1
|
Sam-On MFS, Mustafa S, Mohd Hashim A, Abdul Malek AZ. Probiogenomic insights into Bacillus velezensis MFSS1 for controlling aquaculture pathogens. Microb Pathog 2025; 205:107645. [PMID: 40306591 DOI: 10.1016/j.micpath.2025.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 04/05/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Bacillus velezensis MFSS1 (previously known as B. subtilis FS6) was reported to have good probiotic criteria and antibacterial activity against Vibrio spp. and Aeromonas spp., through phenotypic analysis. However, whole genome sequencing is required for commercialising a new probiotic, especially due to reports on probiotics that can cause horizontal gene transfer towards the host microbiome. Therefore, this study aims to investigate the comprehensive genomic characteristics of B. velezensis MFSS1, focusing on its antimicrobial genes against aquaculture pathogens, its probiotic traits, and safety assessment. The bacterial genome was sequenced using Oxford Nanopore sequencing, resulting in 7 contigs with a total length of 3,914,361 base pairs and an average G + C content of 46.58 %. The analysis using ContEst16S and average nucleotide identity revealed that the bacterium previously reported as B. subtilis is actually B. velezensis. Additionally, secondary metabolites against pathogens were predicted using the antiSMASH website, which identified eight secondary metabolites: Bacillibactin, Bacilysin, Surfactin, Difficidin, Fengycin, Bacillaene, Macrolactin H, and Plantazolicin. Furthermore, several probiotic markers were detected, functioning in acid tolerance, bile salt tolerance, adhesion, osmotic stress, and intestinal persistence during the delivery of the bacteria to the host. Interestingly, the in silico safety assessment of the bacterium revealed a lack of 96 antibiotic resistance genes and confirmed it as non-pathogenic to humans, compared with genomic bacteria from ATCC. The study indicates that B. velezensis MFSS1 is a good probiotic through genomic analysis and can be commercialised to control aquaculture pathogens and reduce reliance on antibiotics.
Collapse
Affiliation(s)
- Muhamad Firdaus Syahmi Sam-On
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Ahmad Zuhairi Abdul Malek
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Mirza Alizadeh A, Hosseini H, Mohseni M, Mohammadi M, Hashempour-Baltork F, Hosseini MJ, Eskandari S, Sohrabvandi S, Aminzare M. Bioremoval of lead (pb) salts from synbiotic milk by lactic acid bacteria. Sci Rep 2025; 15:9101. [PMID: 40097452 PMCID: PMC11914161 DOI: 10.1038/s41598-024-75726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 03/19/2025] Open
Abstract
The present study investigated the effects of five species of indigenous probiotic bacteria (Lactobacillus sp. and Bifidobacterium sp.) and prebiotic inulin on the decontamination of two Pb2+ salts (lead nitrate and lead acetate) in food models (low-fat, semi-fat, and high-fat milk). The average of the lowest and highest pH values was related to samples containing L. paracasei and L. acidophilus bacteria, as determined by pH change results. In most instances, adding inulin accelerated the pH-decreasing process, but the results were not particularly significant (p < 0.05). All probiotic strains were able to remove both forms of Pb salts, however, lead nitrate mitigation was significantly higher (p < 0.05). According to decontamination analysis, B. lactis was a native probiotic species with a high capacity for the absorption and biological elimination of Pb salts from milk medium (in low-, semi-, and high-fat milk, 94.41, 98.13, and 98.12% respectively). Except for low-fat milk, samples containing inulin showed greater Pb removal in semi-fat and high-fat milk than those without inulin. The findings of FTIR-ATR spectroscopy revealed that hydroxyl (OH), carbonyl (C = O), carboxylic (-COOH), phosphate (P = O), amine (-NH2), and amide (-C(= O) = N) functional groups are efficient in the absorption of Pb salts through electrostatic interactions on the cell surfaces of probiotics. The findings of this research highlighted the importance of using probiotic strains specific to the B. lactis BIA-6 species for those who are at risk of being exposed to Pb salts and other toxic components through diet.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehran Mohseni
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansoureh Mohammadi
- Department of Food Quality Control and Hygiene, Faculty of Medical Sciences and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soheyl Eskandari
- Food & Drug Laboratory Research Center (FDLRC), Food & Drug administration (IR-FDA), Ministry of Health and Medical Education (MoH+ME), Tehran, Iran
- Research Center for Food Hygiene and Safety, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Molinari G, Ribeiro SS, Müller K, Mayer BE, Rohde M, Arce‐Rodriguez A, Vargas‐Guerrero JJ, Avetisyan A, Wissing J, Tegge W, Jänsch L, Brönstrup M, Danchin A, Jahn M, Timmis KN, Ebbinghaus S, Jahn D, Borrero‐de Acuña JM. Multiple Chaperone DnaK-FliC Flagellin Interactions are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK. Microb Biotechnol 2025; 18:e70096. [PMID: 39937155 PMCID: PMC11816700 DOI: 10.1111/1751-7915.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
The DnaK (Hsp70) protein is an essential ATP-dependent chaperone foldase and holdase found in most organisms. In this study, combining multiple experimental approaches we determined FliC as major interaction partner of DnaK in the opportunistic bacterial pathogen Pseudomonas aeruginosa. Implementing immunofluorescence microscopy and electron microscopy techniques DnaK was found extracellularly associated to the assembled filament in a regular pattern. dnaK repression led to intracellular FliC accumulation and motility impairment, highlighting DnaK essentiality for FliC export and flagellum assembly. SPOT-membrane peptide arrays coupled with artificial intelligence analyses suggested a highly dynamic DnaK-FliC interaction landscape involving multiple domains and transient complexes formation. Remarkably, in vitro fast relaxation imaging (FReI) experiments mimicking ATP-deprived extracellular environment conditions exhibited DnaK ATP-independent holdase activity, regardless of its co-chaperone DnaJ and its nucleotide exchange factor GrpE. We present a model for the DnaK-FliC interactions involving dynamic states throughout the flagellum assembly stages. These results expand the classical view of DnaK chaperone functioning and introduce a new participant in the Pseudomonas flagellar system, an important trait for bacterial colonisation and virulence.
Collapse
Affiliation(s)
- Gabriella Molinari
- Central Facility for MicroscopyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Sara S. Ribeiro
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Katrin Müller
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Benjamin E. Mayer
- Computational Biology and SimulationTechnische Universität DarmstadtDarmstadtGermany
| | - Manfred Rohde
- Central Facility for MicroscopyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | | | | | - Albert Avetisyan
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Josef Wissing
- Department Cellular Proteome ResearchHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Werner Tegge
- Department of Chemical BiologyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lothar Jänsch
- Department Cellular Proteome ResearchHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of MedicineThe University of Hong KongSAR Hong KongChina
| | - Martina Jahn
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Kenneth N. Timmis
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Dieter Jahn
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
- Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigBraunschweigGermany
| | - José Manuel Borrero‐de Acuña
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
- Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
4
|
Zhao J, Zhang G, Yang J, Qi X, Yao F, Gao Y, Li C, Liu L, Kang L. Surface proteins of Bifidobacterium bifidum DNG6 growing in 2'-fucosyllactose alleviating lipopolysaccharide-induced intestinal barrier injury in vitro. J Dairy Sci 2024; 107:8865-8873. [PMID: 38969003 DOI: 10.3168/jds.2024-25019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
Human milk oligosaccharides promote the growth and adhesion of Bifidobacteria, thus exerting multiple biological functions on intestinal epithelial cells. Bacterial surface proteins play an important role in bacterial-host intestinal epithelial interactions. In this study, we aimed to investigate the effects of surface proteins extracted from Bifidobacterium bifidum DNG6 (B. bifidum DNG6) consuming 2'-fucosyllactose (2'-FL) on Caco-2 cells monolayer barrier injury induced by lipopolysaccharide, compared with lactose and galacto-oligosaccharides. Our results indicated that 2'-FL may promote the surface proteins of B. bifidum DNG6 to improve intestinal barrier injury by positively regulating the NF-κB signaling pathway, reducing inflammation (TNF-α reduced by 50.34%, IL-6 reduced by 22.83%, IL-1β reduced by 37.91%, and IL-10 increased by 63.47%) and strengthening tight junction proteins (ZO,1 2.39×; claudin,1 2.79×; and occluding, 4.70×). The findings of this study indicate that 2'-FL can further regulate intestinal barrier damage by promoting the alteration of B. bifidum DNG6 surface proteins. The findings of this research will also provide theoretical support for the development of synbiotic formulations.
Collapse
Affiliation(s)
- Jingjing Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guofang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingbo Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxi Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fei Yao
- Synaura Biotechnology (Shanghai) Co., Ltd., Shanghai 200120, China
| | - Yunfeng Gao
- Heilongjiang Agricultural Products and Veterinary Medicine and Feed Technology Identification Station, 150036, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Linhui Kang
- Synaura Biotechnology (Shanghai) Co., Ltd., Shanghai 200120, China
| |
Collapse
|
5
|
Paul A, Wellslager B, Williamson M, Yilmaz Ö. Bacterial Protein Signatures Identified in Porphyromonas gingivalis Containing-Autophagic Vacuoles Reveal Co-Evolution Between Oral Red/Orange Complex Bacteria and Gut Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602567. [PMID: 39026754 PMCID: PMC11257597 DOI: 10.1101/2024.07.11.602567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Modern oral bacterial species present as a concoction of commensal and opportunistic pathogens originating from their evolution in humans. Due to the intricate colonization mechanisms shared amongst oral and gut bacteria, these bacteria have likely evolved together to establish and adapt in the human oro-digestive tract, resulting in the transfer of genetic information. Our liquid chromatography-with-tandem-mass-spectrometry (LC-MS-MS) analyses have revealed protein signatures, Elongation Factor Tu, RagB/SusD nutrient uptake outer membrane protein and DnaK, specifically from Porphyromonas gingivalis -containing autophagic vacuoles isolated from the infected human primary gingival epithelial cells. Interestingly, our Mass-Spectrometry analysis reported similar proteins from closely related oral bacteria, Tannerella forsythia and Prevotella intermedia . In our phylogenetic study of these key protein signatures, we have established that pathogenic oral bacteria share extensive relatedness to each other and gut resident bacteria. We show that in the virulence factors identified from gut bacteria, Elongation Factor Tu and DnaK, there are several structural similarities and conservations with proteins from oral pathogenic bacteria. There are also major similarities in the RagB/SusD proteins of oral bacteria to prominent gut bacteria. These findings not only highlight the shared virulence mechanisms amongst oral bacterial pathogens/pathobionts but also gut bacteria and elucidate their co-evolutions in the human host.
Collapse
|
6
|
Zhao X, Wang J, Li D, Ma F, Fang Y, Lu J, Hou N. Investigation of non-classical secretion of oxalate decarboxylase in Bacillus mojavensis XH1 mediated by exopeptide YydF: Mechanism and application. Int J Biol Macromol 2024; 264:130662. [PMID: 38453118 DOI: 10.1016/j.ijbiomac.2024.130662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Non-classical secretory proteins are widely found in bacteria and have been extensively studied due to their important physiological roles. However, the relevant non-classical secretory mechanisms remain unclear. In this study, we found that oxalate decarboxylase (Bacm OxDC) from Bacillus mojavensis XH1 belongs to non-classical secretory proteins. Its N-terminus showed high hydrophilicity, which was different from the conventional signal peptide. The truncation test revealed that the deletion of the N-terminus affects the structure resulting in its inability to cross the cell membrane. Further studies verified that the exported peptide YydF played an important role in the secretion process of Bacm OxDC. Experimental results on the secretion mechanism indicated that Bacm OxDC bound to the exported peptide YydF and they are translocated to the cell membrane together, after which Bacm OxDC caused cell membrane relaxation for transmembrane secretion. Thereafter, three recombinant proteins were successfully secreted with certain enzymatic activity by fusing Bacm OxDC as a guide protein with various target proteins. To the best of our knowledge, this was the first time that non-classical secretion mechanism in bacteria has been analyzed. The novel discovery may provide a reference and broaden the horizons of the secretion pathway and expression regulation of proteins.
Collapse
Affiliation(s)
- Xin Zhao
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang 150030, PR China
| | - Jian Wang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang 150030, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang 150030, PR China.
| | - Fang Ma
- College of Environment, Harbin Institute of Technology, No. 73 Yellow River Street, Harbin, Heilongjiang 150090, PR China
| | - Yongping Fang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang 150030, PR China
| | - Jia Lu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang 150030, PR China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
7
|
Zhai Z, Xiong Y, Gu Y, Lei Y, An H, Yi H, Zhao L, Ren F, Hao Y. Up-regulation of sortase-dependent pili in Bifidobacterium longum BBMN68 in response to bile stress enhances its adhesion to HT-29 cells. Int J Biol Macromol 2024; 257:127527. [PMID: 37866558 DOI: 10.1016/j.ijbiomac.2023.127527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Adhesion to gastrointestinal tract is crucial for bifidobacteria to exert their probiotic effects. Our previous work found that bile salts significantly enhance the adhesion ability of Bifidobacterium longum BBMN68 to HT-29 cells. In this study, trypsin-shaving and LC-MS/MS-based surface proteomics were employed to identify surface proteins involved in bile stress response. Among the 829 differentially expressed proteins, 56 up-regulated proteins with a fold change >1.5 were subjected to further analysis. Notably, the minor pilin subunit FimB was 4.98-fold up-regulated in response to bile stress. In silico analysis and RT-PCR confirmed that gene fimB, fimA and srtC were co-transcribed and contributed to the biosynthesis of sortase-dependent pili Pil1. Moreover, scanning electron microscopy and immunogold electron microscopy assays showed increased abundance and length of Pil1 on BBMN68 under bile stress. As the major pilin subunit FimA serves as adhesion component of Pil1, an inhibition assay using anti-FimA antibodies further confirmed the critical role of Pil1 in mediating the adhesion of BBMN68 to HT-29 cells under bile stress. Our findings suggest that the up-regulation of Pil1 in response to bile stress enhances the adhesion of BBMN68 to intestinal epithelial cells, highlighting a novel mechanism of gut persistence in B. longum strains.
Collapse
Affiliation(s)
- Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Yao Xiong
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yaxin Gu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanqiu Lei
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoran An
- Center for Infectious Disease Research, Tsinghua-Peking Joint Center for Life Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Huaxi Yi
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
8
|
Walsh C, Owens RA, Bottacini F, Lane JA, van Sinderen D, Hickey RM. HMO-primed bifidobacteria exhibit enhanced ability to adhere to intestinal epithelial cells. Front Microbiol 2023; 14:1232173. [PMID: 38163079 PMCID: PMC10757668 DOI: 10.3389/fmicb.2023.1232173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
The ability of gut commensals to adhere to the intestinal epithelium can play a key role in influencing the composition of the gut microbiota. Bifidobacteria are associated with a multitude of health benefits and are one of the most widely used probiotics for humans. Enhanced bifidobacterial adhesion may increase host-microbe, microbe-nutrient, and/or microbe-microbe interactions, thereby enabling consolidated health benefits to the host. The objective of this study was to determine the ability of human milk oligosaccharides (HMOs) to enhance bifidobacterial intestinal adhesion in vitro. This study assessed the colonisation-promoting effects of HMOs on four commercial infant-associated Bifidobacterium strains (two B. longum subsp. infantis strains, B. breve and B. bifidum). HT29-MTX cells were used as an in vitro intestinal model for bacterial adhesion. Short-term exposure of four commercial infant-associated Bifidobacterium strains to HMOs derived from breastmilk substantially increased the adherence (up to 47%) of these probiotic strains. Interestingly, when strains were incubated with HMOs as a four-strain combination, the number of viable bacteria adhering to intestinal cells increased by >90%. Proteomic analysis of this multi-strain bifidobacterial mixture revealed that the increased adherence resulting from exposure to HMOs was associated with notable increases in the abundance of sortase-dependent pili and glycosyl hydrolases matched to Bifidobacterium bifidum. This study suggests that HMOs may prime infant gut-associated Bifidobacterium for colonisation to intestinal epithelial cells by influencing the expression of various colonization factors.
Collapse
Affiliation(s)
- Clodagh Walsh
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- Health and Happiness Group, H&H Research, Cork, Ireland
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Francesca Bottacini
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
- Biological Sciences and ADAPT Research Centre, Munster Technological University, Cork, Ireland
| | | | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Cunha JRB, Wischral D, Peláez RDR, De Oliveira Magalhães P, Guimarães MB, de Jesus MA, Sales-Campos C, Mendes TD, Dias ES, Mendonça S, de Siqueira FG. Aqueous Extracts of Fermented Macrofungi Cultivated in Oilseed Cakes as a Carbon Source for Probiotic Bacteria and Potential Antibacterial Activity. Metabolites 2023; 13:854. [PMID: 37512561 PMCID: PMC10386005 DOI: 10.3390/metabo13070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Plant biomass colonized by macrofungi can contain molecules with bioactive properties with applications to human/animal health. This work aimed to verify antibacterial activities from aqueous extracts from oil seed cakes of Jatropha curcas (JSC) and cottonseed (CSC), fermented by macrofungi for probiotic bacteria cultivation. Coriolopsis sp., Tyromyces sp., Panus lecomtei, and Pleurotus pulmonarius were cultivated in solid and submerged media. The aqueous extract of unfermented JSC was more efficient than glucose for the growth of all probiotic bacteria. Extracts from four macrofungi fermented in CSC favored Lactobacillus acidophilus growth. In solid fermentation, macrofungi extracts cultivated in JSC favored Bifidobacterium lactis growth. All fungi extracts showed more significant growth than carbohydrates among the four probiotic bacteria evaluated. Regarding antimicrobial activities, no fungal extract or bacterial supernatant showed a more significant inhibition halo for enteropathogenic bacteria than ampicillin (control). Extracts from P. lecomtei and Coriolopsis sp. in CSC showed inhibition halos for Salmonella enterica. Supernatants from L. acidophilus, B. lactis, and Lactobacillus rhamnosus resulted in more significant inhibition of Staphylococcus aureus than the control, which indicates possible antimicrobial activity. Unfermented JSC supernatant showed better results for bacterial growth, while supernatants and aqueous extracts from CSC fermentation can be used for probiotic bacteria culture.
Collapse
Affiliation(s)
- Joice Raísa Barbosa Cunha
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
- Programa de Pós-Graduação em Microbiologia Agrícola, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Brazil
| | - Daiana Wischral
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
| | - Rubén Darío Romero Peláez
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Brasília, Brasília 70910-900, Brazil
| | - Pérola De Oliveira Magalhães
- Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade Federal de Brasília, Brasília 70910-900, Brazil
| | - Marina Borges Guimarães
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
- Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade Federal de Brasília, Brasília 70910-900, Brazil
| | | | - Ceci Sales-Campos
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69067-375, Brazil
| | | | - Eustáquio Souza Dias
- Programa de Pós-Graduação em Microbiologia Agrícola, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Brazil
| | - Simone Mendonça
- Embrapa Agroenergia, Distrito Federal, Brasília 70770-901, Brazil
| | | |
Collapse
|
10
|
Satala D, Bednarek A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Recruitment and Activation of Plasminogen by Bacteria-The Involvement in Chronic Infection Development. Int J Mol Sci 2023; 24:10436. [PMID: 37445613 DOI: 10.3390/ijms241310436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The development of infections caused by pathogenic bacteria is largely related to the specific properties of the bacterial cell surface and extracellular hydrolytic activity. Furthermore, a significant role of hijacking of host proteolytic cascades by pathogens during invasion should not be disregarded during consideration of the mechanisms of bacterial virulence. This is the key factor for the pathogen evasion of the host immune response, tissue damage, and pathogen invasiveness at secondary infection sites after initial penetration through tissue barriers. In this review, the mechanisms of bacterial impact on host plasminogen-the precursor of the important plasma serine proteinase, plasmin-are characterized, principally focusing on cell surface exposition of various proteins, responsible for binding of this host (pro)enzyme and its activators or inhibitors, as well as the fibrinolytic system activation tactics exploited by different bacterial species, not only pathogenic, but also selected harmless residents of the human microbiome. Additionally, the involvement of bacterial factors that modulate the process of plasminogen activation and fibrinolysis during periodontitis is also described, providing a remarkable example of a dual use of this host system in the development of chronic diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
11
|
Wang J, Lu C, Xu Q, Li Z, Song Y, Zhou S, Guo L, Zhang T, Luo X. Comparative Genomics Analysis Provides New Insights into High Ethanol Tolerance of Lactiplantibacillus pentosus LTJ12, a Novel Strain Isolated from Chinese Baijiu. Foods 2022; 12:35. [PMID: 36613254 PMCID: PMC9818588 DOI: 10.3390/foods12010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lactic acid bacteria have received a significant amount of attention due to their probiotic characteristics. The species Lactiplantibacillus plantarum and Lactiplantibacillus pentosus are genotypically closely related, and their phenotypes are so similar that they are easily confused and mistaken. In the previous study, an ethanol-resistant strain, LTJ12, isolated from the fermented grains of soy sauce aroma type baijiu in North China, was originally identified as L. plantarum through a 16S rRNA sequence analysis. Here, the genome of strain LTJ12 was further sequenced using PacBio and Illumina sequencing technology to obtain a better understanding of the metabolic pathway underlying its resistance to ethanol stress. The results showed that the genome of strain LTJ12 was composed of one circular chromosome and three circular plasmids. The genome size is 3,512,307 bp with a GC content of 46.37%, and the number of predicted coding genes is 3248. Moreover, by comparing the coding genes with the GO (Gene Ontology), COG (Cluster of Orthologous Groups) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases, the functional annotation of the genome and an assessment of the metabolic pathways were performed, with the results showing that strain LTJ12 has multiple genes that may be related to alcohol metabolism and probiotic-related genes. Antibiotic resistance gene analysis showed that there were few potential safety hazards. Further, after conducting the comparative genomics analysis, it was found that strain LTJ12 is L. pentosus but not L. plantarum, but it has more functional genes than other L. pentosus strains that are mainly related to carbohydrate transport and metabolism, transcription, replication, recombination and repair, signal transduction mechanisms, defense mechanisms and cell wall/membrane/envelope biogenesis. These unique functional genes, such as gene 2754 (encodes alcohol dehydrogenase), gene 3093 (encodes gamma-D-glutamyl-meso-diaminopimelate peptidase) and some others may enhance the ethanol tolerance and alcohol metabolism of the strain. Taken together, L. pentosus LTJ12 might be a potentially safe probiotic with a high ethanol tolerance and alcohol metabolism. The findings of this study will also shed light on the accurate identification and rational application of the Lactiplantibacillus species.
Collapse
Affiliation(s)
- Jiali Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chengshun Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Xu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
12
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
13
|
Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111910. [PMID: 36431045 PMCID: PMC9696601 DOI: 10.3390/life12111910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The intestine barrier, the front line of normal body defense, relies on its structural integrity, microbial composition and barrier immunity. The intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. Although it occupies a relatively small proportion of the intestinal microbiota, Lactobacilli has been discovered to have a significant impact on the intestine tract in previous studies. It is undeniable that some Lactobacillus strains present probiotic properties through maintaining the micro-ecological balance via different mechanisms, such as mucosal barrier function and barrier immunity, to prevent infection and even to solve some neurology issues by microbiota-gut-brain/liver/lung axis communication. Notably, not only living cells but also Lactobacillus derivatives (postbiotics: soluble secreted products and para-probiotics: cell structural components) may exert antipathogenic effects and beneficial functions for the gut mucosal barrier. However, substantial research on specific effects, safety and action mechanisms in vivo should be done. In clinical application of humans and animals, there are still doubts about the precise evaluation of Lactobacilli's safety, therapeutic effect, dosage and other aspects. Therefore, we provide an overview of central issues on the impacts of Lactobacillus casei (L. casei) and their products on the intestinal mucosal barrier and some diseases and highlight the urgent need for further studies.
Collapse
Affiliation(s)
- Da Qin
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| |
Collapse
|
14
|
Liang X, Dai N, Sheng K, Lu H, Wang J, Chen L, Wang Y. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes 2022; 14:2134689. [PMID: 36242585 PMCID: PMC9578468 DOI: 10.1080/19490976.2022.2134689] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal microenvironment dysbiosis is one of the major causes of diseases, such as obesity, diabetes, inflammatory bowel disease, and colon cancer. Microbiota-based strategies have excellent clinical potential in the treatment of repetitive and refractory diseases; however, the underlying regulatory mechanisms remain elusive. Identification of the internal regulatory mechanism of the gut microbiome and the interaction mechanisms involving bacteria-host is essential to achieve precise control of the gut microbiome and obtain effective clinical data. Gut bacteria-derived extracellular vesicles (GBEVs) are lipid bilayer nanoparticles secreted by the gut microbiota and are considered key players in bacteria-bacteria and bacteria-host communication. This review focusses on the role of GBEVs in gut microbiota interactions and bacteria-host communication, and the potential clinical applications of GBEVs.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Liping Chen
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China,Institute of Physical Science and Information Technology, Anhui University, Hefei, China,CONTACT Yongzhong Wang School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
15
|
Huang Y, Zhu F, Koh J, Stanton D, Chen S, Wang N. Proteomic and bioinformatic analyses of proteins in the outer membrane and extracellular compartments and outer membrane vesicles of Candidatus Liberibacter species. Front Microbiol 2022; 13:977710. [PMID: 36225379 PMCID: PMC9548881 DOI: 10.3389/fmicb.2022.977710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most devastating citrus disease in the world. Candidatus Liberibacter asiaticus (Las) is the prevalent HLB pathogen, which is yet to be cultivated. A recent study demonstrates that Las does not contain pathogenicity factors that are directly responsible for HLB symptoms. Instead, Las triggers systemic and chronic immune responses, representing a pathogen-triggered immune disease. Importantly, overproduction of reactive oxygen species (ROS) causes systemic cell death of phloem tissues, thus causing HLB symptoms. Because Las resides in the phloem tissues, it is expected that phloem cell might recognize outer membrane proteins, outer membrane vesicle (OMV) proteins and extracellular proteins of Las to contribute to the immune responses. Because Las has not been cultivated, we used Liberibacter crescens (Lcr) as a surrogate to identify proteins in the OM fraction, OMV proteins and extracellular proteins by liquid chromatography with tandem mass spectrometry (LC–MS/MS). We observed OMVs of Lcr under scanning electron microscope, representing the first experimental evidence that Liberibacter can deliver proteins to the extracellular compartment. In addition, we also further analyzed LC–MS/MS data using bioinformatic tools. Our study provides valuable information regarding the biology of Ca. Liberibacter species and identifies many putative proteins that may interact with host proteins in the phloem tissues.
Collapse
Affiliation(s)
- Yixiao Huang
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Fanchao Zhu
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Daniel Stanton
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
16
|
Yang Y, Song X, Xiong Z, Xia Y, Wang G, Ai L. Complete Genome Sequence of Lactobacillus salivarius AR809, a Probiotic Strain with Oropharyngeal Tract Resistance and Adhesion to the Oral Epithelial Cells. Curr Microbiol 2022; 79:280. [PMID: 35934757 DOI: 10.1007/s00284-022-02963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Lactobacillus salivarius AR809 was isolated from a healthy adult oral cavity with multiple probiotic properties, such as high antimicrobial activity, adhesion to the oral epithelium, resistance to acidic pH, bile, lysozyme, and H2O2. In this study, to investigate the genetic basis on probiotic potential and identify the functional genes in the strain, the complete genome of strain AR809 was sequenced by Illumina and PacBio platforms. Then comparative genome analysis on 11 strains of Lactobacillus salivarius was performed. The complete genome of AR809 consisted of a circular 1,747,224 bp chromosome with 33.00% GC content and four circular plasmids [pA (247,948 bp), pB (27,292 bp), pC (3349 bp), and pD (2898 bp), respectively]. From among the 1866 protein-coding genes, 130 carbohydrate metabolism-related genes, 18 bacteriocin biosynthesis-related genes, 74 environmental stress-related genes, and a series of adhesion-related genes were identified via clusters of orthologous genes, Koyto Encyclopedia of Genes and Genomes, and carbohydrate-active enzymes annotation. The comparative genome analysis indicated that genomic homology between AR809 and CICC23174 was the highest. In conclusion, the present work provided valuable insights into the gene's function prediction and understanding the genetic basis on adapting to host oropharyngeal-gastrointestinal tract in strain AR809.
Collapse
Affiliation(s)
- Yong Yang
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Xin Song
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Zhiqiang Xiong
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Yongjun Xia
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Guangqiang Wang
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Lianzhong Ai
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China.
| |
Collapse
|
17
|
Marques da Silva W, Seyffert N, Silva A, Azevedo V. A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ 2022; 9:e12456. [PMID: 35036114 PMCID: PMC8710256 DOI: 10.7717/peerj.12456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Background Corynebacterium pseudotuberculosis is a Gram-positive facultative intracellular pathogen and the etiologic agent of illnesses like caseous lymphadenitis in small ruminants, mastitis in dairy cattle, ulcerative lymphangitis in equines, and oedematous skin disease in buffalos. With the growing advance in high-throughput technologies, genomic studies have been carried out to explore the molecular basis of its virulence and pathogenicity. However, data large-scale functional genomics studies are necessary to complement genomics data and better understating the molecular basis of a given organism. Here we summarize, MS-based proteomics techniques and bioinformatics tools incorporated in genomic functional studies of C. pseudotuberculosis to discover the different patterns of protein modulation under distinct environmental conditions, and antigenic and drugs targets. Methodology In this study we performed an extensive search in Web of Science of original and relevant articles related to methods, strategy, technology, approaches, and bioinformatics tools focused on the functional study of the genome of C. pseudotuberculosis at the protein level. Results Here, we highlight the use of proteomics for understating several aspects of the physiology and pathogenesis of C. pseudotuberculosis at the protein level. The implementation and use of protocols, strategies, and proteomics approach to characterize the different subcellular fractions of the proteome of this pathogen. In addition, we have discussed the immunoproteomics, immunoinformatics and genetic tools employed to identify targets for immunoassays, drugs, and vaccines against C. pseudotuberculosis infection. Conclusion In this review, we showed that the combination of proteomics and bioinformatics studies is a suitable strategy to elucidate the functional aspects of the C. pseudotuberculosis genome. Together, all information generated from these proteomics studies allowed expanding our knowledge about factors related to the pathophysiology of this pathogen.
Collapse
Affiliation(s)
- Wanderson Marques da Silva
- Institute of Agrobiotechnology and Molecular Biology-(INTA/CONICET), Hurlingham, Buenos Aires, Argentina
| | - Nubia Seyffert
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Para, Belém, Pará, Brazil
| | - Vasco Azevedo
- Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
18
|
Duboux S, Van Wijchen M, Kleerebezem M. The Possible Link Between Manufacturing and Probiotic Efficacy; a Molecular Point of View on Bifidobacterium. Front Microbiol 2022; 12:812536. [PMID: 35003044 PMCID: PMC8741271 DOI: 10.3389/fmicb.2021.812536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics for food or supplement use have been studied in numerous clinical trials, addressing a broad variety of diseases, and conditions. However, discrepancies were observed in the clinical outcomes stemming from the use of lactobacillaceae and bifidobacteria strains. These differences are often attributed to variations in the clinical trial protocol like trial design, included target population, probiotic dosage, or outcome parameters measured. However, a contribution of the methods used to produce the live bioactive ingredients should not be neglected as a possible additional factor in the observed clinical outcome variations. It is well established that manufacturing conditions play a role in determining the survival and viability of probiotics, but much less is known about their influence on the probiotic molecular composition and functionality. In this review, we briefly summarize the evidence obtained for Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum WCFS1, highlighting that expression and presence of probiotic niche factor (NF) and/or effector molecules (EM) may be altered during production of those two well-characterized lactobacillaceae probiotic strains. Subsequently, we summarize in more depth what is the present state of knowledge about bifidobacterial probiotic NF and EM; how their expression may be modified by manufacturing related environmental factors and how that may affect their biological activity in the host. This review highlights the importance of gathering knowledge on probiotic NF and EM, to validate them as surrogate markers of probiotic functionality. We further propose that monitoring of validated NF and/or EM during production and/or in the final preparation could complement viable count assessments that are currently applied in industry. Overall, we suggest that implementation of molecular level quality controls (i.e., based on validated NF and EM), could provide mode of action based in vitro tests contributing to better control the health-promoting reliability of probiotic products.
Collapse
Affiliation(s)
- Stéphane Duboux
- Nestlé Research, Lausanne, Switzerland.,Host-Microbe Interactomics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Myrthe Van Wijchen
- Nestlé Research, Lausanne, Switzerland.,Host-Microbe Interactomics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
19
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the Cell Surface Architecture of Bacteroides and Bifidobacterium in the Gut Colonization. Front Microbiol 2021; 12:754819. [PMID: 34721360 PMCID: PMC8551831 DOI: 10.3389/fmicb.2021.754819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Kobe University, Kobe, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
21
|
Bungau SG, Behl T, Singh A, Sehgal A, Singh S, Chigurupati S, Vijayabalan S, Das S, Palanimuthu VR. Targeting Probiotics in Rheumatoid Arthritis. Nutrients 2021; 13:3376. [PMID: 34684377 PMCID: PMC8539185 DOI: 10.3390/nu13103376] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
Collapse
Affiliation(s)
- Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral Scool of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suprava Das
- Deprtment of Pharmacology, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Vasanth Raj Palanimuthu
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamilnadu, India;
| |
Collapse
|
22
|
Deletion of mFICD AMPylase alters cytokine secretion and affects visual short-term learning in vivo. J Biol Chem 2021; 297:100991. [PMID: 34419450 PMCID: PMC8441161 DOI: 10.1016/j.jbc.2021.100991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Fic domain-containing AMP transferases (fic AMPylases) are conserved enzymes that catalyze the covalent transfer of AMP to proteins. This posttranslational modification regulates the function of several proteins, including the ER-resident chaperone Grp78/BiP. Here we introduce a mouse FICD (mFICD) AMPylase knockout mouse model to study fic AMPylase function in vertebrates. We find that mFICD deficiency is well tolerated in unstressed mice. We also show that mFICD-deficient mouse embryonic fibroblasts are depleted of AMPylated proteins. mFICD deletion alters protein synthesis and secretion in splenocytes, including that of IgM, an antibody secreted early during infections, and the proinflammatory cytokine IL-1β, without affecting the unfolded protein response. Finally, we demonstrate that visual nonspatial short-term learning is stronger in old mFICD−/− mice than in wild-type controls while other measures of cognition, memory, and learning are unaffected. Together, our results suggest a role for mFICD in adaptive immunity and neuronal plasticity in vivo.
Collapse
|
23
|
Taniguchi M, Nambu M, Katakura Y, Yamasaki-Yashiki S. Adhesion mechanisms of Bifidobacterium animalis subsp. lactis JCM 10602 to dietary fiber. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:59-64. [PMID: 33520570 PMCID: PMC7817516 DOI: 10.12938/bmfh.2020-003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
Adherence of probiotics to dietary fibers present in the intestinal tract may affect
adhesion to intestinal epithelial cells. The properties of the adhesion of bifidobacteria
to mucin or epithelial cells have been well studied; however, adhesion of bifidobacteria
to dietary fiber has not been investigated. The adhesion ratio of six
Bifidobacterium strains to cellulose and chitin was examined; among the
strains, Bifidobacterium animalis subsp. lactis JCM
10602 showed high adherence to both cellulose and chitin, and two strains showed high
adherence to only chitin. The ratios of adhesion of B. animalis to
cellulose and chitin were positively and negatively correlated with ionic strength,
respectively. These data suggest that hydrophobic and electrostatic interactions are
involved in the adhesion to cellulose and chitin, respectively. The adhesion ratios of the
cells in the late logarithmic phase to cellulose and chitin decreased by approximately 40%
and 70% of the cells in the early logarithmic phase, respectively. Furthermore, the
adhesion ratio to cellulose decreased with increasing bile concentration regardless of the
culture phase of the cells. On the other hand, the adhesion ratio to chitin of cells in
the early logarithmic phase decreased with increasing bile concentration; however, that of
cells in the late logarithmic phase increased slightly, suggesting that adhesins differ
depending on the culture phase. Our results indicated the importance of considering
adhesion to both dietary fibers and the intestinal mucosa when using bifidobacteria as
probiotics.
Collapse
Affiliation(s)
- Maria Taniguchi
- Chemistry, Materials and Bioengineering Major, Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Minori Nambu
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
24
|
Xiong Y, Zhai Z, Lei Y, Xiao B, Hao Y. A Novel Major Pilin Subunit Protein FimM Is Involved in Adhesion of Bifidobacterium longum BBMN68 to Intestinal Epithelial Cells. Front Microbiol 2020; 11:590435. [PMID: 33329468 PMCID: PMC7719627 DOI: 10.3389/fmicb.2020.590435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Adhesion to the gastrointestinal tract is considered to be important for bifidobacteria to colonize the human gut and exert their probiotic effects. Some cell surface proteins of bifidobacteria, known as adhesins, play critical roles in the binding to host cells or the extracellular matrix (ECM). To elucidate the mechanisms associated with the adhesion of Bifidobacterium longum BBMN68, a centenarian originated potential probiotic, PSORTdb was employed to identify putative extracellular localized proteins in the B. longum BBMN68. Of the 560 predicted extracellular proteins, 21 were further identified as putative adhesion proteins using the conserved domain database of NCBI, and four were successfully overexpressed in the heterologous host, Lactococcus lactis NZ9000. Notably, a recombinant strain expressing FimM showed a significantly increased adhesive affinity for both HT-29 and mucus-secreting LS174T goblet cells (2.2- and 5.4-fold higher than that of the control strain, respectively). Amino acid sequence alignment showed that FimM is a major pilin subunit protein containing a Cna-B type domain and a C-terminal LPKTG sequence. However, in silico analysis of the fimM-coding cluster revealed that BBMN68_RS10200, encoding a pilus-specific class C sortase, was a pseudogene, indicating that FimM may function as a surface adhesin that cannot polymerize into a pili-like structure. Immunogold electron microscopy results further confirmed that FimM localized to the surface of L. lactis NZfimM and B. longum BBMN68 but did not assemble into pilus filaments. Moreover, the adhesive affinity of L. lactis NZfimM to fibronectin, fibrinogen, and mucin were 3.8-, 2.1-, and 3.1-fold higher than that of the control. The affinity of FimM for its attachment receptors was further verified through an inhibition assay using anti-FimM antibodies. In addition, homologs of FimM were found in Bifidobacterium bifidum 85B, Bifidobacterium gallinarum CACC 514, and 23 other B. longum strains by sequence similarity analysis using BLASTP. Our results suggested that FimM is a novel surface adhesin that is mainly present in B. longum strains.
Collapse
Affiliation(s)
- Yao Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuanqiu Lei
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Soni R, Nanjani S, Keharia H. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Genomics 2020; 113:861-873. [PMID: 33096257 DOI: 10.1016/j.ygeno.2020.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/24/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The legislations on the usage of antibiotics as growth promoters and prophylactic agents have compelled to develop alternative tools to upsurge the animal protection and contain antibiotic usage. Probiotics have emerged as an effective antibiotic substitute in animal farming. The present study explores the probiotic perspective of Paenibacillus polymyxa HK4 interlinking the genotypic and phenotypic characteristics. The draft genome of HK4 revealed the presence of ORFs encoding the functions associated with tolerance to gastrointestinal stress and adhesion. The biosynthetic gene clusters encoding non-ribosomally synthesized peptides, polyketides and lanthipeptides such as fusaricidin, tridecaptin, polymyxin, paenilan and paenibacillin were annotated in HK4 genome. The strain harbored the chromosomal gene conferring the resistance to lincosamides. No functional gene encoding virulence or toxins could be identified in the genome of HK4. The genome analysis data was complemented by the in vitro experiments confirming its survival during gastrointestinal transit, antimicrobial potential and antibiotic sensitivity. NUCLEOTIDE SEQUENCE ACCESSION NUMBER: The draft-genome sequence of Paenibacillus polymyxa HK4 has been deposited as whole-genome shotgun project at GenBank under the accession number PRJNA603023.
Collapse
Affiliation(s)
- Riteshri Soni
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Sandhya Nanjani
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India.
| |
Collapse
|
26
|
Extracellular Vesicles Produced by Bifidobacterium longum Export Mucin-Binding Proteins. Appl Environ Microbiol 2020; 86:AEM.01464-20. [PMID: 32737132 DOI: 10.1128/aem.01464-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Extracellular proteins are important factors in host-microbe interactions; however, the specific factors that enable bifidobacterial adhesion and survival in the gastrointestinal (GI) tract are not fully characterized. Here, we discovered that Bifidobacterium longum NCC2705 cultured in bacterium-free supernatants of human fecal fermentation broth released a myriad of particles into the extracellular environment. The aim of this study was to characterize the physiological properties of these extracellular particles. The particles, approximately 50 to 80 nm in diameter, had high protein and double-stranded DNA contents, suggesting that they were extracellular vesicles (EVs). A proteomic analysis showed that the EVs primarily consisted of cytoplasmic proteins with crucial functions in essential cellular processes. We identified several mucin-binding proteins by performing a biomolecular interaction analysis of phosphoketolase, GroEL, elongation factor Tu (EF-Tu), phosphoglycerate kinase, transaldolase (Tal), and heat shock protein 20 (Hsp20). The recombinant GroEL and Tal proteins showed high binding affinities to mucin. Furthermore, the immobilization of these proteins on microbeads affected the permanence of the microbeads in the murine GI tract. These results suggest that bifidobacterial exposure conditions that mimic the intestine stimulate B. longum EV production. The resulting EVs exported several cytoplasmic proteins that may have promoted B. longum adhesion. This study improved our understanding of the Bifidobacterium colonization strategy in the intestinal microbiome.IMPORTANCE Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. Morphological observations revealed that extracellular appendages of bifidobacteria in complex microbial communities are important for understanding its adaptations to the GI tract environment. We identified dynamic extracellular vesicle (EV) production by Bifidobacterium longum in bacterium-free fecal fermentation broth that was strongly suggestive of differing bifidobacterial extracellular appendages in the GI tract. In addition, export of the adhesive moonlighting proteins mediated by EVs may promote bifidobacterial colonization. This study provides new insight into the roles of EVs in bifidobacterial colonization processes as these bacteria adapt to the GI environment.
Collapse
|
27
|
Vieira ML, Herwald H, Nascimento ALTO. The interplay between host haemostatic systems and Leptospira spp. infections. Crit Rev Microbiol 2020; 46:121-135. [PMID: 32141788 DOI: 10.1080/1040841x.2020.1735299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Heiko Herwald
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
28
|
Principle and potential applications of the non-classical protein secretory pathway in bacteria. Appl Microbiol Biotechnol 2019; 104:953-965. [PMID: 31853566 DOI: 10.1007/s00253-019-10285-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
In addition to the extracellular proteins secreted by known secretory pathways, a number of cytoplasmic proteins without predicable or known signal sequences or secretory motifs have been found in the extracellular milieu, and were consequently classified as non-classically secreted proteins. Non-classical protein secretion is considered to be a general, conserved cellular phenomenon in both eukaryotes and prokaryotes. There are several research hotspots on the non-classical protein secretory pathway, and the most important two of them are the recognition principle of substrate proteins and possible secretory mechanisms. To date, researchers have made some progress in understanding the characteristics of these proteins. For example, it was discovered that many non-classically secreted proteins exist and are secreted in multimeric form. Some of these proteins prefer to be clustered and exported at the poles and the septum of the cell. The majority of these proteins play different functions when they are in the intra- and extracellular environments, and several of their functions are related to survival and pathogenicity. Furthermore, non-classically secreted proteins can be used as leading proteins to guide a POI (protein of interest) out of the cells, which provides a novel strategy for protein secretion with potential applications in the industry. Summarizing these findings, this review emphasizes the hot spots related to non-classically secreted proteins in bacteria, lists the most important hypotheses on the selection and secretion mechanisms of non-classically secreted proteins, and put forward their potential applications.
Collapse
|
29
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
30
|
Zakharevich NV, Nezametdinova VZ, Averina OV, Chekalina MS, Alekseeva MG, Danilenko VN. Complete Genome Sequence of Bifidobacterium angulatum GT102: Potential Genes and Systems of Communication with Host. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Gaucher F, Bonnassie S, Rabah H, Marchand P, Blanc P, Jeantet R, Jan G. Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front Microbiol 2019; 10:841. [PMID: 31068918 PMCID: PMC6491719 DOI: 10.3389/fmicb.2019.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 01/15/2023] Open
Abstract
This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria, and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as well as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case.
Collapse
Affiliation(s)
- Floriane Gaucher
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Bioprox, Levallois-Perret, France
| | - Sylvie Bonnassie
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Science de la Vie et de la Terre, Université de Rennes 1, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Pôle Agronomique Ouest, Bba, Rennes, France
| | | | | | - Romain Jeantet
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
32
|
Siciliano RA, Lippolis R, Mazzeo MF. Proteomics for the Investigation of Surface-Exposed Proteins in Probiotics. Front Nutr 2019; 6:52. [PMID: 31069232 PMCID: PMC6491629 DOI: 10.3389/fnut.2019.00052] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Probiotics are commensal microorganisms that are present in the intestinal tract and in many fermented foods and positively affect human health, promoting digestion and uptake of dietary nutrients, strengthening intestinal barrier function, modulating immune response, and enhancing antagonism toward pathogens. The proteosurfaceome, i.e., the complex set of proteins present on the bacterial surface, is directly involved as leading actor in the dynamic communication between bacteria and host. In the last decade, the biological relevance of surface-exposed proteins prompted research activities exploiting the potentiality of proteomics to define the complex network of proteins that are involved in the molecular mechanisms at the basis of the adaptation to gastrointestinal environment and the probiotic effects. These studies also took advantages of the recent technological improvements in proteomics, mass spectrometry and bioinformatics that triggered the development of ad hoc designed innovative strategies to characterize the bacterial proteosurfaceome. This mini-review is aimed at describing the key role of proteomics in depicting the cell wall protein architecture and the involvement of surface-exposed proteins in the intimate and dynamic molecular dialogue between probiotics and intestinal epithelial and immune cells.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Rosa Lippolis
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | | |
Collapse
|
33
|
Liu D, Yang Z, Chen Y, Zhuang W, Niu H, Wu J, Ying H. Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:315. [PMID: 30479660 PMCID: PMC6245871 DOI: 10.1186/s13068-018-1316-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Biofilms are cell communities wherein cells are embedded in a self-produced extracellular polymeric substances (EPS). The biofilm of Clostridium acetobutylicum confers the cells superior phenotypes and has been extensively exploited to produce a variety of liquid biofuels and bulk chemicals. However, little has been known about the physiology of C. acetobutylicum in biofilm as well as the composition and biosynthesis of the EPS. Thus, this study is focused on revealing the cell physiology and EPS composition of C. acetobutylicum biofilm. RESULTS Here, we revealed a novel lifestyle of C. acetobutylicum in biofilm: elimination of sporulation and vegetative growth. Extracellular polymeric substances and wire-like structures were also observed in the biofilm. Furthermore, for the first time, the biofilm polysaccharides and proteins were isolated and characterized. The biofilm contained three heteropolysaccharides. The major fraction consisted of predominantly glucose, mannose and aminoglucose. Also, a great variety of proteins including many non-classically secreted proteins moonlighting as adhesins were found considerably present in the biofilm, with GroEL, a S-layer protein and rubrerythrin being the most abundant ones. CONCLUSIONS This study evidenced that vegetative C. acetobutylicum cells rather than commonly assumed spore-forming cells were essentially the solvent-forming cells. The abundant non-classically secreted moonlighting proteins might be important for the biofilm formation. This study provides the first physiological and molecular insights into C. acetobutylicum biofilm which should be valuable for understanding and development of the biofilm-based processes.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Zhengjiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| |
Collapse
|
34
|
Jeffery CJ. Protein moonlighting: what is it, and why is it important? Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0523. [PMID: 29203708 DOI: 10.1098/rstb.2016.0523] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
Members of the GroEL/HSP60 protein family have been studied for many years because of their critical roles as ATP-dependent molecular chaperones, so it might come as a surprise that some have important functions in ATP-poor conditions, for example, when secreted outside the cell. At least some members of each of the HSP10, HSP70, HSP90, HSP100 and HSP110 heat shock protein families are also 'moonlighting proteins'. Moonlighting proteins exhibit more than one physiologically relevant biochemical or biophysical function within one polypeptide chain. In this class of multifunctional proteins, the multiple functions are not due to gene fusions or multiple proteolytic fragments. Several hundred moonlighting proteins have been identified, and they include a diverse set of proteins with a large variety of functions. Some participate in multiple biochemical processes by using an active site pocket for catalysis and a different part of the protein's surface to interact with other proteins. Moonlighting proteins play a central role in many diseases, and the development of novel treatments would be aided by more information addressing current questions, for example, how some are targeted to multiple cellular locations and how a single function can be targeted by therapeutics without targeting a function not involved in disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
35
|
Pérez Montoro B, Benomar N, Caballero Gómez N, Ennahar S, Horvatovich P, Knapp CW, Gálvez A, Abriouel H. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features. Food Microbiol 2018; 72:31-38. [DOI: 10.1016/j.fm.2017.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022]
|
36
|
Vinusha KS, Deepika K, Johnson TS, Agrawal GK, Rakwal R. Proteomic studies on lactic acid bacteria: A review. Biochem Biophys Rep 2018; 14:140-148. [PMID: 29872746 PMCID: PMC5986552 DOI: 10.1016/j.bbrep.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023] Open
Abstract
Probiotics are amongst the most common microbes in the gastro-intestinal tract of humans and other animals. Prominent among probiotics are Lactobacillus and Bifidobacterium. They offer wide-ranging health promoting benefits to the host which include reduction in pathological alterations, stimulation of mucosal immunity and interaction with mediators of inflammation among others. Proteomics plays a vital role in understanding biological functions of a cell. Proteomics is also slowly and steadily adding to the existing knowledge on role of probiotics. In this paper, the proteomics of probiotics, with special reference to lactic acid bacteria is reviewed with a view to understand i) proteome map, ii) mechanism of adaptation to harsh gut environment such as low pH and bile acid, iii) role of cell surface proteins in adhering to intestinal epithelial cells, and iv) as a tool to answer basic cell functions. We have also reviewed various analytical methods used to carry out proteome analysis, in which 2D-MS and LC-MS/MS approaches were found to be versatile methods to perform high-throughput sample analyses even for a complex gut samples. Further, we present future road map of understanding gut microbes combining meta-proteomics, meta-genomics, meta-transcriptomics and -metabolomics.
Collapse
Affiliation(s)
- K Sri Vinusha
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - K Deepika
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - T Sudhakar Johnson
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - Ganesh K Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.,GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.,GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal.,Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan.,Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
37
|
Genome-Wide Comparison Reveals a Probiotic Strain Lactococcus Lactis WFLU12 Isolated from the Gastrointestinal Tract of Olive Flounder (Paralichthys Olivaceus) Harboring Genes Supporting Probiotic Action. Mar Drugs 2018; 16:md16050140. [PMID: 29695124 PMCID: PMC5983272 DOI: 10.3390/md16050140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/06/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
Our previous study has shown that dietary supplementation with Lactococcus lactis WFLU12 can enhance the growth of olive flounder and its resistance against streptococcal infection. The objective of the present study was to use comparative genomics tools to investigate genomic characteristics of strain WFLU12 and the presence of genes supporting its probiotic action using sequenced genomes of L. lactis strains. Dispensable and singleton genes of strain WFLU12 were found to be more enriched in genes associated with metabolism (e.g., energy production and conversion, and carbohydrate transport and metabolism) than pooled dispensable and singleton genes in other L. lactis strains, reflecting WFLU12 strain-specific ecosystem origin and its ability to metabolize different energy sources. Strain WFLU12 produced antimicrobial compounds that could inhibit several bacterial fish pathogens. It possessed the nisin gene cluster (nisZBTCIPRKFEG) and genes encoding lysozyme and colicin V. However, only three other strains (CV56, IO-1, and SO) harbor a complete nisin gene cluster. We also found that L. lactis WFLU12 possessed many other important functional genes involved in stress responses to the gastrointestinal tract environment, dietary energy extraction, and metabolism to support the probiotic action of this strain found in our previous study. This strongly indicates that not all L. lactis strains can be used as probiotics. This study highlights comparative genomics approaches as very useful and powerful tools to select probiotic candidates and predict their probiotic effects.
Collapse
|
38
|
Pinto E, Anselmo M, Calha M, Bottrill A, Duarte I, Andrew PW, Faleiro ML. The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. MICROBIOLOGY-SGM 2017; 163:161-174. [PMID: 28270263 DOI: 10.1099/mic.0.000412] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.
Collapse
Affiliation(s)
- Elsa Pinto
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisol Anselmo
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Manuela Calha
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Andrew Bottrill
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester LE1 7RH, UK
| | - Isabel Duarte
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK
| | - Maria L Faleiro
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
39
|
Jia FF, Zhang LJ, Pang XH, Gu XX, Abdelazez A, Liang Y, Sun SR, Meng XC. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Genomics 2017; 109:432-437. [PMID: 28676278 DOI: 10.1016/j.ygeno.2017.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
Abstract
Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry.
Collapse
Affiliation(s)
- Fang-Fang Jia
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Lu-Ji Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xue-Hui Pang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Xi Gu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China; College of Food Science and Technology, Agricultural University of Hebei, Baoding 071000, China
| | - Amro Abdelazez
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Department of Dairy Microbiology, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Yu Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Si-Rui Sun
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
40
|
Hagemann L, Gründel A, Jacobs E, Dumke R. The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix. Pathog Dis 2017; 75:2996644. [PMID: 28204467 DOI: 10.1093/femspd/ftx017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae is a common cause of community-acquired infections of the human respiratory tract. The strongly reduced genome of the cell wall-less bacteria results in limited metabolic pathways and a small number of known virulence factors. In addition to the well-characterized adhesion apparatus and the expression of tissue-damaging substances, surface-exposed proteins with a primary function in cytosol-located processes such as glycolysis have been attracting attention in recent years. Due to interactions with host factors, it has been suggested that these bacterial proteins contribute to pathogenesis. Here, we investigated the chaperones GroEL and DnaK of M. pneumoniae as candidates for such moonlighting proteins. After successful expression in Escherichia coli and production of polyclonal antisera, the localization of both chaperones on the surface of bacteria was confirmed. Binding of recombinant GroEL and DnaK to human A549 cells, to plasminogen as well as to vitronectin, fibronectin, fibrinogen, lactoferrin and laminin was demonstrated. In the presence of both recombinant proteins and host activators, plasminogen can be activated to the protease plasmin, which is able to degrade vitronectin and fibrinogen. The results of the study extend the spectrum of surface-exposed proteins in M. pneumoniae and indicate an additional role of both chaperones in infection processes.
Collapse
|
41
|
Oliveira LC, Saraiva TDL, Silva WM, Pereira UP, Campos BC, Benevides LJ, Rocha FS, Figueiredo HCP, Azevedo V, Soares SC. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS One 2017; 12:e0175116. [PMID: 28384209 PMCID: PMC5383145 DOI: 10.1371/journal.pone.0175116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods.
Collapse
Affiliation(s)
- Letícia C. Oliveira
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Tessália D. L. Saraiva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Wanderson M. Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Ulisses P. Pereira
- Department of Preventive Veterinary Medicine, State University of Londrina, Londrina—PR, Brazil
| | - Bruno C. Campos
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Leandro J. Benevides
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Flávia S. Rocha
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Henrique C. P. Figueiredo
- Official Laboratory of Fisheries Ministry—Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Siomar C. Soares
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba—MG, Brazil
- * E-mail:
| |
Collapse
|
42
|
Ghazaei C. Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens. J Med Microbiol 2017; 66:259-265. [PMID: 28086078 DOI: 10.1099/jmm.0.000429] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins are highly conserved, stress-inducible, ubiquitous proteins that maintain homeostasis in both eukaryotes and prokaryotes. Hsp70 proteins belong to the heat shock protein family and enhance bacterial survival in hostile environments. Hsp70, known as DnaK in prokaryotes, supports numerous processes such as the assembly and disassembly of protein complexes, the refolding of misfolded and clustered proteins, membrane translocation and the regulation of regulatory proteins. The chaperone-based activity of Hsp70 depends on dynamic interactions between its two domains, known as the ATPase domain and the substrate-binding domain. It also depends on interactions between these domains and other co-chaperone molecules such as the Hsp40 protein family member DnaJ and nucleotide exchange factors. DnaJ is the primary chaperone that interacts with nascent polypeptide chains and functions to prevent their premature release from the ribosome and misfolding before it is targeted by DnaK. Adhesion of bacteria to host cells is mediated by both host and bacterial Hsp70. Following infection of the host, bacterial Hsp70 (DnaK) is in a position to initiate bacterial survival processes and trigger an immune response by the host. Any mutations in the dnaK gene have been shown to decrease the viability of bacteria inside the host. This review will give insights into the structure and mechanism of Hsp70 and its role in regulating the protein activity that contributes to pathogenesis.
Collapse
Affiliation(s)
- Ciamak Ghazaei
- Department of Microbiology, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
43
|
Arena MP, Capozzi V, Spano G, Fiocco D. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl Microbiol Biotechnol 2017; 101:2641-2657. [PMID: 28213732 DOI: 10.1007/s00253-017-8182-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/23/2022]
Abstract
Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria that comprise several species which have evolved in close association with humans (food and lifestyle). While their use to ferment food dates back to very ancient times, in the last decades, LAB have attracted much attention for their documented beneficial properties and for potential biomedical applications. Some LAB are commensal that colonize, stably or transiently, host mucosal surfaces, inlcuding the gut, where they may contribute to host health. In this review, we present and discuss the main factors enabling LAB adaptation to such lifestyle, including the gene reprogramming accompanying gut colonization, the specific bacterial components involved in adhesion and interaction with host, and how the gut niche has shaped the genome of intestine-adapted species. Moreover, the capacity of LAB to colonize abiotic surfaces by forming structured communities, i.e., biofilms, is briefly discussed, taking into account the main bacterial and environmental factors involved, particularly in relation to food-related environments. The vast spread of LAB surface-associated communities and the ability to control their occurrence hold great potentials for human health and food safety biotechnologies.
Collapse
Affiliation(s)
- Mattia Pia Arena
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| |
Collapse
|
44
|
Genomic Microdiversity of Bifidobacterium pseudocatenulatum Underlying Differential Strain-Level Responses to Dietary Carbohydrate Intervention. mBio 2017; 8:mBio.02348-16. [PMID: 28196965 PMCID: PMC5312088 DOI: 10.1128/mbio.02348-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genomic basis of the response to dietary intervention of human gut beneficial bacteria remains elusive, which hinders precise manipulation of the microbiota for human health. After receiving a dietary intervention enriched with nondigestible carbohydrates for 105 days, a genetically obese child with Prader-Willi syndrome lost 18.4% of his body weight and showed significant improvement in his bioclinical parameters. We obtained five isolates (C1, C15, C55, C62, and C95) of one of the most abundantly promoted beneficial species, Bifidobacterium pseudocatenulatum, from a postintervention fecal sample. Intriguingly, these five B. pseudocatenulatum strains showed differential responses during the dietary intervention. Two strains were largely unaffected, while the other three were promoted to different extents by the changes in dietary carbohydrate resources. The differential responses of these strains were consistent with their functional clustering based on the COGs (Clusters of Orthologous Groups), including those involved with the ABC-type sugar transport systems, suggesting that the strain-specific genomic variations may have contributed to the niche adaption. Particularly, B. pseudocatenulatum C15, which had the most diverse types and highest gene copy numbers of carbohydrate-active enzymes targeting plant polysaccharides, had the highest abundance after the dietary intervention. These studies show the importance of understanding genomic diversity of specific members of the gut microbiota if precise nutrition approaches are to be realized. The manipulation of the gut microbiota via dietary approaches is a promising option for improving human health. Our findings showed differential responses of multiple B. pseudocatenulatum strains isolated from the same habitat to the dietary intervention, as well as strain-specific correlations with bioclinical parameters of the host. The comparative genomics revealed a genome-level microdiversity of related functional genes, which may have contributed to these differences. These results highlight the necessity of understanding strain-level differences if precise manipulation of gut microbiota through dietary approaches is to be realized.
Collapse
|
45
|
Górska S, Dylus E, Rudawska A, Brzozowska E, Srutkova D, Schwarzer M, Razim A, Kozakova H, Gamian A. Immunoreactive Proteins of Bifidobacterium longum ssp. longum CCM 7952 and Bifidobacterium longum ssp. longum CCDM 372 Identified by Gnotobiotic Mono-Colonized Mice Sera, Immune Rabbit Sera and Non-immune Human Sera. Front Microbiol 2016; 7:1537. [PMID: 27746766 PMCID: PMC5040718 DOI: 10.3389/fmicb.2016.01537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/14/2016] [Indexed: 12/23/2022] Open
Abstract
The Bifidobacteria show great diversity in the cell surface architecture which may influence the physicochemical properties of the bacterial cell and strain specific properties. The immunomodulatory role of bifidobacteria has been extensively studied, however studies on the immunoreactivity of their protein molecules are very limited. Here, we compared six different methods of protein isolation and purification and we report identification of immunogenic and immunoreactive protein of two human Bifidobacterium longum ssp. longum strains. We evaluated potential immunoreactive properties of proteins employing polyclonal sera obtained from germ free mouse, rabbit and human. The protein yield was isolation method-dependent and the reactivity of proteins detected by SDS-PAGE and Western blotting was heterogeneous and varied between different serum samples. The proteins with the highest immunoreactivity were isolated, purified and have them sequenced. Among the immunoreactive proteins we identified enolase, aspartokinase, pyruvate kinase, DnaK (B. longum ssp. longum CCM 7952) and sugar ABC transporter ATP-binding protein, phosphoglycerate kinase, peptidoglycan synthethase penicillin-binding protein 3, transaldolase, ribosomal proteins and glyceraldehyde 3-phosphate dehydrogenase (B. longum ssp. longum CCDM 372).
Collapse
Affiliation(s)
- Sabina Górska
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences Wroclaw, Poland
| | - Ewa Dylus
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences Wroclaw, Poland
| | - Angelika Rudawska
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences Wroclaw, Poland
| | - Ewa Brzozowska
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences Wroclaw, Poland
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic v. v. i., Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic v. v. i., Novy Hradek, Czech Republic
| | - Agnieszka Razim
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences Wroclaw, Poland
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic v. v. i., Novy Hradek, Czech Republic
| | - Andrzej Gamian
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences Wroclaw, Poland
| |
Collapse
|
46
|
Amund O. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria. Can J Microbiol 2016; 62:715-25. [DOI: 10.1139/cjm-2016-0186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses is crucial probiotic selection criteria. While the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties, such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties.
Collapse
Affiliation(s)
- O.D. Amund
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
47
|
Ruiz L, Hidalgo C, Blanco-Míguez A, Lourenço A, Sánchez B, Margolles A. Tackling probiotic and gut microbiota functionality through proteomics. J Proteomics 2016; 147:28-39. [DOI: 10.1016/j.jprot.2016.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
|
48
|
Westermann C, Gleinser M, Corr SC, Riedel CU. A Critical Evaluation of Bifidobacterial Adhesion to the Host Tissue. Front Microbiol 2016; 7:1220. [PMID: 27547201 PMCID: PMC4974247 DOI: 10.3389/fmicb.2016.01220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/22/2016] [Indexed: 01/15/2023] Open
Abstract
Bifidobacteria are common inhabitants of the human gastrointestinal tract that, despite a long history of research, have not shown any pathogenic potential whatsoever. By contrast, some bifidobacteria are associated with a number of health-related benefits for the host. The reported beneficial effects of bifidobacteria include competitive exclusion of pathogens, alleviation of symptoms of irritable bowel syndrome and inflammatory bowel disease, and modulation of intestinal and systemic immune responses. Based on these effects, bifidobacteria are widely used as probiotics by pharmaceutical and dairy industries. In order to exert a beneficial effect bifidobacteria have to, at least transiently, colonize the host in a sufficient population size. Besides other criteria such as resistance to manufacturing processes and intestinal transit, potential probiotic bacteria are tested for adhesion to the host structures including intestinal epithelial cells, mucus, and extracellular matrix components. In the present review article, we summarize the current knowledge on bifidobacterial structures that mediate adhesion to host tissue and compare these to similar structures of pathogenic bacteria. This reveals that most of the adhesive structures and mechanisms involved in adhesion of bifidobacteria to host tissue are similar or even identical to those employed by pathogens to cause disease. It is thus reasonable to assume that these structures and mechanisms are equally important for commensal or probiotic bacteria and play a similar role in the beneficial effects exerted by bifidobacteria.
Collapse
Affiliation(s)
| | - Marita Gleinser
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin Dublin, Ireland
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| |
Collapse
|
49
|
Ruiz L, Delgado S, Ruas-Madiedo P, Margolles A, Sánchez B. Proteinaceous Molecules Mediating Bifidobacterium-Host Interactions. Front Microbiol 2016; 7:1193. [PMID: 27536282 PMCID: PMC4971063 DOI: 10.3389/fmicb.2016.01193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Bifidobacteria are commensal microoganisms found in the gastrointestinal tract. Several strains have been attributed beneficial traits at local and systemic levels, through pathogen exclusion or immune modulation, among other benefits. This has promoted a growing industrial and scientific interest in bifidobacteria as probiotic supplements. However, the molecular mechanisms mediating this cross-talk with the human host remain unknown. High-throughput technologies, from functional genomics to transcriptomics, proteomics, and interactomics coupled to the development of both in vitro and in vivo models to study the dynamics of the intestinal microbiota and their effects on host cells, have eased the identification of key molecules in these interactions. Numerous secreted or surface-associated proteins or peptides have been identified as potential mediators of bifidobacteria-host interactions and molecular cross-talk, directly participating in sensing environmental factors, promoting intestinal colonization, or mediating a dialogue with mucosa-associated immune cells. On the other hand, bifidobacteria induce the production of proteins in the intestine, by epithelial or immune cells, and other gut bacteria, which are key elements in orchestrating interactions among bifidobacteria, gut microbiota, and host cells. This review aims to give a comprehensive overview on proteinaceous molecules described and characterized to date, as mediators of the dynamic interplay between bifidobacteria and the human host, providing a framework to identify knowledge gaps and future research needs.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Nutrition, Food Science and Food Technology, Universidad Complutense de Madrid Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
50
|
Kinoshita H, Ohuchi S, Arakawa K, Watanabe M, Kitazawa H, Saito T. Isolation of lactic acid bacteria bound to the porcine intestinal mucosa and an analysis of their moonlighting adhesins. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 35:185-196. [PMID: 27867805 PMCID: PMC5107636 DOI: 10.12938/bmfh.16-012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/10/2016] [Indexed: 12/20/2022]
Abstract
The adhesion of lactic acid bacteria (LAB) to the intestinal mucosa is one of the criteria in selecting for probiotics. Eighteen LAB were isolated from porcine
intestinal mucin (PIM): ten strains of Lactobacillus, six strains of Weissella, and two strains of
Streptococcus. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for phosphate-buffered saline (PBS) extracts from
the LAB, many bands were detected in half of the samples, while a few and/or no clear bands were detected in the other half. All six of the selected LAB showed
adhesion to PIM. L. johnsonii MYU 214 and MYU 221 showed adhesion at more than 10%. W. viridescens MYU 208, L.
reuteri MYU 213, L. mucosae MYU 225, and L. agilis MYU 227 showed medium levels of adhesion at 5.9–8.3%. In a
comprehensive analysis for the adhesins in the PBS extracts using a receptor overlay analysis, many moonlighting proteins were detected and identified as
candidates for adhesins: GroEL, enolase, and elongation factor Tu in MYU 208; peptidase C1, enolase, formyl-CoA transferase, phosphoglyceromutase,
triosephosphate isomerase, and phosphofructokinase in MYU 221; and DnaK, enolase, and phosphoglycerate kinase in MYU 227. These proteins in the PBS extracts,
which included such things as molecular chaperones and glycolytic enzymes, may play important roles as adhesins.
Collapse
Affiliation(s)
- Hideki Kinoshita
- Laboratory of Food Biochemistry, Department of Bioscience, School of Agriculture, Tokai University, Kawayo, Minami Aso-mura, Aso-gun, Kumamoto, Japan
| | - Satoko Ohuchi
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Kensuke Arakawa
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama, Japan
| | - Masamichi Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, Japan
| | - Tadao Saito
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|