rapidly enhanced expression of the gene encoding the lincomycin-efflux ABC transporter, the 23S rRNA methyltransferase, and the ribosome-splitting factor to boost the intrinsic lincomycin resistance mechanisms and to reconstruct the probably stalled 70S ribosomes with lincomycin; and in contrast temporarily but dramatically reduced mRNA levels of housekeeping genes, such as those encoding FoF1 ATP synthase, RNA polymerase, ribosomal proteins, and transcription and translation factors, with an increase in intracellular NTPs. A possible mechanism for lincomycin induction of secondary metabolism in S. coelicolor A3(2) is discussed on the basis of these results.
Collapse
Affiliation(s)
- Misaki Ishizuka
- Department of Interdisciplinary Genome Science and Cell Metabolism, Institute for Biomedical Science, Shinshu University, Nagano, 399-4598, Japan.,Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598, Japan
| | - Yu Imai
- Department of Biology, Antimicrobial Discovery Center, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Keiichiro Mukai
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Kazuma Shimono
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Ryoko Hamauzu
- Department of Interdisciplinary Genome Science and Cell Metabolism, Institute for Biomedical Science, Shinshu University, Nagano, 399-4598, Japan
| | - Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Hiroshima, 731-5193, Japan
| | - Takeshi Hosaka
- Department of Interdisciplinary Genome Science and Cell Metabolism, Institute for Biomedical Science, Shinshu University, Nagano, 399-4598, Japan. .,Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598, Japan. .,Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.
| |
Collapse
|
19
|
Bobek J, Šmídová K, Čihák M. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces. Front Microbiol 2017; 8:2205. [PMID: 29180988 PMCID: PMC5693915 DOI: 10.3389/fmicb.2017.02205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life – connected with spore formation and antibiotic production – is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell’s signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.
Collapse
Affiliation(s)
- Jan Bobek
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Chemistry Department, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Klára Šmídová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
20
|
Ordóñez-Robles M, Santos-Beneit F, Albillos SM, Liras P, Martín JF, Rodríguez-García A. Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources. Appl Microbiol Biotechnol 2017; 101:8181-8195. [PMID: 28983826 DOI: 10.1007/s00253-017-8545-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
In this work, we identified glucose and glycerol as tacrolimus repressing carbon sources in the important species Streptomyces tsukubaensis. A genome-wide analysis of the transcriptomic response to glucose and glycerol additions was performed using microarray technology. The transcriptional time series obtained allowed us to compare the transcriptomic profiling of S. tsukubaensis growing under tacrolimus producing and non-producing conditions. The analysis revealed important and different metabolic changes after the additions and a lack of transcriptional activation of the fkb cluster. In addition, we detected important differences in the transcriptional response to glucose between S. tsukubaensis and the model species Streptomyces coelicolor. A number of genes encoding key players of morphological and biochemical differentiation were strongly and permanently downregulated by the carbon sources. Finally, we identified several genes showing transcriptional profiles highly correlated to that of the tacrolimus biosynthetic pathway regulator FkbN that might be potential candidates for the improvement of tacrolimus production.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Silvia M Albillos
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
- Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Paloma Liras
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain.
| |
Collapse
|
21
|
Cheng C, Dong Z, Han X, Wang H, Jiang L, Sun J, Yang Y, Ma T, Shao C, Wang X, Chen Z, Fang W, Freitag NE, Huang H, Song H. Thioredoxin A Is Essential for Motility and Contributes to Host Infection of Listeria monocytogenes via Redox Interactions. Front Cell Infect Microbiol 2017; 7:287. [PMID: 28702378 PMCID: PMC5487381 DOI: 10.3389/fcimb.2017.00287] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022] Open
Abstract
Microbes employ the thioredoxin system to defend against oxidative stress and ensure correct disulfide bonding to maintain protein function. Listeria monocytogenes has been shown to encode a putative thioredoxin, TrxA, but its biological roles and underlying mechanisms remain unknown. Here, we showed that expression of L. monocytogenes TrxA is significantly induced in bacteria treated with the thiol-specific oxidizing agent, diamide. Deletion of trxA markedly compromised tolerance of the pathogen to diamide, and mainly impaired early stages of infection in human intestinal epithelial Caco-2 cells. In addition, most trxA mutant bacteria were not associated with polymerized actin, and the rare bacteria that were associated with polymerized actin displayed very short tails or clouds during infection. Deletion or constitutive overexpression of TrxA, which was regulated by SigH, severely attenuated the virulence of the pathogen. Transcriptome analysis of L. monocytogenes revealed over 270 genes that were differentially transcribed in the ΔtrxA mutant compared to the wild-type, especially for the virulence-associated genes plcA, mpl, hly, actA, and plcB. Particularly, deletion of TrxA completely reduced LLO expression, and thereby led to a thoroughly impaired hemolytic activity. Expression of these virulence factors are positively regulated by the master regulator PrfA that was found here to use TrxA to maintain its reduced forms for activation. Interestingly, the trxA deletion mutant completely lacked flagella and was non-motile. We further confirmed that this deficiency is attributable to TrxA in maintaining the reduced intracellular monomer status of MogR, the key regulator for flagellar formation, to ensure correct dimerization. In summary, we demonstrated for the first time that L. monocytogenes thioredoxin A as a vital cellular reductase is essential for maintaining a highly reducing environment in the bacterial cytosol, which provides a favorable condition for protein folding and activation, and therefore contributes to bacterial virulence and motility.
Collapse
Affiliation(s)
- Changyong Cheng
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Zhimei Dong
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Xiao Han
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Hang Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Li Jiang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Jing Sun
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Yongchun Yang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Tiantian Ma
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Chunyan Shao
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Xiaodu Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Zhongwei Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China.,Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary MedicineHangzhou, China
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at ChicagoChicago, IL, United States
| | - Huarong Huang
- Institute of Developmental and Regenerative Biology, College of Biological and Environmental Science, Hangzhou Normal UniversityZhejiang, China
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| |
Collapse
|
22
|
Translational Control of the SigR-Directed Oxidative Stress Response in Streptomyces via IF3-Mediated Repression of a Noncanonical GTC Start Codon. mBio 2017; 8:mBio.00815-17. [PMID: 28611250 PMCID: PMC5472188 DOI: 10.1128/mbio.00815-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry. In all sigma factor-antisigma factor regulatory switches, the relative abundance of the two proteins is critical to the proper functioning of the system. Many sigma-antisigma operons are cotranscribed and translationally coupled, leading to a generic assumption that the sigma and antisigma factors are produced in a fixed 1:1 ratio. In the case of sigR-rsrA, we show instead that the antisigma factor is produced in excess over the sigma factor, providing a buffer to prevent spurious release of sigma activity. This excess arises in part because sigR has an extremely rare noncanonical GTC start codon, and as a result, SigR translation initiation is repressed by IF3. This finding highlights the potential significance of noncanonical start codons, very few of which have been characterized experimentally. It also emphasizes the limitations of predicting start codons using bioinformatic approaches, which rely heavily on the assumption that ATG, GTG, and TTG are the only permissible start codons.
Collapse
|
23
|
Zhang J, Barajas JF, Burdu M, Wang G, Baidoo EE, Keasling JD. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis. ACS Synth Biol 2017; 6:884-890. [PMID: 28414905 DOI: 10.1021/acssynbio.6b00372] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ε-Caprolactam and δ-valerolactam are important commodity chemicals used in the manufacture of nylons, with millions of tons produced annually. Biological production of these highly valued chemicals has been limited due to a lack of enzymes that cyclize ω-amino fatty acid precursors to corresponding lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5-aminovaleric acid into δ-valerolactam and 6-aminocaproic acid into ε-caprolactam. Recombinant E. coli expressing ORF26 produced valerolactam and caprolactam when 5-aminovaleric acid and 6-aminocaproic acid were added to the culture medium. Upon coexpressing ORF26 with a metabolic pathway that produced 5-aminovaleric acid from lysine, we were able to demonstrate production of δ-valerolactam from lysine.
Collapse
Affiliation(s)
- Jingwei Zhang
- UCSF-UCB
Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Synthetic
Biology Engineering Research Center, University of California, Berkeley, California 94720, United States
| | - Jesus F. Barajas
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Mehmet Burdu
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - George Wang
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Edward E. Baidoo
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Jay D. Keasling
- UCSF-UCB
Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Synthetic
Biology Engineering Research Center, University of California, Berkeley, California 94720, United States
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
James SM, Honn KA, Gaddameedhi S, Van Dongen HPA. Shift Work: Disrupted Circadian Rhythms and Sleep-Implications for Health and Well-Being. CURRENT SLEEP MEDICINE REPORTS 2017; 3:104-112. [PMID: 29057204 DOI: 10.1007/s40675-017-0071-6] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Our 24/7 society is dependent on shift work, despite mounting evidence for negative health outcomes from sleep displacement due to shift work. This paper reviews short- and long-term health consequences of sleep displacement and circadian misalignment due to shift work. RECENT FINDINGS We focus on four broad health domains: metabolic health; risk of cancer; cardiovascular health; and mental health. Circadian misalignment affects these domains by inducing sleep deficiency, sympathovagal and hormonal imbalance, inflammation, impaired glucose metabolism, and dysregulated cell cycles. This leads to a range of medical conditions, including obesity, metabolic syndrome, type II diabetes, gastrointestinal dysfunction, compromised immune function, cardiovascular disease, excessive sleepiness, mood and social disorders, and increased cancer risk. SUMMARY Interactions of biological disturbances with behavioral and societal factors shape the effects of shift work on health and well-being. Research is needed to better understand the underlying mechanisms and drive the development of countermeasures.
Collapse
Affiliation(s)
- Stephen M James
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Kimberly A Honn
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Shobhan Gaddameedhi
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
25
|
Krysenko S, Okoniewski N, Kulik A, Matthews A, Grimpo J, Wohlleben W, Bera A. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in Streptomyces coelicolor M145. Front Microbiol 2017; 8:726. [PMID: 28487688 PMCID: PMC5403932 DOI: 10.3389/fmicb.2017.00726] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962), was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Nicole Okoniewski
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Arne Matthews
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Jan Grimpo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Agnieszka Bera
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| |
Collapse
|
26
|
Sun D, Wang Q, Chen Z, Li J, Wen Y. An Alternative σ Factor, σ 8, Controls Avermectin Production and Multiple Stress Responses in Streptomyces avermitilis. Front Microbiol 2017; 8:736. [PMID: 28484446 PMCID: PMC5402319 DOI: 10.3389/fmicb.2017.00736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/10/2017] [Indexed: 11/21/2022] Open
Abstract
Alternative σ factors in bacteria redirect RNA polymerase to recognize alternative promoters, thereby facilitating coordinated gene expression necessary for adaptive responses. The gene sig8 (sav_741) in Streptomyces avermitilis encodes an alternative σ factor, σ8, highly homologous to σB in Streptomyces coelicolor. Studies reported here demonstrate that σ8 is an important regulator of both avermectin production and stress responses in S. avermitilis. σ8 inhibited avermectin production by indirectly repressing expression of cluster-situated activator gene aveR, and by directly initiating transcription of its downstream gene sav_742, which encodes a direct repressor of ave structural genes. σ8 had no effect on cell growth or morphological differentiation under normal growth conditions. Growth of a sig8-deletion mutant was less than that of wild-type strain on YMS plates following treatment with heat, H2O2, diamide, NaCl, or KCl. sig8 transcription was strongly induced by these environmental stresses, indicating response by σ8 itself. A series of σ8-dependent genes responsive to heat, oxidative and osmotic stress were identified by EMSAs, qRT-PCR and in vitro transcription experiments. These findings indicate that σ8 plays an important role in mediating protective responses to various stress conditions by activating transcription of its target genes. Six σ8-binding promoter sequences were determined and consensus binding sequence BGVNVH-N15-GSNNHH (B: C, T or G, V: A, C or G, S: C or G, H: A, C or T, N: any nucleotide) was identified, leading to prediction of the σ8 regulon. The list consists of 940 putative σ8 target genes, assignable to 17 functional groups, suggesting the wide range of cellular functions controlled by σ8 in S. avermitilis.
Collapse
Affiliation(s)
- Di Sun
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Qian Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
27
|
Dai D, Du A, Xiong K, Pu T, Zhou X, Deng Z, Liang J, He X, Wang Z. DNA Phosphorothioate Modification Plays a Role in Peroxides Resistance in Streptomyces lividans. Front Microbiol 2016; 7:1380. [PMID: 27630631 PMCID: PMC5005934 DOI: 10.3389/fmicb.2016.01380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
DNA phosphorothioation, conferred by dnd genes, was originally discovered in the soil-dwelling bacterium Streptomyces lividans, and thereafter found to exist in various bacterial genera. However, the physiological significance of this sulfur modification of the DNA backbone remains unknown in S. lividans. Our studies indicate that DNA phosphorothioation has a major role in resistance to oxidative stress in the strain. Although Streptomyces species express multiple catalase/peroxidase and organic hydroperoxide resistance genes to protect them against peroxide damage, a wild type strain of S. lividans exhibited two-fold to 10-fold higher survival, compared to a dnd− mutant, following treatment with peroxides. RNA-seq experiments revealed that, catalase and organic hydroperoxide resistance gene expression were not up-regulated in the wild type strain, suggesting that the resistance to oxidative stress was not due to the up-regulation of these genes by DNA phosphorothioation. Quantitative RT-PCR analysis was conducted to trace the expression of the catalase and the organic hydroperoxide resistance genes after peroxides treatments. A bunch of these genes were activated in the dnd− mutant rather than the wild type strain in response to peroxides. Moreover, the organic hydroperoxide peracetic acid was scavenged more rapidly in the presence than in the absence of phosphorothioate modification, both in vivo and in vitro. The dnd gene cluster can be up-regulated by the disulfide stressor diamide. Overall, our observations suggest that DNA phosphorothioate modification functions as a peroxide resistance system in S. lividans.
Collapse
Affiliation(s)
- Daofeng Dai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Kangli Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Tianning Pu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
28
|
Induction of a stable sigma factor SigR by translation-inhibiting antibiotics confers resistance to antibiotics. Sci Rep 2016; 6:28628. [PMID: 27346454 PMCID: PMC4921905 DOI: 10.1038/srep28628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
Antibiotic-producing streptomycetes are rich sources of resistance mechanisms against endogenous and exogenous antibiotics. An ECF sigma factor σR (SigR) is known to govern the thiol-oxidative stress response in Streptomyces coelicolor. Amplification of this response is achieved by producing an unstable isoform of σR called σR′. In this work, we present evidence that antibiotics induce the SigR regulon via a redox-independent pathway, leading to antibiotic resistance. The translation-inhibiting antibiotics enhanced the synthesis of stable σR, eliciting a prolonged response. WblC/WhiB7, a WhiB-like DNA-binding protein, is responsible for inducing sigRp1 transcripts encoding the stable σR. The amount of WblC protein and its binding to the sigRp1 promoter in vivo increased upon antibiotic treatment. A similar phenomenon appears to exist in Mycobacterium tuberculosis as well. These findings reveal a novel antibiotic-induced resistance mechanism conserved among actinomycetes, and also give an explicit example of overlap in cellular damage and defense mechanisms between thiol-oxidative and anti- translational stresses.
Collapse
|
29
|
Hillion M, Antelmann H. Thiol-based redox switches in prokaryotes. Biol Chem 2016; 396:415-44. [PMID: 25720121 DOI: 10.1515/hsz-2015-0102] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
Bacteria encounter reactive oxygen species (ROS) as a consequence of the aerobic life or as an oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds, including hypochloric acid (HOCl) and reactive electrophilic species (RES) such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense.
Collapse
|
30
|
Li X, Wang J, Li S, Ji J, Wang W, Yang K. ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep 2015; 5:14831. [PMID: 26442964 PMCID: PMC4595836 DOI: 10.1038/srep14831] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
In model organism Streptomyces coelicolor, γ-butyrolactones (GBLs) and antibiotics were recognized as signalling molecules playing fundamental roles in intra- and interspecies communications. To dissect the GBL and antibiotic signalling networks systematically, the in vivo targets of their respective receptors ScbR and ScbR2 were identified on a genome scale by ChIP-seq. These identified targets encompass many that are known to play important roles in diverse cellular processes (e.g. gap1, pyk2, afsK, nagE2, cdaR, cprA, cprB, absA1, actII-orf4, redZ, atrA, rpsL and sigR), and they formed regulatory cascades, sub-networks and feedforward loops to elaborately control key metabolite processes, including primary and secondary metabolism, morphological differentiation and stress response. Moreover, interplay among ScbR, ScbR2 and other regulators revealed intricate cross talks between signalling pathways triggered by GBLs, antibiotics, nutrient availability and stress. Our work provides a global view on the specific responses that could be triggered by GBL and antibiotic signals in S. coelicolor, among which the main echo was the change of production profile of endogenous antibiotics and antibiotic signals manifested a role to enhance bacterial stress tolerance as well, shedding new light on GBL and antibiotic signalling networks widespread among streptomycetes.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Junjie Ji
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| |
Collapse
|
31
|
Beites T, Oliveira P, Rioseras B, Pires SDS, Oliveira R, Tamagnini P, Moradas-Ferreira P, Manteca Á, Mendes MV. Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress. Sci Rep 2015; 5:12887. [PMID: 26256439 PMCID: PMC4530454 DOI: 10.1038/srep12887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/14/2015] [Indexed: 12/03/2022] Open
Abstract
Streptomyces are aerobic Gram-positive bacteria characterized by a complex life cycle that includes hyphae differentiation and spore formation. Morphological differentiation is triggered by stressful conditions and takes place in a pro-oxidant environment, which sets the basis for an involvement of the oxidative stress response in this cellular process. Characterization of the phenotypic traits of Streptomyces natalensis ΔkatA1 (mono-functional catalase) and ΔcatR (Fur-like repressor of katA1 expression) strains in solid medium revealed that both mutants had an impaired morphological development process. The sub-lethal oxidative stress caused by the absence of KatA1 resulted in the formation of a highly proliferative and undifferentiated vegetative mycelium, whereas de-repression of CatR regulon, from which KatA1 is the only known representative, resulted in the formation of scarce aerial mycelium. Both mutant strains had the transcription of genes associated with aerial mycelium formation and biosynthesis of the hyphae hydrophobic layer down-regulated. The first round of the programmed cell death (PCD) was inhibited in both strains which caused the prevalence of the transient primary mycelium (MI) over secondary mycelium (MII). Our data shows that the first round of PCD and morphological differentiation in S. natalensis is dependent on oxidative stress in the right amount at the right time.
Collapse
Affiliation(s)
- Tiago Beites
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Oliveira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Beatriz Rioseras
- rea de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Sílvia D S Pires
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rute Oliveira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paula Tamagnini
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| | - Pedro Moradas-Ferreira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ángel Manteca
- rea de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Marta V Mendes
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
32
|
Paget MS. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution. Biomolecules 2015; 5:1245-65. [PMID: 26131973 PMCID: PMC4598750 DOI: 10.3390/biom5031245] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022] Open
Abstract
Sigma factors are multi-domain subunits of bacterial RNA polymerase (RNAP) that play critical roles in transcription initiation, including the recognition and opening of promoters as well as the initial steps in RNA synthesis. This review focuses on the structure and function of the major sigma-70 class that includes the housekeeping sigma factor (Group 1) that directs the bulk of transcription during active growth, and structurally-related alternative sigma factors (Groups 2-4) that control a wide variety of adaptive responses such as morphological development and the management of stress. A recurring theme in sigma factor control is their sequestration by anti-sigma factors that occlude their RNAP-binding determinants. Sigma factors are then released through a wide variety of mechanisms, often involving branched signal transduction pathways that allow the integration of distinct signals. Three major strategies for sigma release are discussed: regulated proteolysis, partner-switching, and direct sensing by the anti-sigma factor.
Collapse
Affiliation(s)
- Mark S Paget
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
33
|
Abstract
Bacteria live in a toxic world in which their competitors excrete hydrogen peroxide or superoxide-generating redox-cycling compounds. They protect themselves by activating regulons controlled by the OxyR, PerR, and SoxR transcription factors. OxyR and PerR sense peroxide when it oxidizes key thiolate or iron moieties, respectively; they then induce overlapping sets of proteins that defend their vulnerable metalloenzymes. An additional role for OxyR in detecting electrophilic compounds is possible. In some nonenteric bacteria, SoxR appears to control the synthesis and export of redox-cycling compounds, whereas in the enteric bacteria it defends the cell against the same agents. When these compounds oxidize its iron-sulfur cluster, SoxR induces proteins that exclude, excrete, or modify them. It also induces enzymes that defend the cell against the superoxide that such compounds make. Recent work has brought new insight into the biochemistry and physiology of these responses, and comparative studies have clarified their evolutionary histories.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
34
|
Bobek J, Strakova E, Zikova A, Vohradsky J. Changes in activity of metabolic and regulatory pathways during germination of S. coelicolor. BMC Genomics 2014; 15:1173. [PMID: 25539760 PMCID: PMC4367926 DOI: 10.1186/1471-2164-15-1173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial spore germination is a developmental process during which all required metabolic pathways are restored to transfer cells from their dormant state into vegetative growth. Streptomyces are soil dwelling filamentous bacteria with complex life cycle, studied mostly for they ability to synthesize secondary metabolites including antibiotics. RESULTS Here, we present a systematic approach that analyzes gene expression data obtained from 13 time points taken over 5.5 h of Streptomyces germination. Genes whose expression was significantly enhanced/diminished during the time-course were identified, and classified to metabolic and regulatory pathways. The classification into metabolic pathways revealed timing of the activation of specific pathways during the course of germination. The analysis also identified remarkable changes in the expression of specific sigma factors over the course of germination. Based on our knowledge of the targets of these factors, we speculate on their possible roles during germination. Among the factors whose expression was enhanced during the initial part of germination, SigE is though to manage cell wall reconstruction, SigR controls protein re-aggregation, and others (SigH, SigB, SigI, SigJ) control osmotic and oxidative stress responses. CONCLUSIONS From the results, we conclude that most of the metabolic pathway mRNAs required for the initial phases of germination were synthesized during the sporulation process and stably conserved in the spore. After rehydration in growth medium, the stored mRNAs are being degraded and resynthesized during first hour. From the analysis of sigma factors we conclude that conditions favoring germination evoke stress-like cell responses.
Collapse
Affiliation(s)
| | | | | | - Jiri Vohradsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Bioinformatics, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
35
|
Expanding the regulatory network governed by the extracytoplasmic function sigma factor σH in Corynebacterium glutamicum. J Bacteriol 2014; 197:483-96. [PMID: 25404703 DOI: 10.1128/jb.02248-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracytoplasmic function sigma factor σ(H) is responsible for the heat and oxidative stress response in Corynebacterium glutamicum. Due to the hierarchical nature of the regulatory network, previous transcriptome analyses have not been able to discriminate between direct and indirect targets of σ(H). Here, we determined the direct genome-wide targets of σ(H) using chromatin immunoprecipitation with microarray technology (ChIP-chip) for analysis of a deletion mutant of rshA, encoding an anti-σ factor of σ(H). Seventy-five σ(H)-dependent promoters, including 39 new ones, were identified. σ(H)-dependent, heat-inducible transcripts for several of the new targets, including ilvD encoding a labile Fe-S cluster enzyme, dihydroxy-acid dehydratase, were detected, and their 5' ends were mapped to the σ(H)-dependent promoters identified. Interestingly, functional internal σ(H)-dependent promoters were found in operon-like gene clusters involved in the pentose phosphate pathway, riboflavin biosynthesis, and Zn uptake. Accordingly, deletion of rshA resulted in hyperproduction of riboflavin and affected expression of Zn-responsive genes, possibly through intracellular Zn overload, indicating new physiological roles of σ(H). Furthermore, sigA encoding the primary σ factor was identified as a new target of σ(H). Reporter assays demonstrated that the σ(H)-dependent promoter upstream of sigA was highly heat inducible but much weaker than the known σ(A)-dependent one. Our ChIP-chip analysis also detected the σ(H)-dependent promoters upstream of rshA within the sigH-rshA operon and of sigB encoding a group 2 σ factor, supporting the previous findings of their σ(H)-dependent expression. Taken together, these results reveal an additional layer of the sigma factor regulatory network in C. glutamicum.
Collapse
|
36
|
Genome-wide analysis of the regulation of pimaricin production in Streptomyces natalensis by reactive oxygen species. Appl Microbiol Biotechnol 2014; 98:2231-41. [PMID: 24413916 DOI: 10.1007/s00253-013-5455-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
To investigate the molecular mechanisms that interplay between oxygen metabolism and secondary metabolism in Streptomyces natalensis, we compared the transcriptomes of the strains CAM.02 (ΔsodF), pimaricin under-producer phenotype, and CAM.04 (ΔahpCD), pimaricin over-producer phenotype, with that of the wild type at late exponential and stationary growth phases. Microarray data interpretation was supported by characterization of the mutant strains regarding enzymatic activities, phosphate uptake, oxygen consumption and pimaricin production.Both mutant strains presented a delay in the transcription activation of the PhoRP system and pimaricin biosynthetic gene cluster that correlated with the delayed inorganic phosphate (Pi) depletion in the medium and late onset of pimaricin production, respectively. The carbon flux of both mutants was also altered: a re-direction from glycolysis to the pentose phosphate pathway (PPP) in early exponential phase followed by a transcriptional activation of both pathways in subsequent growth phases was observed. Mutant behavior diverged at the respiratory chain/tricarboxylic acid cycle (TCA) and the branched chain amino acid (BCAA) metabolism. CAM.02 (ΔsodF) presented an impaired TCA cycle and an inhibition of the BCAA biosynthesis and degradation pathways. Conversely, CAM.04 (ΔahpCD) presented a global activation of BCAA metabolism.The results highlight the cellular NADPH/NADH ratio and the availability of biosynthetic precursors via the BCAA metabolism as the main pimaricin biosynthetic bottlenecks under oxidative stress conditions. Furthermore, new evidences are provided regarding a crosstalk between phosphate metabolism and oxidative stress in Streptomyces.
Collapse
|
37
|
Strakova E, Zikova A, Vohradsky J. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote. Nucleic Acids Res 2013; 42:748-63. [PMID: 24157841 PMCID: PMC3902916 DOI: 10.1093/nar/gkt917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.
Collapse
Affiliation(s)
- Eva Strakova
- Laboratory of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | | | | |
Collapse
|
38
|
Sadeghi A, Soltani BM, Jouzani GS, Karimi E, Nekouei MK, Sadeghizadeh M. Taxonomic study of a salt tolerant Streptomyces sp. strain C-2012 and the effect of salt and ectoine on lon expression level. Microbiol Res 2013; 169:232-8. [PMID: 23916596 DOI: 10.1016/j.micres.2013.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/15/2013] [Accepted: 06/22/2013] [Indexed: 11/18/2022]
Abstract
Streptomyces strain C-2012 is a salt tolerant biocontrol PGPR that has been isolated from Iranian soil. The main aim of current study was finding strain C-2012 taxonomic position and to find the genes which are potentially involved in salt tolerance phenotype. Strain C-2012 chemotaxonomic, morphological and molecular characteristics indicate that this strain is a member of the genus Streptomyces. Phylogenetic analyses based on an almost complete 16S rRNA gene sequence revealed that this strain is closely related to Streptomyces rimosus JCM 4667(T). Also, DNA-DNA hybridization test estimated 74% relatedness between two strains and confirmed that C-2012 is a strain of S. rimosus. In order to find novel genes that are differentially expressed in response to the salt treatment, cDNA-AFLP was carried out. One of the selected expressed sequence tags (TDF-1) was found to be homologous to lon gene which produces a bacterial ATP-dependent proteases (proteases LA). Lon gene expression was induced following 450 mM salt (NaCl) treatment and its expression level was further (5.2-fold) increased in response to salt when ectoine was added to the medium. These results suggest that two protein protection systems including ectoine and ATP-dependent proteases synergistically are related. NaCl stress also caused an enhancement in the activity of extracellular protease.
Collapse
Affiliation(s)
- Akram Sadeghi
- Genetics Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Ebrahim Karimi
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Mojtaba Khayam Nekouei
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Majid Sadeghizadeh
- Genetics Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
39
|
Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli. J Bacteriol 2013; 195:2807-16. [PMID: 23585533 DOI: 10.1128/jb.00127-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ(32) dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ(32)-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ(32), we found that this constant induction can be attributed to an increase of the half-life of σ(32) upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ(32) dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ(32) by preventing its DnaK- and FtsH-dependent degradation.
Collapse
|
40
|
Nambu T, Yamane K, Yamanaka T, Mashimo C, Maruyama H, Yoshida M, Hayashi H, Leung KP, Fukushima H. Identification of disulphide stress-responsive extracytoplasmic function sigma factors in Rothia mucilaginosa. Arch Oral Biol 2013; 58:681-9. [PMID: 23399044 DOI: 10.1016/j.archoralbio.2012.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/21/2012] [Accepted: 10/23/2012] [Indexed: 11/17/2022]
Abstract
Rothia mucilaginosa is known as a member of commensal bacterial flora in the oral cavity and has received attention as a potential opportunistic pathogen. We previously determined the genomic sequence of R. mucilaginosa DY-18, a clinical strain with biofilm-like structures isolated from an infected root canal of a tooth with persistent apical periodontitis. We found that the DY-18 genome had only two sigma factor genes that encoded the primary and extracytoplasmic function (ECF) sigma factors. Genomic analysis on the available database of R. mucilaginosa ATCC 25296 (a type strain for R. mucilaginosa) revealed that ATCC 25296 has three sigma factors: one primary sigma factor and two ECF sigma factors, one of which was highly homologous to that of DY-18. ECF sigma factors play an important role in the response to environmental stress and to the production of virulence factors. Therefore, we first examined gene-encoding sigma factors on R. mucilaginosa genome in silico. The homologous ECF sigma factors found in strains DY-18 and ATCC 25296 formed a distinct SigH (SigR) clade in a phylogenetic tree and their cognate anti-sigma factor has a HXXXCXXC motif known to respond against disulphide stress. Quantitative reverse transcription polymerase chain reaction (PCR) and microarray analysis showed that the transcriptional levels of sigH were markedly up-regulated under disulphide stress in both strains. Microarray data also demonstrated that several oxidative-stress-related genes (thioredoxin, mycothione reductase, reductase and oxidoreductase) were significantly up-regulated under the diamide stress. On the basis of these results, we conclude that the alternative sigma factor SigH of R. mucilaginosa is a candidate regulator in the redox state.
Collapse
Affiliation(s)
- Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
SIGNIFICANCE The reactivity of the thiol in the side chain of cysteines is exploited by bacterial regulatory proteins that sense and respond to reactive oxygen and nitrogen species. RECENT ADVANCES Charged residues and helix dipoles diminish the pKa of redox active cysteines, resulting in a thiolate that is stabilized by neighboring polar amino acids. The reaction of peroxides with thiolates generates a sulfenic acid (-SOH) intermediate that often gives rise to a reversible disulfide bond. Peroxide-induced intramolecular and intermolecular disulfides and intermolecular mixed disulfides modulate the signaling activity of members of the LysR/OxyR, MarR/OhrR, and RsrA family of transcriptional regulators. Thiol-dependent regulators also help bacteria resist the nitrosative and nitroxidative stress. -SOHs, mixed disulfides, and S-nitrosothiols are some of the post-translational modifications induced by nitrogen oxides in the thiol groups of OxyR and SsrB bacterial regulatory proteins. Sulfenylation, disulfide bond formation, S-thiolation, and S-nitrosylation are reversible modifications amenable to feedback regulation by antioxidant and antinitrosative repair systems. The structural and functional changes engaged in the thiol-dependent sensing of reactive species have been adopted by several regulators to foster bacterial virulence during exposure to products of NADPH phagocyte oxidase and inducible nitric oxide synthase. CRITICAL ISSUES Investigations with LysR/OxyR, MarR/OhrR, and RsrA family members have helped in an understanding of the mechanisms by which thiols in regulatory proteins react with reactive species, thereby activating antioxidant and antinitrosative gene expression. FUTURE DIRECTIONS To define the determinants that provide selectivity of redox active thiolates for some reactive species but not others is an important challenge for future investigations.
Collapse
Affiliation(s)
- Andrés Vázquez-Torres
- Department of Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA.
| |
Collapse
|
42
|
NdgR, a common transcriptional activator for methionine and leucine biosynthesis in Streptomyces coelicolor. J Bacteriol 2012; 194:6837-46. [PMID: 23065973 DOI: 10.1128/jb.00695-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show here that NdgR, a known transcriptional activator of isopropylmalate dehydratase in actinomycetes, may have other targets in the cell. An in-frame deletion mutant of ndgR showed unexpectedly poor growth in defined minimal medium even in the presence of leucine. To our surprise, it was supplementation of cysteine and methionine that corrected the growth. Based on this, we propose that NdgR induces cysteine-methionine biosynthesis. Direct involvement of NdgR in the very last steps of methionine synthesis with methionine synthase (metH) and 5,10-methylenetetrahydrofolate reductase (metF) was examined. From a pulldown assay, it was seen that NdgR was enriched from crude cell lysates with a strong affinity to metH and metF upstream sequences. Direct physical interaction of NdgR with these targets was further examined with a gel mobility shift assay. ndgR, leuC, metH, and metF were inducible in M145 cells upon nutrient downshift from rich to minimal medium but were not induced in the ndgR knockout mutant. Taking these observations together, NdgR-dependent metH-metF expression would account for the abnormal growth phenotype of the ndgR mutant although there may be additional NdgR-dependent genes in the Cys-Met metabolic pathways. As the first transcriptional factor reported for regulating Cys-Met metabolism in Streptomyces, NdgR links two disparate amino acid families, branched-chain amino acids (BCAAs) and sulfur amino acids, at the transcriptional level. Considering that Cys-Met metabolism is connected to mycothiol and one-carbon metabolism, NdgR may have broad physiological impacts.
Collapse
|
43
|
Kim MS, Dufour YS, Yoo JS, Cho YB, Park JH, Nam GB, Kim HM, Lee KL, Donohue TJ, Roe JH. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol 2012; 85:326-44. [PMID: 22651816 DOI: 10.1111/j.1365-2958.2012.08115.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Numerous thiol-reactive compounds cause oxidative stress where cells counteract by activation of survival strategies regulated by thiol-based sensors. In Streptomyces coelicolor, a model actinomycete, a sigma/antisigma pair SigR/RsrA controls the response to thiol-oxidative stress. To unravel its full physiological functions, chromatin immuno-precipitation combined with sequence and transcript analyses were employed to identify 108 SigR target genes in S. coelicolor and to predict orthologous regulons across actinomycetes. In addition to reported genes for thiol homeostasis, protein degradation and ribosome modulation, 64 additional operons were identified suggesting new functions of this global regulator. We demonstrate that SigR maintains the level and activity of the housekeeping sigma factor HrdB during thiol-oxidative stress, a novel strategy for stress responses. We also found that SigR defends cells against UV and thiol-reactive damages, in which repair UvrA takes a part. Using a refined SigR-binding sequence model, SigR orthologues and their targets were predicted in 42 actinomycetes. This revealed a conserved core set of SigR targets to function for thiol homeostasis, protein quality control, possible modulation of transcription and translation, flavin-mediated redox reactions, and Fe-S delivery. The composition of the SigR regulon reveals a robust conserved physiological mechanism to deal with thiol-oxidative stress from bacteria to human.
Collapse
Affiliation(s)
- Min-Sik Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
MexT functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 2012; 194:3502-11. [PMID: 22544265 DOI: 10.1128/jb.06632-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MexT is a global LysR transcriptional regulator known to modulate antibiotic resistance and virulence in Pseudomonas aeruginosa. In this study, a novel role for MexT in mediating intrinsic disulfide stress resistance was demonstrated, representing the first identified phenotype associated with inactivation of this regulator in wild-type cells. Disruption of mexT resulted in increased susceptibility to the disulfide stress elicitor diamide [diazenedicarboxylic acid bis(N,N,-di-methylamide)]. This compound is known to elicit a specific stress response via depletion of reduced glutathione and alteration of the cellular redox environment, implicating MexT in redox control. In support of this, MexT-regulated targets, including the MexEF-OprN multidrug efflux system, were induced by subinhibitory concentrations of diamide. A mexF insertion mutant also exhibited increased diamide susceptibility, implicating the MexEF-OprN efflux system in MexT-associated disulfide stress resistance. Purified MexT protein was observed to form an oligomeric complex in the presence of oxidized glutathione, with a calculated redox potential of -189 mV. This value far exceeds the thiol-disulfide redox potential of the bacterial cytoplasm, ensuring that MexT remains reduced under normal physiological conditions. MexT is activated by mutational disruption of the predicted quinone oxidoreductase encoded by mexS. Alterations in the cellular redox state were observed in a mexS mutant (PA14nfxC), supporting a model whereby the perception of MexS-associated redox signals by MexT leads to the induction of the MexEF-OprN efflux system, which, in turn, may mediate disulfide stress resistance via efflux of electrophilic compounds.
Collapse
|
45
|
Iqbal M, Mast Y, Amin R, Hodgson DA, Wohlleben W, Burroughs NJ. Extracting regulator activity profiles by integration of de novo motifs and expression data: characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor. Nucleic Acids Res 2012; 40:5227-39. [PMID: 22406834 PMCID: PMC3384326 DOI: 10.1093/nar/gks205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Determining transcriptional regulator activities is a major focus of systems biology, providing key insight into regulatory mechanisms and co-regulators. For organisms such as Escherichia coli, transcriptional regulator binding site data can be integrated with expression data to infer transcriptional regulator activities. However, for most organisms there is only sparse data on their transcriptional regulators, while their associated binding motifs are largely unknown. Here, we address the challenge of inferring activities of unknown regulators by generating de novo (binding) motifs and integrating with expression data. We identify a number of key regulators active in the metabolic switch, including PhoP with its associated directed repeat PHO box, candidate motifs for two SARPs, a CRP family regulator, an iron response regulator and that for LexA. Experimental validation for some of our predictions was obtained using gel-shift assays. Our analysis is applicable to any organism for which there is a reasonable amount of complementary expression data and for which motifs (either over represented or evolutionary conserved) can be identified in the genome.
Collapse
Affiliation(s)
- Mudassar Iqbal
- Multidisciplinary Centre for Integrative Biology (MyCIB), School of Biosciences, University of Nottingham, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
Jung YG, Cho YB, Kim MS, Yoo JS, Hong SH, Roe JH. Determinants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response. Nucleic Acids Res 2011; 39:7586-97. [PMID: 21685450 PMCID: PMC3177212 DOI: 10.1093/nar/gkr477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Various environmental oxidative stresses are sensed by redox-sensitive regulators through cysteine thiol oxidation or modification. A few zinc-containing anti-sigma (ZAS) factors in actinomycetes have been reported to respond sensitively to thiol oxidation, among which RsrA from Streptomyces coelicolor is best characterized. It forms disulfide bonds upon oxidation and releases bound SigR to activate thiol oxidative stress response genes. Even though numerous ZAS proteins exist in bacteria, features that confer redox sensitivity to a subset of these have been uncharacterized. In this study, we identified seven additional redox-sensitive ZAS factors from actinomycetes. Comparison with redox-insensitive ZAS revealed characteristic sequence patterns. Domain swapping demonstrated the significance of the region K33FEHH37FEEC41SPC44LEK47 that encompass the conserved HX3CX2C (HCC) motif. Mutational effect of each residue on diamide responsive induction of SigR target genes in vivo demonstrated that several residues, especially those that flank two cysteines (E39, E40, L45, E46), contribute to redox sensitivity. These residues are well conserved among redox-sensitive ZAS factors, and hence are proposed as redox-determinants in sensitive ZAS. H37A, C41A, C44A and F38A mutations, in contrast, compromised SigR-binding activity significantly, apparently affecting structural integrity of RsrA. The residue pattern around HCC motif could therefore serve as an indicator to predict redox-sensitive ZAS factors from sequence information.
Collapse
Affiliation(s)
- Yong-Gyun Jung
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Dou Y, Osbourne D, McKenzie R, Fletcher HM. Involvement of extracytoplasmic function sigma factors in virulence regulation in Porphyromonas gingivalis W83. FEMS Microbiol Lett 2010; 312:24-32. [PMID: 20807237 DOI: 10.1111/j.1574-6968.2010.02093.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are known to play an important role in the bacterial response to various environmental stresses and can significantly modulate their pathogenic potential. In the genome of Porphyromonas gingivalis W83, six putative ECF sigma factors were identified. To further evaluate their role in this organism, a PCR-based linear transformation method was used to inactivate five ECF sigma factor genes (PG0162, PG0214, PG0985, PG1660, and PG1827) by allelic exchange mutagenesis. All five isogenic mutants formed black-pigmented colonies on blood agar. Mutants defective in PG0985, PG1660, and PG1827 genes were more sensitive to 0.25 mM of hydrogen peroxide compared with the wild-type strain. Isogenic mutants of PG0162 and PG1660 showed a 50% decrease in gingipain activity. Reverse transcription-PCR analysis showed that there was no alteration in the expression of rgpA, rgpB, and kgp gingipain genes in these mutants. Hemolytic and hemagglutination activities were decreased by more than 50% in the PG0162 mutant compared with the wild type. Taken together, these findings suggest that ECF sigma factors can modulate important virulence factors in P. gingivalis. ECF sigma factors encoded by the PG0162 and PG1660 genes might also be involved in the post-transcriptional regulation of the gingipains.
Collapse
Affiliation(s)
- Yuetan Dou
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | |
Collapse
|