1
|
Sethi SC, Bharati M, Kumar Y, Yadav U, Saini H, Alam P, Komath SS. The ER-Resident Ras Inhibitor 1 (Eri1) of Candida albicans Inhibits Hyphal Morphogenesis via the Ras-Independent cAMP-PKA Pathway. ACS Infect Dis 2024; 10:3528-3543. [PMID: 39119676 DOI: 10.1021/acsinfecdis.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Ras signaling and glycosylphosphatidylinositol (GPI) biosynthesis are mutually inhibitory in S. cerevisiae (Sc). The inhibition is mediated via an interaction of yeast Ras2 with the Eri1 subunit of its GPI-N-acetylglucosaminyl transferase (GPI-GnT), the enzyme catalyzing the very first GPI biosynthetic step. In contrast, Ras signaling and GPI biosynthesis in C. albicans (Ca) are mutually activated and together control the virulence traits of the human fungal pathogen. What might be the role of Eri1 in this pathogen? The present manuscript addresses this question while simultaneously characterizing the cellular role of CaEri1. It is either nonessential or required at very low levels for cell viability in C. albicans. Severe depletion of CaEri1 results in reduced GPI biosynthesis and cell wall defects. It also produces hyperfilamentation phenotypes in Spider medium as well as in bicarbonate medium containing 5% CO2, suggesting that both the Ras-dependent and Ras-independent cAMP-PKA pathways for hyphal morphogenesis are activated in these cells. Pull-down and acceptor-photobleaching FRET experiments suggest that CaEri1 does not directly interact with CaRas1 but does so through CaGpi2, another GPI-GnT subunit. We showed previously that CaGpi2 is downstream of CaEri1 in cross talk with CaRas1 and for Ras-dependent hyphal morphogenesis. Here we show that CaEri1 is downstream of all GPI-GnT subunits in inhibiting Ras-independent filamentation. CaERI1 also participates in intersubunit transcriptional cross talk within the GPI-GnT, a feature unique to C. albicans. Virulence studies using G. mellonella larvae show that a heterozygous strain of CaERI1 is better cleared by the host and is attenuated in virulence.
Collapse
Affiliation(s)
| | - Monika Bharati
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yatin Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Usha Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Harshita Saini
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Parvez Alam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Komath SS. To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae. J Biol Chem 2024; 300:107444. [PMID: 38838772 PMCID: PMC11294708 DOI: 10.1016/j.jbc.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.
Collapse
|
3
|
Costa-Orlandi CB, Bila NM, Bonatti JLC, Vaso CO, Santos MB, Polaquini CR, Santoni Biasioli MM, Herculano RD, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJS. Membranolytic Activity Profile of Nonyl 3,4-Dihydroxybenzoate: A New Anti-Biofilm Compound for the Treatment of Dermatophytosis. Pharmaceutics 2023; 15:pharmaceutics15051402. [PMID: 37242644 DOI: 10.3390/pharmaceutics15051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 05/28/2023] Open
Abstract
The ability of dermatophytes to live in communities and resist antifungal drugs may explain treatment recurrence, especially in onychomycosis. Therefore, new molecules with reduced toxicity that target dermatophyte biofilms should be investigated. This study evaluated nonyl 3,4-dihydroxybenzoate (nonyl) susceptibility and mechanism of action on planktonic cells and biofilms of T. rubrum and T. mentagrophytes. Metabolic activities, ergosterol, and reactive oxygen species (ROS) were quantified, and the expression of genes encoding ergosterol was determined by real-time PCR. The effects on the biofilm structure were visualized using confocal electron microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). T. rubrum and T. mentagrophytes biofilms were susceptible to nonyl and resistant to fluconazole, griseofulvin (all strains), and terbinafine (two strains). The SEM results revealed that nonyl groups seriously damaged the biofilms, whereas synthetic drugs caused little or no damage and, in some cases, stimulated the development of resistance structures. Confocal microscopy showed a drastic reduction in biofilm thickness, and transmission electron microscopy results indicated that the compound promoted the derangement and formation of pores in the plasma membrane. Biochemical and molecular assays indicated that fungal membrane ergosterol is a nonyl target. These findings show that nonyl 3,4-dihydroxybenzoate is a promising antifungal compound.
Collapse
Affiliation(s)
- Caroline B Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Níura M Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
- Department of Para-Clinic, School of Veterinary, Eduardo Modlane University (UEM), Maputo 257, Mozambique
| | - Jean Lucas C Bonatti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Carolina O Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Mariana B Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mariana M Santoni Biasioli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Rondinelli D Herculano
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Maria José S Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| |
Collapse
|
4
|
Fun30 and Rtt109 Mediate Epigenetic Regulation of the DNA Damage Response Pathway in C. albicans. J Fungi (Basel) 2022; 8:jof8060559. [PMID: 35736042 PMCID: PMC9225650 DOI: 10.3390/jof8060559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Fun30, an ATP-dependent chromatin remodeler from S. cerevisiae, is known to mediate both regulation of gene expression as well as DNA damage response/repair. The Fun30 from C. albicans has not yet been elucidated. We show that C. albicans Fun30 is functionally homologous to both S. cerevisiae Fun30 and human SMARCAD1. Further, C. albicans Fun30 can mediate double-strand break end resection as well as regulate gene expression. This protein regulates transcription of RTT109, TEL1, MEC1, and SNF2-genes that encode for proteins involved in DNA damage response and repair pathways. The regulation mediated by C. albicans Fun30 is dependent on its ATPase activity. The expression of FUN30, in turn, is regulated by histone H3K56 acetylation catalyzed by Rtt109 and encoded by RTT109. The RTT109Hz/FUN30Hz mutant strain shows sensitivity to oxidative stress and resistance to MMS as compared to the wild-type strain. Quantitative PCR showed that the sensitivity to oxidative stress results from downregulation of MEC1, RAD9, MRC1, and RAD5 expression; ChIP experiments showed that Fun30 but not H3K56ac regulates the expression of these genes in response to oxidative stress. In contrast, upon treatment with MMS, the expression of RAD9 is upregulated, which is modulated by both Fun30 and H3K56 acetylation. Thus, Fun30 and H3K56 acetylation mediate the response to genotoxic agents in C. albicans by regulating the expression of DNA damage response and repair pathway genes.
Collapse
|
5
|
Role of Protein Glycosylation in Interactions of Medically Relevant Fungi with the Host. J Fungi (Basel) 2021; 7:jof7100875. [PMID: 34682296 PMCID: PMC8541085 DOI: 10.3390/jof7100875] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/09/2023] Open
Abstract
Protein glycosylation is a highly conserved post-translational modification among organisms. It plays fundamental roles in many biological processes, ranging from protein trafficking and cell adhesion to host–pathogen interactions. According to the amino acid side chain atoms to which glycans are linked, protein glycosylation can be divided into two major categories: N-glycosylation and O-glycosylation. However, there are other types of modifications such as the addition of GPI to the C-terminal end of the protein. Besides the importance of glycoproteins in biological functions, they are a major component of the fungal cell wall and plasma membrane and contribute to pathogenicity, virulence, and recognition by the host immunity. Given that this structure is absent in host mammalian cells, it stands as an attractive target for developing selective compounds for the treatment of fungal infections. This review focuses on describing the relationship between protein glycosylation and the host–immune interaction in medically relevant fungal species.
Collapse
|
6
|
Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit Rev Microbiol 2021; 47:323-337. [PMID: 33587857 DOI: 10.1080/1040841x.2021.1884641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Fluconazole has characteristics that make it widely used in the clinical treatment of C. albicans infections. However, fluconazole has only a fungistatic activity in C. albicans, therefore, in the long-term treatment of C. albicans infection with fluconazole, C. albicans has the potential to acquire fluconazole resistance. A promising approach to increase fluconazole's efficacy is identifying potential targets of drugs that can enhance the antifungal effect of fluconazole, or even make the drug fungicidal. In this review, we systematically provide a global overview of potential targets of drugs synergistic with fluconazole in C. albicans, identify new avenues for research on fluconazole potentiation, and highlight the promise of combinatorial strategies with fluconazole in combatting C. albicans infections.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Evolutionary Overview of Molecular Interactions and Enzymatic Activities in the Yeast Cell Walls. Int J Mol Sci 2020; 21:ijms21238996. [PMID: 33256216 PMCID: PMC7730094 DOI: 10.3390/ijms21238996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
Fungal cell walls are composed of a polysaccharide network that serves as a scaffold in which different glycoproteins are embedded. Investigation of fungal cell walls, besides simple identification and characterization of the main cell wall building blocks, covers the pathways and regulations of synthesis of each individual component of the wall and biochemical reactions by which they are cross-linked and remodeled in response to different growth phase and environmental signals. In this review, a survey of composition and organization of so far identified and characterized cell wall components of different yeast genera including Saccharomyces, Candida, Kluyveromyces, Yarrowia, and Schizosaccharomyces are presented with the focus on their cell wall proteomes.
Collapse
|
8
|
Involvement of BbTpc1, an important Zn(II) 2Cys 6 transcriptional regulator, in chitin biosynthesis, fungal development and virulence of an insect mycopathogen. Int J Biol Macromol 2020; 166:1162-1172. [PMID: 33159944 DOI: 10.1016/j.ijbiomac.2020.10.271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 10/31/2020] [Indexed: 01/27/2023]
Abstract
Chitin is one of the major components of the fungal cell wall and contributes to the mechanical strength and shape of the fungal cell. Zn(II)2Cys6 transcription factors are unique to the fungal kingdom and have a variety of functions in some fungi. However, the mechanisms by which Zn(II)2Cys6 proteins affect entomopathogenic fungi are largely unknown. Here, we characterized the Zn(II)2Cys6 transcription factor BbTpc1 in the insect pathogenic fungus Beauveria bassiana. Disruption of BbTpc1 resulted in a distinct changes in vegetative growth and septation patterns, and a significant decrease in conidia and blastospore yield. The ΔBbTpc1 mutant displayed impaired resistance to chemical stresses and heat shock and attenuated virulence in topical and intrahemocoel injection assays. Importantly, the ΔBbTpc1 mutant had an abnormal cell wall with altered wall thickness and chitin synthesis, which were accompanied by transcriptional repression of the chitin synthetase family genes. In addition, comparative transcriptomics revealed that deletion of BbTpc1 altered fungal asexual reproduction via different genetic pathways. These data revealed that BbTpc1 regulates fungal development, chitin synthesis and biological control potential in B. bassiana.
Collapse
|
9
|
Huang X, Liu Y, Ni T, Li L, Yan L, An M, Zhang D, Jiang Y. 11g, a Potent Antifungal Candidate, Enhances Candida albicans Immunogenicity by Unmasking β-Glucan in Fungal Cell Wall. Front Microbiol 2020; 11:1324. [PMID: 32695076 PMCID: PMC7338940 DOI: 10.3389/fmicb.2020.01324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
In the course of optimizing GPI biosynthesis inhibitors, we designed and synthetized a 2-aminonicotinamide derivative named 11g. After evaluating the antifungal activity of compound 11g in vitro, we investigated the influences of 11g on fungi immunogenicity. In addition, we also took advantage of murine systemic candidiasis model to investigate the protective effects of 11g in vivo. Results show that 11g exhibited potent antifungal activity both in vitro and in vivo. Further study shows that 11g caused the unmasking of fungi β-glucan layer, leading to stronger immune responses in macrophages through Dectin-1. These results suggest that 11g is a very promising antifungal candidate, which assists in eliciting stronger immune responses to help host immune system disposing pathogens. The discovery of 11g might expand the toolbox of fungal infection treatment.
Collapse
Affiliation(s)
- Xin Huang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingjunhong Ni
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Li
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Yan
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Maomao An
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dazhi Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Sah SK, Shefali S, Yadav A, Som P, Komath SS. The caspase-like Gpi8 subunit of Candida albicans GPI transamidase is a metal-dependent endopeptidase. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30268-0. [PMID: 32081427 DOI: 10.1016/j.bbrc.2020.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
GPI anchored proteins (GPI-APs) act at the frontiers of cells, decoding environmental cues and determining host-pathogen interactions in several lower eukaryotes. They are also essential for viability in lower eukaryotes. The GPI biosynthetic pathway begins at the ER and follows a roughly linear pathway to generate the complete precursor (CP) glycolipid. The GPI transamidase (GPIT) transfers this glycolipid to the C-terminal end of newly translated proteins after removing their GPI attachment signal sequence (SS). The GPIT subunit that cleaves SS is Gpi8, a protein with a conserved Cys/His catalytic dyad typical of cysteine proteases. A CaGPI8 heterozygous mutant accumulates CPs and has reduced cell surface GPI-APs. Using a simple cell-free assay, we demonstrate that the heterozygous CaGPI8 strain has low endopeptidase activity as well. The revertant strain is restored in all these phenotypes. CaGpi8 is also shown to be a metalloenzyme, whose protease activity is sensitive to agents that modify Cys/His residues.
Collapse
Affiliation(s)
- Sudisht Kumar Sah
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shailja Shefali
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anshuman Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Punnag Som
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Jain P, Garai P, Sethi SC, Naqvi N, Yadav B, Kumar P, Singh SL, Yadav U, Bhatnagar S, Rahul, Puri N, Muthuswami R, Komath SS. Modulation of azole sensitivity and filamentation by GPI15, encoding a subunit of the first GPI biosynthetic enzyme, in Candida albicans. Sci Rep 2019; 9:8508. [PMID: 31186458 PMCID: PMC6559964 DOI: 10.1038/s41598-019-44919-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are important for virulence of many pathogenic organisms including the human fungal pathogen, Candida albicans. GPI biosynthesis is initiated by a multi-subunit enzyme, GPI-N-acetylglucosaminyltransferase (GPI-GnT). We showed previously that two GPI-GnT subunits, encoded by CaGPI2 and CaGPI19, are mutually repressive. CaGPI19 also co-regulates CaERG11, the target of azoles while CaGPI2 controls Ras signaling and hyphal morphogenesis. Here, we investigated the role of a third subunit. We show that CaGpi15 is functionally homologous to Saccharomyces cerevisiae Gpi15. CaGPI15 is a master activator of CaGPI2 and CaGPI19. Hence, CaGPI15 mutants are azole-sensitive and hypofilamentous. Altering CaGPI19 or CaGPI2 expression in CaGPI15 mutant can elicit alterations in azole sensitivity via CaERG11 expression or hyphal morphogenesis, respectively. Thus, CaGPI2 and CaGPI19 function downstream of CaGPI15. One mode of regulation is via H3 acetylation of the respective GPI-GnT gene promoters by Rtt109. Azole sensitivity of GPI-GnT mutants is also due to decreased H3 acetylation at the CaERG11 promoter by Rtt109. Using double heterozygous mutants, we also show that CaGPI2 and CaGPI19 can independently activate CaGPI15. CaGPI15 mutant is more susceptible to killing by macrophages and epithelial cells and has reduced ability to damage either of these cell lines relative to the wild type strain, suggesting that it is attenuated in virulence.
Collapse
Affiliation(s)
- Priyanka Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pramita Garai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Nilofer Naqvi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Bhawna Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Post-doctoral Fellow, Fungal Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Pravin Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Research associate, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sneh Lata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Usha Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shilpi Bhatnagar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rahul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Muthuswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Hasegawa S, Yamada Y, Iwanami N, Nakayama Y, Nakayama H, Iwatani S, Oura T, Kajiwara S. Identification and functional characterization of Candida albicans mannose-ethanolamine phosphotransferase (Mcd4p). Curr Genet 2019; 65:1251-1261. [PMID: 31073667 DOI: 10.1007/s00294-019-00987-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/28/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is an important compound for the growth of fungi, because GPI-anchored proteins including glycosyltransferases and adhesins are involved in cell-wall integrity, adhesion, and nutrient uptake in this organism. In this study, we examined orf19.5244 in the genome database of the pathogenic fungus Candida albicans, a homologue of the Saccharomyces cerevisiae mannose-ethanolamine phosphotransferase gene, MCD4, which plays a role in GPI synthesis. Expression of this homologue, designated CaMCD4, restored cell growth in a defective conditional mcd4 mutant of S. cerevisiae, Scmcd4t, in which expression of native MCD4 was repressed in the presence of doxycycline (Dox). Analysis of radiolabeled lipids showed that the accumulation of abnormal GPI anchor precursors in Scmcd4t decreased markedly upon expression of CaMCD4. Moreover, we constructed a single mutant (Camcd4/CaMCD4) and a conditional double mutant (Camcd4/Camcd4t) at the MCD4 locus of C. albicans. Repression of CaMCD4 expression by Dox led to a decrease in growth and appearance of abnormal morphology in C. albicans, both in vitro and in a silkworm infection model. These results suggest that CaMcd4p is indispensable for growth of C. albicans both in vitro and in infected hosts and a candidate target for the development of new antifungals.
Collapse
Affiliation(s)
- Satoru Hasegawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yuimi Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Noboru Iwanami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yusuke Nakayama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hironobu Nakayama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minami-Tamagakicho, 3500-3, Suzuka, Mie, 513-8670, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takahiro Oura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
13
|
Komath SS, Singh SL, Pratyusha VA, Sah SK. Generating anchors only to lose them: The unusual story of glycosylphosphatidylinositol anchor biosynthesis and remodeling in yeast and fungi. IUBMB Life 2019; 70:355-383. [PMID: 29679465 DOI: 10.1002/iub.1734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present ubiquitously at the cell surface in all eukaryotes. They play a crucial role in the interaction of the cell with its external environment, allowing the cell to receive signals, respond to challenges, and mediate adhesion. In yeast and fungi, they also participate in the structural integrity of the cell wall and are often essential for survival. Roughly four decades after the discovery of the first GPI-APs, this review provides an overview of the insights gained from studies of the GPI biosynthetic pathway and the future challenges in the field. In particular, we focus on the biosynthetic pathway in Saccharomyces cerevisiae, which has for long been studied as a model organism. Where available, we also provide information about the GPI biosynthetic steps in other yeast/ fungi. Although the core structure of the GPI anchor is conserved across organisms, several variations are built into the biosynthetic pathway. The present Review specifically highlights these variations and their implications. There is growing evidence to suggest that several phenotypes are common to GPI deficiency and should be expected in GPI biosynthetic mutants. However, it appears that several phenotypes are unique to a specific step in the pathway and may even be species-specific. These could suggest the points at which the GPI biosynthetic pathway intersects with other important cellular pathways and could be points of regulation. They could be of particular significance in the study of pathogenic fungi and in identification of new and specific antifungal drugs/ drug targets. © 2018 IUBMB Life, 70(5):355-383, 2018.
Collapse
Affiliation(s)
| | - Sneh Lata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudisht Kumar Sah
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
Yadav U, Rai TK, Sethi SC, Chandraker A, Khan MA, Komath SS. Characterising N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12), the enzyme that catalyses the second step of GPI biosynthesis in Candida albicans. FEMS Yeast Res 2018; 18:5045028. [PMID: 29945236 DOI: 10.1093/femsyr/foy067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/23/2018] [Indexed: 01/01/2023] Open
Abstract
Candida albicans N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12) recognises N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) from Saccharomyces cerevisiae and is able to complement ScGPI12 function. Both N- and C-terminal ends of CaGpi12 are important for its function. CaGpi12 was biochemically characterised using rough endoplasmic reticulum microsomes prepared from BWP17 strain of C. albicans. CaGpi12 is optimally active at 30°C and pH 7.5. It is a metal-dependent enzyme that is stimulated by divalent cations but shows no preference for Zn2+ unlike the mammalian homologue. It irreversibly loses activity upon incubation with a metal chelator. Two conserved motifs, HPDDE and HXXH, are both important for its function in the cell. CaGPI12 is essential for growth and viability of C. albicans. Its loss causes reduction of GlcNAc-PI de-N-acetylase activity, cell wall defects and filamentation defects. The filamentation defects could be specifically correlated to an upregulation of the HOG1 pathway.
Collapse
Affiliation(s)
- Usha Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Tarun Kumar Rai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | | | - Anupriya Chandraker
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Mohd Ashraf Khan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
15
|
Jain P, Sethi SC, Pratyusha VA, Garai P, Naqvi N, Singh S, Pawar K, Puri N, Komath SS. Ras signaling activates glycosylphosphatidylinositol (GPI) anchor biosynthesis via the GPI- N-acetylglucosaminyltransferase (GPI-GnT) in Candida albicans. J Biol Chem 2018; 293:12222-12238. [PMID: 29907567 DOI: 10.1074/jbc.ra117.001225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Indexed: 01/08/2023] Open
Abstract
The ability of Candida albicans to switch between yeast to hyphal form is a property that is primarily associated with the invasion and virulence of this human pathogenic fungus. Several glycosylphosphatidylinositol (GPI)-anchored proteins are expressed only during hyphal morphogenesis. One of the major pathways that controls hyphal morphogenesis is the Ras-signaling pathway. We examine the cross-talk between GPI anchor biosynthesis and Ras signaling in C. albicans. We show that the first step of GPI biosynthesis is activated by Ras in C. albicans This is diametrically opposite to what is reported in Saccharomyces cerevisiae Of the two C. albicans Ras proteins, CaRas1 alone activates GPI-GnT activity; activity is further stimulated by constitutively activated CaRas1. CaRas1 localized to the cytoplasm or endoplasmic reticulum (ER) is sufficient for GPI-GnT activation. Of the six subunits of the GPI-N-acetylglucosaminyltransferase (GPI-GnT) that catalyze the first step of GPI biosynthesis, CaGpi2 is the key player involved in activating Ras signaling and hyphal morphogenesis. Activation of Ras signaling is independent of the catalytic competence of GPI-GnT. This too is unlike what is observed in S. cerevisiae where multiple subunits were identified as inhibiting Ras2. Fluorescence resonance energy transfer (FRET) studies indicate a specific physical interaction between CaRas1 and CaGpi2 in the ER, which would explain the ability of CaRas1 to activate GPI-GnT. CaGpi2, in turn, promotes activation of the Ras-signaling pathway and hyphal morphogenesis. The Cagpi2 mutant is also more susceptible to macrophage-mediated killing, and macrophage cells show better survival when co-cultured with Cagpi2.
Collapse
Affiliation(s)
- Priyanka Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | | - Pramita Garai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Nilofer Naqvi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sonali Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Kalpana Pawar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
16
|
Ras hyperactivation versus overexpression: Lessons from Ras dynamics in Candida albicans. Sci Rep 2018; 8:5248. [PMID: 29588468 PMCID: PMC5869725 DOI: 10.1038/s41598-018-23187-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/06/2018] [Indexed: 12/25/2022] Open
Abstract
Ras signaling in response to environmental cues is critical for cellular morphogenesis in eukaryotes. This signaling is tightly regulated and its activation involves multiple players. Sometimes Ras signaling may be hyperactivated. In C. albicans, a human pathogenic fungus, we demonstrate that dynamics of hyperactivated Ras1 (Ras1G13V or Ras1 in Hsp90 deficient strains) can be reliably differentiated from that of normal Ras1 at (near) single molecule level using fluorescence correlation spectroscopy (FCS). Ras1 hyperactivation results in significantly slower dynamics due to actin polymerization. Activating actin polymerization by jasplakinolide can produce hyperactivated Ras1 dynamics. In a sterol-deficient hyperfilamentous GPI mutant of C. albicans too, Ras1 hyperactivation results from Hsp90 downregulation and causes actin polymerization. Hyperactivated Ras1 co-localizes with G-actin at the plasma membrane rather than with F-actin. Depolymerizing actin with cytochalasin D results in faster Ras1 dynamics in these and other strains that show Ras1 hyperactivation. Further, ergosterol does not influence Ras1 dynamics.
Collapse
|
17
|
Abstract
The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH2-β-PI, GlcNCONH2-(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.
Collapse
Affiliation(s)
- Usha Yadav
- a Department of Microbiology , University of Delhi , New Delhi , India
| | - Mohd Ashraf Khan
- b Department of Biotechnology , Government Degree College , Anantnag , India
| |
Collapse
|
18
|
Ni T, Li R, Xie F, Zhao J, Huang X, An M, Zang C, Cai Z, Zhang D, Jiang Y. Synthesis and Biological Evaluation of Novel 2-Aminonicotinamide Derivatives as Antifungal Agents. ChemMedChem 2017; 12:319-326. [PMID: 28071858 DOI: 10.1002/cmdc.201600545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Indexed: 01/21/2023]
Abstract
Based on the structures of the reported compounds G884 [N-(3-(pentan-2-yloxy)phenyl)nicotinamide], E1210 [3-(3-(4-((pyridin-2-yloxy)methyl)benzyl)isoxazol-5-yl)pyridin-2-amine], and 10 b [2-amino-N-((5-(3-fluorophenoxy)thiophen-2-yl)methyl)nicotinamide], which inhibit the biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins in fungi, a series of novel 2-aminonicotinamide derivatives were designed, synthesized, and evaluated for in vitro antifungal activity. Most of these compounds were found to exhibit potent in vitro antifungal activity against Candida albicans, with MIC80 values ranging from 0.0313 to 4.0 μg mL-1 . In particular, compounds 11 g [2-amino-N-((5-(((2-fluorophenyl)amino)methyl)thiophen-2-yl)methyl)nicotinamide] and 11 h [2-amino-N-((5-(((3-fluorophenyl)amino)methyl)thiophen-2-yl)methyl)nicotinamide] displayed excellent activity against C. albicans, with MIC80 values of 0.0313 μg mL-1 , and exhibited broad-spectrum antifungal activity against fluconazole-resistant C. albicans, C. parapsilosis, C. glabrata, and Cryptococcus neoformans, with a MIC80 range of 0.0313-2.0 μg mL-1 . Further studies by electron microscopy and laser confocal microscopy indicated that compound 11 g targets the cell wall and decreases GPI anchor content on the cell surface of C. albicans.
Collapse
Affiliation(s)
- Tingjunhong Ni
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Ran Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Fei Xie
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jing Zhao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350112, China
| | - Xin Huang
- Department of Pharmacology, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Maomao An
- Department of Pharmacology, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Chengxu Zang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Zhan Cai
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Dazhi Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350112, China
| | - Yuanying Jiang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| |
Collapse
|
19
|
Singh SL, Rai RC, Sah SK, Komath SS. The catalytic subunit of the first mannosyltransferase in the GPI biosynthetic pathway affects growth, cell wall integrity and hyphal morphogenesis in Candida albicans. Yeast 2016; 33:365-83. [PMID: 27337589 DOI: 10.1002/yea.3179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/04/2016] [Accepted: 06/05/2016] [Indexed: 01/13/2023] Open
Abstract
CaGpi14 is the catalytic subunit of the first mannosyltransferase that is involved in the glycosylphosphatidylinositol (GPI) biosynthetic pathway in Candida albicans. We show that CaGPI14 is able to rescue a conditionally lethal gpi14 mutant of Saccharomyces cerevisiae, unlike its mammalian homologue. The depletion of this enzyme in C. albicans leads to severe growth defects, besides causing deficiencies in GPI anchor levels. In addition, CaGpi14 depletion results in cell wall defects and upregulation of the cell wall integrity response pathway. This in turn appears to trigger the osmotic-stress dependent activation of the HOG1 pathway and an upregulation of HOG1 as well as its downstream target, SKO1, a known suppressor of expression of hyphae-specific genes. Consistent with this, mutants of CaGPI14 are unable to undergo hyphal transformations in different hyphae-inducing media, under conditions that produce abundant hyphae in the wild-type cells. Hyphal defects in the CaGPI14 mutants could not be attributed either to reduced protein kinase C activation or to defective Ras signalling in these cells but appeared to be driven by perturbations in the HOG1 pathway. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sneh Lata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramesh Chandra Rai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
20
|
Yadav A, Singh SL, Yadav B, Komath SS. Saccharomyces cerevisiae Gpi2, an accessory subunit of the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis, selectively complements some of the functions of its homolog in Candida albicans. Glycoconj J 2014; 31:497-507. [PMID: 25117514 DOI: 10.1007/s10719-014-9536-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022]
Abstract
GPI2 encodes for one of the six accessory subunits of the GPI-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the first step of GPI biosynthesis in S. cerevisiae and C. albicans. It has been previously reported in S. cerevisiae that this subunit physically interacts with and negatively modulates Ras signaling. On the other hand, studies from our lab have shown that the homologous subunit in C. albicans is a positive modulator of Ras signaling. Are the functions of this subunit therefore strictly species dependent? We present here functional complementation studies on GPI2 from S. cerevisiae and C. albicans that were carried out to address this issue. Expression of CaGPI2 in a ScGPI2 conditional lethal mutant could not restore its growth defects. Likewise, ScGPI2 overexpression in a CaGPI2 heterozygous mutant could not restore its deficient GPI-GnT activity or reverse defects in its cell wall integrity and could only poorly restore filamentation. However, interestingly, ScGPI2 could restore lanosterol demethylase (CaERG11) levels and reverse azole resistance of the CaGPI2 heterozygote. It appeared to do this by regulating levels of another GPI-GnT subunit, CaGPI19, which we have previously shown to be involved in cross-talk with CaERG11. Thus, the effect of CaGPI2 on sterol biosynthesis in C. albicans is independent of its interaction with the GPI-GnT complex and Ras signaling pathways. In addition, the interaction of Gpi2 with other subunits of the GPI-GnT complex as well as with Ras signaling appears to have evolved differently in the two organisms.
Collapse
Affiliation(s)
- Anshuman Yadav
- Sneha Sudha Komath, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | | | |
Collapse
|
21
|
Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal Pathogen Candida albicans. Int J Microbiol 2014; 2014:267497. [PMID: 25104959 PMCID: PMC4106090 DOI: 10.1155/2014/267497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Abstract
Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection.
Collapse
|
22
|
Pooja, Prasher P, Singh P, Pawar K, Vikramdeo KS, Mondal N, Komath SS. Synthesis of amino acid appended indoles: Appreciable anti-fungal activity and inhibition of ergosterol biosynthesis as their probable mode of action. Eur J Med Chem 2014; 80:325-39. [DOI: 10.1016/j.ejmech.2014.04.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/14/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
|
23
|
Yadav B, Bhatnagar S, Ahmad MF, Jain P, Pratyusha VA, Kumar P, Komath SS. First step of glycosylphosphatidylinositol (GPI) biosynthesis cross-talks with ergosterol biosynthesis and Ras signaling in Candida albicans. J Biol Chem 2013; 289:3365-82. [PMID: 24356967 DOI: 10.1074/jbc.m113.528802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans is a leading cause of fungal infections worldwide. It has several glycosylphosphatidylinositol (GPI)-anchored virulence factors. Inhibiting GPI biosynthesis attenuates its virulence. Building on our previous work, we explore the interaction of GPI biosynthesis in C. albicans with ergosterol biosynthesis and hyphal morphogenesis. This study is also the first report of transcriptional co-regulation existing between two subunits of the multisubunit enzyme complex, GPI-N-acetylglucosaminyltransferase (GPI-GnT), involved in the first step of GPI anchor biosynthesis in eukaryotes. Using mutational analysis, we show that the accessory subunits, GPI2 and GPI19, of GPI-GnT exhibit opposite effects on ergosterol biosynthesis and Ras signaling (which determines hyphal morphogenesis). This is because the two subunits negatively regulate one another; GPI19 mutants show up-regulation of GPI2, whereas GPI2 mutants show up-regulation of GPI19. Two different models were examined as follows. First, the two GPI-GnT subunits independently interact with ergosterol biosynthesis and Ras signaling. Second, the two subunits mutually regulate one another and thereby regulate sterol levels and Ras signaling. Analysis of double mutants of these subunits indicates that GPI19 controls ergosterol biosynthesis through ERG11 levels, whereas GPI2 determines the filamentation by cross-talk with Ras1 signaling. Taken together, this suggests that the first step of GPI biosynthesis talks to and regulates two very important pathways in C. albicans. This could have implications for designing new antifungal strategies.
Collapse
Affiliation(s)
- Bhawna Yadav
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The composition and organization of the cell walls from Saccharomyces cerevisiae, Candida albicans, Aspergillus fumigatus, Schizosaccharomyces pombe, Neurospora crassa, and Cryptococcus neoformans are compared and contrasted. These cell walls contain chitin, chitosan, β-1,3-glucan, β-1,6-glucan, mixed β-1,3-/β-1,4-glucan, α-1,3-glucan, melanin, and glycoproteins as major constituents. A comparison of these cell walls shows that there is a great deal of variability in fungal cell wall composition and organization. However, in all cases, the cell wall components are cross-linked together to generate a cell wall matrix. The biosynthesis and properties of each of the major cell wall components are discussed. The chitin and glucans are synthesized and extruded into the cell wall space by plasma membrane-associated chitin synthases and glucan synthases. The glycoproteins are synthesized by ER-associated ribosomes and pass through the canonical secretory pathway. Over half of the major cell wall proteins are modified by the addition of a glycosylphosphatidylinositol anchor. The cell wall glycoproteins are also modified by the addition of O-linked oligosaccharides, and their N-linked oligosaccharides are extensively modified during their passage through the secretory pathway. These cell wall glycoprotein posttranslational modifications are essential for cross-linking the proteins into the cell wall matrix. Cross-linking the cell wall components together is essential for cell wall integrity. The activities of four groups of cross-linking enzymes are discussed. Cell wall proteins function as cross-linking enzymes, structural elements, adhesins, and environmental stress sensors and protect the cell from environmental changes.
Collapse
Affiliation(s)
- Stephen J Free
- Department of Biological Sciences, SUNY, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
25
|
Mutual co-regulation between GPI-N-acetylglucosaminyltransferase and ergosterol biosynthesis in Candida albicans. Biochem J 2012; 443:619-25. [DOI: 10.1042/bj20120143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel co-regulation exists between the first step of GPI (glycosylphosphatidylinositol) anchor biosynthesis and the rate-determining step of ergosterol biosynthesis in Candida albicans. Depleting CaGpi19p, an accessory subunit of the enzyme complex that initiates GPI biosynthesis, down-regulates ERG11, altering ergosterol levels and drug response. This effect is specific to CaGpi19p depletion and is not due to cell wall defects or GPI deficiency. Additionally, down-regulation of ERG11 down-regulates CaGPI19 and GPI biosynthesis.
Collapse
|
26
|
E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother 2011; 56:960-71. [PMID: 22143530 DOI: 10.1128/aac.00731-11] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Continued research toward the development of new antifungals that act via inhibition of glycosylphosphatidylinositol (GPI) biosynthesis led to the design of E1210. In this study, we assessed the selectivity of the inhibitory activity of E1210 against Candida albicans GWT1 (Orf19.6884) protein, Aspergillus fumigatus GWT1 (AFUA_1G14870) protein, and human PIG-W protein, which can catalyze the inositol acylation of GPI early in the GPI biosynthesis pathway, and then we assessed the effects of E1210 on key C. albicans virulence factors. E1210 inhibited the inositol acylation activity of C. albicans Gwt1p and A. fumigatus Gwt1p with 50% inhibitory concentrations (IC(50)s) of 0.3 to 0.6 μM but had no inhibitory activity against human Pig-Wp even at concentrations as high as 100 μM. To confirm the inhibition of fungal GPI biosynthesis, expression of ALS1 protein, a GPI-anchored protein, on the surfaces of C. albicans cells treated with E1210 was studied and shown to be significantly lower than that on untreated cells. However, the ALS1 protein levels in the crude extract and the RHO1 protein levels on the cell surface were found to be almost the same. Furthermore, E1210 inhibited germ tube formation, adherence to polystyrene surfaces, and biofilm formation of C. albicans at concentrations above its MIC. These results suggested that E1210 selectively inhibited inositol acylation of fungus-specific GPI which would be catalyzed by Gwt1p, leading to the inhibition of GPI-anchored protein maturation, and also that E1210 suppressed the expression of some important virulence factors of C. albicans, through its GPI biosynthesis inhibition.
Collapse
|
27
|
Ashraf M, Yadav B, Perinthottathil S, Kumar KS, Vats D, Muthuswami R, Komath SS. N-acetyl-D-glucosaminylphosphatidylinositol de-N-acetylase from Entamoeba histolytica: metal alters catalytic rates but not substrate affinity. J Biol Chem 2010; 286:2543-9. [PMID: 21118807 DOI: 10.1074/jbc.c110.178343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PIG-L/GPI12 proteins are endoplasmic reticulum-resident membrane proteins involved in the second step of glycosylphosphatidylinositol anchor biosynthesis in eukaryotes. We show that the Entamoeba histolytica PIG-L protein is optimally active in the acidic pH range. The enzyme has an intrinsic low level of de-N-acetylase activity in the absence of metal and is significantly stimulated by divalent cations. Metal binding induces a large conformational change in the protein that appears to improve catalytic rates while not altering the affinity of the enzyme for its substrate.
Collapse
Affiliation(s)
- Mohammad Ashraf
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | | | | | | | | | |
Collapse
|