1
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2025; 123:177-194. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Strzałka A, Mikołajczyk J, Kowalska K, Skurczyński M, Holmes NA, Jakimowicz D. The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation. Microb Cell Fact 2024; 23:275. [PMID: 39402545 PMCID: PMC11472566 DOI: 10.1186/s12934-024-02549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far. RESULTS In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production. CONCLUSIONS We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.
Collapse
Affiliation(s)
- Agnieszka Strzałka
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Jakub Mikołajczyk
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Klaudia Kowalska
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Michał Skurczyński
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Neil A Holmes
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dagmara Jakimowicz
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
3
|
Duława-Kobeluszczyk J, Strzałka A, Tracz M, Bartyńska M, Pawlikiewicz K, Łebkowski T, Wróbel S, Szymczak J, Zarek A, Małecki T, Jakimowicz D, Szafran M. The activity of CobB1 protein deacetylase contributes to nucleoid compaction in Streptomyces venezuelae spores by increasing HupS affinity for DNA. Nucleic Acids Res 2024; 52:7112-7128. [PMID: 38783097 PMCID: PMC11229371 DOI: 10.1093/nar/gkae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.
Collapse
Affiliation(s)
| | | | - Michał Tracz
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | | | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Sara Wróbel
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Justyna Szymczak
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Anna Zarek
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Tomasz Małecki
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | - Marcin J Szafran
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Nishiyama A, Shimizu M, Narita T, Kodera N, Ozeki Y, Yokoyama A, Mayanagi K, Yamaguchi T, Hakamata M, Shaban A, Tateishi Y, Ito K, Matsumoto S. Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy. Nucleic Acids Res 2024; 52:816-830. [PMID: 38048321 PMCID: PMC10810275 DOI: 10.1093/nar/gkad1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.
Collapse
Affiliation(s)
- Akihito Nishiyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Masahiro Shimizu
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Quantum Beam Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Tomoyuki Narita
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Mariko Hakamata
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Respiratory Medicine and Infectious Disease, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Amina Kaboso Shaban
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Kosuke Ito
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, East Java 60115, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
| |
Collapse
|
5
|
Chaudhary V, Pal AK, Singla M, Ghosh A. Elucidating the role of c-di-AMP in Mycobacterium smegmatis: Phenotypic characterization and functional analysis. Heliyon 2023; 9:e15686. [PMID: 37305508 PMCID: PMC10256829 DOI: 10.1016/j.heliyon.2023.e15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Cyclic-di-AMP (c-di-AMP) is an important secondary messenger molecule that plays a critical role in monitoring several important cellular processes, especially in several Gram-positive bacteria. In this study, we seek to unravel the physiological significance of the molecule c-di-AMP in Mycobacterium smegmatis under different conditions, using strains with altered c-di-AMP levels: c-di-AMP null mutant (ΔdisA) and a c-di-AMP over-expression mutant (Δpde). Our thorough analysis of the mutants revealed that the intracellular concentration of c-di-AMP could determine many basic phenotypes such as colony architecture, cell shape, cell size, membrane permeability etc. Additionally, it was shown to play a significant role in multiple stress adaptation pathways in the case of different DNA and membrane stresses. Our study also revealed how the biofilm phenotypes of M. smegmatis cells are altered with high intracellular c-di-AMP concentration. Next, we checked how c-di-AMP contributes to antibiotic resistance or susceptibility characteristics of M. smegmatis, which was followed by a detailed transcriptome profile analysis to reveal key genes and pathways such as translation, arginine biosynthesis, cell wall and plasma membrane are regulated by c-di-AMP in mycobacteria.
Collapse
|
6
|
Hołówka J, Łebkowski T, Feddersen H, Giacomelli G, Drużka K, Makowski Ł, Trojanowski D, Broda N, Bramkamp M, Zakrzewska-Czerwińska J. Mycobacterial IHF is a highly dynamic nucleoid-associated protein that assists HupB in organizing chromatin. Front Microbiol 2023; 14:1146406. [PMID: 36960278 PMCID: PMC10028186 DOI: 10.3389/fmicb.2023.1146406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) crucially contribute to organizing bacterial chromatin and regulating gene expression. Among the most highly expressed NAPs are the HU and integration host factor (IHF) proteins, whose functional homologues, HupB and mycobacterial integration host factor (mIHF), are found in mycobacteria. Despite their importance for the pathogenicity and/or survival of tubercle bacilli, the role of these proteins in mycobacterial chromosome organization remains unknown. Here, we used various approaches, including super-resolution microscopy, to perform a comprehensive analysis of the roles of HupB and mIHF in chromosome organization. We report that HupB is a structural agent that maintains chromosome integrity on a local scale, and that the lack of this protein alters chromosome morphology. In contrast, mIHF is a highly dynamic protein that binds DNA only transiently, exhibits susceptibility to the chromosomal DNA topology changes and whose depletion leads to the growth arrest of tubercle bacilli. Additionally, we have shown that depletion of Mycobacterium smegmatis integration host factor (msIHF) leads to chromosome shrinkage and replication inhibition.
Collapse
Affiliation(s)
- Joanna Hołówka
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Joanna Hołówka,
| | - Tomasz Łebkowski
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Helge Feddersen
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Karolina Drużka
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Łukasz Makowski
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Damian Trojanowski
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Natalia Broda
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | | |
Collapse
|
7
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
8
|
Pal AK, Ghosh A. c-di-AMP signaling plays important role in determining antibiotic tolerance phenotypes of Mycobacterium smegmatis. Sci Rep 2022; 12:13127. [PMID: 35907936 PMCID: PMC9338955 DOI: 10.1038/s41598-022-17051-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we probe the role of secondary messenger c-di-AMP in drug tolerance, which includes both persister and resistant mutant characterization of Mycobacterium smegmatis. Specifically, with the use of c-di-AMP null and overproducing mutants, we showed how c-di-AMP plays a significant role in resistance mutagenesis against antibiotics with different mechanisms of action. We elucidated the specific molecular mechanism linking the elevated intracellular c-di-AMP level and high mutant generation and highlighted the significance of non-homology-based DNA repair. Further investigation enabled us to identify the unique mutational landscape of target and non-target mutation categories linked to intracellular c-di-AMP levels. Overall fitness cost of unique target mutations was estimated in different strain backgrounds, and then we showed the critical role of c-di-AMP in driving epistatic interactions between resistance genes, resulting in the evolution of multi-drug tolerance. Finally, we identified the role of c-di-AMP in persister cells regrowth and mutant enrichment upon cessation of antibiotic treatment.
Collapse
Affiliation(s)
- Aditya Kumar Pal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
9
|
Griego A, Douché T, Gianetto QG, Matondo M, Manina G. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness. iScience 2022; 25:104233. [PMID: 35521527 PMCID: PMC9062218 DOI: 10.1016/j.isci.2022.104233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
RNA turnover is a primary source of gene expression variation, in turn promoting cellular adaptation. Mycobacteria leverage reversible mRNA stabilization to endure hostile conditions. Although RNase E is essential for RNA turnover in several species, its role in mycobacterial single-cell physiology and functional phenotypic diversification remains unexplored. Here, by integrating live-single-cell and quantitative-mass-spectrometry approaches, we show that RNase E forms dynamic foci, which are associated with cellular homeostasis and fate, and we discover a versatile molecular interactome. We show a likely interaction between RNase E and the nucleoid-associated protein HupB, which is particularly pronounced during drug treatment and infection, where phenotypic diversity increases. Disruption of RNase E expression affects HupB levels, impairing Mycobacterium tuberculosis growth homeostasis during treatment, intracellular replication, and host spread. Our work lays the foundation for targeting the RNase E and its partner HupB, aiming to undermine M. tuberculosis cellular balance, diversification capacity, and persistence. Single mycobacterial cells exhibit phenotypic variation in RNase E expression RNase E is implicated in the maintenance of mycobacterial cell growth homeostasis RNase E and HupB show a functional interplay in single mycobacterial cells RNase E-HupB disruption impairs Mycobacterium tuberculosis fate under drug and in macrophages
Collapse
|
10
|
Reyneke B, Hamilton KA, Fernández-Ibáñez P, Polo-López MI, McGuigan KG, Khan S, Khan W. EMA-amplicon-based sequencing informs risk assessment analysis of water treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140717. [PMID: 32679496 DOI: 10.1016/j.scitotenv.2020.140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Illumina amplicon-based sequencing was coupled with ethidium monoazide bromide (EMA) pre-treatment to monitor the total viable bacterial community and subsequently identify and prioritise the target organisms for the health risk assessment of the untreated rainwater and rainwater treated using large-volume batch solar reactor prototypes installed in an informal settlement and rural farming community. Taxonomic assignments indicated that Legionella and Pseudomonas were the most frequently detected genera containing opportunistic bacterial pathogens in the untreated and treated rainwater at both sites. Additionally, Mycobacterium, Clostridium sensu stricto and Escherichia/Shigella displayed high (≥80%) detection frequencies in the untreated and/or treated rainwater samples at one or both sites. Numerous exposure scenarios (e.g. drinking, cleaning) were subsequently investigated and the health risk of using untreated and solar reactor treated rainwater in developing countries was quantified based on the presence of L. pneumophila, P. aeruginosa and E. coli. The solar reactor prototypes were able to reduce the health risk associated with E. coli and P. aeruginosa to below the 1 × 10-4 annual benchmark limit for all the non-potable uses of rainwater within the target communities (exception of showering for E. coli). However, the risk associated with intentional drinking of untreated or treated rainwater exceeded the benchmark limit (E. coli and P. aeruginosa). Additionally, while the solar reactor treatment reduced the risk associated with garden hosing and showering based on the presence of L. pneumophila, the risk estimates for both activities still exceeded the annual benchmark limit. The large-volume batch solar reactor prototypes were thus able to reduce the risk posed by the target bacteria for non-potable activities rainwater is commonly used for in water scarce regions of sub-Saharan Africa. This study highlights the need to assess water treatment systems in field trials using QMRA.
Collapse
Affiliation(s)
- B Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - K A Hamilton
- School for Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, United States; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85281, United States
| | - P Fernández-Ibáñez
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain; Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland, United Kingdom
| | - M I Polo-López
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain
| | - K G McGuigan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - S Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 2028, South Africa
| | - W Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
11
|
Kukolj C, Pedrosa FO, de Souza GA, Sumner LW, Lei Z, Sumner B, do Amaral FP, Juexin W, Trupti J, Huergo LF, Monteiro RA, Valdameri G, Stacey G, de Souza EM. Proteomic and Metabolomic Analysis of Azospirillum brasilense ntrC Mutant under High and Low Nitrogen Conditions. J Proteome Res 2019; 19:92-105. [DOI: 10.1021/acs.jproteome.9b00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Caroline Kukolj
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | - Fábio O. Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | | | - Lloyd W. Sumner
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | - Barbara Sumner
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | | | | | | | - Luciano F. Huergo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
- Setor Litoral, UFPR, Matinhos, Paraná 80060-000, Brazil
| | - Rose Adele Monteiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
- Departamento de Análises Clínicas, UFPR, Curitiba, Paraná 80060-000, Brazil
| | | | - Emanuel M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| |
Collapse
|
12
|
Kalra P, Mishra SK, Kaur S, Kumar A, Prasad HK, Sharma TK, Tyagi JS. G-Quadruplex-Forming DNA Aptamers Inhibit the DNA-Binding Function of HupB and Mycobacterium tuberculosis Entry into Host Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:99-109. [PMID: 30245472 PMCID: PMC6148841 DOI: 10.1016/j.omtn.2018.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/26/2023]
Abstract
The entry and survival of Mycobacterium tuberculosis (Mtb) within host cells is orchestrated partly by an essential histone-like protein HupB (Rv2986c). Despite being an essential drug target, the lack of structural information has impeded the development of inhibitors targeting the indispensable and multifunctional C-terminal domain (CTD) of HupB. To bypass the requirement for structural information in the classical drug discovery route, we generated a panel of DNA aptamers against HupB protein through systemic evolution of ligands by exponential (SELEX) enrichment. Two G-quadruplex-forming high-affinity aptamers (HupB-4T and HupB-13T) were identified, each of which bound two distinct sites on full-length HupB, with an estimated KD of ∼1.72 μM and ∼0.17 μM, respectively, for the high-affinity sites. While HupB-4T robustly inhibited DNA-binding activity of HupB in vitro, both the aptamers recognized surface-located HupB and significantly blocked Mtb entry into THP-1 monocytic cells (p < 0.0001). In summary, DNA aptamers generated in this study block DNA-binding activity of HupB, inhibit virulent Mtb infection in host cells, and demonstrate aptamers to be inhibitors of HupB functions. This study also illustrates the utility of SELEX in developing inhibitors against essential targets for whom structural information is not available.
Collapse
Affiliation(s)
- Priya Kalra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Delhi 110029, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | - Surinder Kaur
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Delhi 110029, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | | | - Tarun Kumar Sharma
- Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Delhi 110029, India; Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| |
Collapse
|
13
|
C-terminal intrinsically disordered region-dependent organization of the mycobacterial genome by a histone-like protein. Sci Rep 2018; 8:8197. [PMID: 29844400 PMCID: PMC5974015 DOI: 10.1038/s41598-018-26463-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/11/2018] [Indexed: 11/23/2022] Open
Abstract
The architecture of the genome influences the functions of DNA from bacteria to eukaryotes. Intrinsically disordered regions (IDR) of eukaryotic histones have pivotal roles in various processes of gene expression. IDR is rare in bacteria, but interestingly, mycobacteria produce a unique histone-like protein, MDP1 that contains a long C-terminal IDR. Here we analyzed the role of IDR in MDP1 function. By employing Mycobacterium smegmatis that inducibly expresses MDP1 or its IDR-deficient mutant, we observed that MDP1 induces IDR-dependent DNA compaction. MDP1-IDR is also responsible for the induction of growth arrest and tolerance to isoniazid, a front line tuberculosis drug that kills growing but not growth-retardated mycobacteria. We demonstrated that MDP1-deficiency and conditional knock out of MDP1 cause spreading of the M. smegmatis genome in the stationary phase. This study thus demonstrates for the first time a C-terminal region-dependent organization of the genome architecture by MDP1, implying the significance of IDR in the function of bacterial histone-like protein.
Collapse
|
14
|
Sakatos A, Babunovic GH, Chase MR, Dills A, Leszyk J, Rosebrock T, Bryson B, Fortune SM. Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. SCIENCE ADVANCES 2018; 4:eaao1478. [PMID: 29732401 PMCID: PMC5931751 DOI: 10.1126/sciadv.aao1478] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/20/2018] [Indexed: 05/08/2023]
Abstract
There is increasing evidence that phenotypically drug-resistant bacteria may be important determinants of antibiotic treatment failure. Using high-throughput imaging, we defined distinct subpopulations of mycobacterial cells that exhibit heritable but semi-stable drug resistance. These subpopulations have distinct transcriptional signatures and growth characteristics at both bulk and single-cell levels, which are also heritable and semi-stable. We find that the mycobacterial histone-like protein HupB is required for the formation of these subpopulations. Using proteomic approaches, we further demonstrate that HupB is posttranslationally modified by lysine acetylation and lysine methylation. Mutation of a single posttranslational modification site specifically abolishes the formation of one of the drug-resistant subpopulations of cells, providing the first evidence in prokaryotes that posttranslational modification of a bacterial nucleoid-associated protein may epigenetically regulate cell state.
Collapse
Affiliation(s)
- Alexandra Sakatos
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gregory H. Babunovic
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael R. Chase
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alexander Dills
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - John Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 02129, USA
| | - Tracy Rosebrock
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Stonehill College, North Easton, MA 02357, USA
| | - Bryan Bryson
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- The Ragon Institute of Massachusetts General Hospital, Harvard, and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
15
|
Kriel NL, Gallant J, van Wyk N, van Helden P, Sampson SL, Warren RM, Williams MJ. Mycobacterial nucleoid associated proteins: An added dimension in gene regulation. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Abstract
In bacteria, chromosomal DNA must be efficiently compacted to fit inside the small cell compartment while remaining available for the proteins involved in replication, segregation, and transcription. Among the nucleoid-associated proteins (NAPs) responsible for maintaining this highly organized and yet dynamic chromosome structure, the HU protein is one of the most conserved and highly abundant. HupB, a homologue of HU, was recently identified in mycobacteria. This intriguing mycobacterial NAP is composed of two domains: an N-terminal domain that resembles bacterial HU, and a long and distinctive C-terminal domain that contains several PAKK/KAAK motifs, which are characteristic of the H1/H5 family of eukaryotic histones. In this study, we analyzed the in vivo binding of HupB on the chromosome scale. By using PALM (photoactivated localization microscopy) and ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing), we observed that the C-terminal domain is indispensable for the association of HupB with the nucleoid. Strikingly, the in vivo binding of HupB displayed a bias from the origin (oriC) to the terminus (ter) of the mycobacterial chromosome (numbers of binding sites decreased toward ter). We hypothesized that this binding mode reflects a role for HupB in organizing newly replicated oriC regions. Thus, HupB may be involved in coordinating replication with chromosome segregation.IMPORTANCE We currently know little about the organization of the mycobacterial chromosome and its dynamics during the cell cycle. Among the mycobacterial nucleoid-associated proteins (NAPs) responsible for chromosome organization and dynamics, HupB is one of the most intriguing. It contains a long and distinctive C-terminal domain that harbors several PAKK/KAAK motifs, which are characteristic of the eukaryotic histone H1/H5 proteins. The HupB protein is also known to be crucial for the survival of tubercle bacilli during infection. Here, we provide in vivo experimental evidence showing that the C-terminal domain of HupB is crucial for its DNA binding. Our results suggest that HupB may be involved in organizing newly replicated regions and could help coordinate chromosome replication with segregation. Given that tuberculosis (TB) remains a serious worldwide health problem (10.4 million new TB cases were diagnosed in 2015, according to WHO) and new multidrug-resistant Mycobacterium tuberculosis strains are continually emerging, further studies of the biological function of HupB are needed to determine if this protein could be a prospect for novel antimicrobial drug development.
Collapse
|
17
|
Enany S, Yoshida Y, Tateishi Y, Ozeki Y, Nishiyama A, Savitskaya A, Yamaguchi T, Ohara Y, Yamamoto T, Ato M, Matsumoto S. Mycobacterial DNA-binding protein 1 is critical for long term survival of Mycobacterium smegmatis and simultaneously coordinates cellular functions. Sci Rep 2017; 7:6810. [PMID: 28754952 PMCID: PMC5533761 DOI: 10.1038/s41598-017-06480-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/13/2017] [Indexed: 11/09/2022] Open
Abstract
Bacteria can proliferate perpetually without ageing, but they also face conditions where they must persist. Mycobacteria can survive for a long period. This state appears during mycobacterial diseases such as tuberculosis and leprosy, which are chronic and develop after long-term persistent infections. However, the fundamental mechanisms of the long-term living of mycobacteria are unknown. Every Mycobacterium species expresses Mycobacterial DNA-binding protein 1 (MDP1), a histone-like nucleoid associated protein. Mycobacterium smegmatis is a saprophytic fast grower and used as a model of mycobacterial persistence, since it shares the characteristics of the long-term survival observed in pathogenic mycobacteria. Here we show that MDP1-deficient M. smegmatis dies more rapidly than the parental strain after entering stationary phase. Proteomic analyses revealed 21 upregulated proteins with more than 3-fold in MDP1-deficient strain, including DnaA, a replication initiator, NDH, a NADH dehydrogenase that catalyzes downhill electron transfer, Fas1, a critical fatty acid synthase, and antioxidants such as AhpC and KatG. Biochemical analyses showed elevated levels of DNA and ATP syntheses, a decreased NADH/NAD+ ratio, and a loss of resistance to oxidative stress in the MDP1-knockout strain. This study suggests the importance of MDP1-dependent simultaneous control of the cellular functions in the long-term survival of mycobacteria.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan.,Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, 41522, Ismailia, Egypt
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan.
| | - Anna Savitskaya
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan
| | - Yukiko Ohara
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Institute of Social innovation and Co-operation, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Niigata, 950-2181, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, Niigata, 951-9510, Japan.
| |
Collapse
|
18
|
Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01. World J Microbiol Biotechnol 2014; 30:1947-54. [PMID: 24510385 DOI: 10.1007/s11274-014-1614-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Mycobacterium neoaurum NwIB-01 exhibits powerful ability to cleave the side chain of soybean phytosterols to accumulate 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). The difficulty in separation of AD from ADD is one of the key bottlenecks to the microbial transformation of phytosterols in the industry. To enhance ADD quantity in products, 3-ketosteroid Δ(1)-dehydrogenase genes (kstD M and kstD(A)) were obtained from M. neoaurum NwIB-01 and Arthrobacter simplex respectively. Using replicating vector pMV261, kstD(M) and kstD(A) were overexpressed in M. neoaurum NwIB-01. For foreign gene stable expression, the integration vector pMV306 was used for kstD M/kstD(A) overexpression and the relevant sequences of promoter and kanamycin antibiotic resistance gene sequences were amplified by PCR to verify plasmid integrity. The resultant plasmid and mutant strain were verified and the kstD augmentation mutants were good ADD-producing strains. The ADD producing capacity of NwIB-04 and NwIB-05 was 0.1401 and 0.1740 g/l (cultured in shake bottles with 0.4 g/l phytosterols), and the molar ratio of ADD in products was 98.34 and 98.60%, respectively. This study on the manipulation of the main kstDM gene in Mycobacterium sp. provides a feasible way to achieve excellent phytosterol-transformation strains with high product purity.
Collapse
|
19
|
Priyadarshini R, Cugini C, Arndt A, Chen T, Tjokro NO, Goodman SD, Davey ME. The nucleoid-associated protein HUβ affects global gene expression in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2012; 159:219-229. [PMID: 23175503 DOI: 10.1099/mic.0.061002-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HU is a non-sequence-specific DNA-binding protein and one of the most abundant nucleoid-associated proteins in the bacterial cell. Like Escherichia coli, the genome of Porphyromonas gingivalis is predicted to encode both the HUα (PG1258) and the HUβ (PG0121) subunit. We have previously reported that PG0121 encodes a non-specific DNA-binding protein and that PG0121 is co-transcribed with the K-antigen capsule synthesis operon. We also reported that deletion of PG0121 resulted in downregulation of capsule operon expression and produced a P. gingivalis strain that is phenotypically deficient in surface polysaccharide production. Here, we show through complementation experiments in an E. coli MG1655 hupAB double mutant strain that PG0121 encodes a functional HU homologue. Microarray and quantitative RT-PCR analysis were used to further investigate global transcriptional regulation by HUβ using comparative expression profiling of the PG0121 (HUβ) mutant strain to the parent strain, W83. Our analysis determined that expression of genes encoding proteins involved in a variety of biological functions, including iron acquisition, cell division and translation, as well as a number of predicted nucleoid associated proteins were altered in the PG0121 mutant. Phenotypic and quantitative real-time-PCR (qRT-PCR) analyses determined that under iron-limiting growth conditions, cell division and viability were defective in the PG0121 mutant. Collectively, our studies show that PG0121 does indeed encode a functional HU homologue, and HUβ has global regulatory functions in P. gingivalis; it affects not only production of capsular polysaccharides but also expression of genes involved in basic functions, such as cell wall synthesis, cell division and iron uptake.
Collapse
Affiliation(s)
- Richa Priyadarshini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | - Carla Cugini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | - Annette Arndt
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Tsute Chen
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | - Natalia O Tjokro
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Steven D Goodman
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Mary E Davey
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
20
|
The role of the mycobacterial DNA-binding protein 1 (MDP1) from Mycobacterium bovis BCG in host cell interaction. BMC Microbiol 2012; 12:165. [PMID: 22863261 PMCID: PMC3438132 DOI: 10.1186/1471-2180-12-165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/27/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis differs from most pathogens in its ability to multiply inside monocytes and to persist during long periods of time within granuloma in a status of latency. A class of proteins called mycobacterial histone-like proteins has been associated with regulation of replication and latency, but their precise role in the infection process has yet to be uncovered. Our study aimed at defining the impact of the histone-like protein MDP1 from M. bovis BCG (mycobacterial DNA-binding protein 1, corresponding to Rv2986c from M. tuberculosis) on early steps of infection. RESULTS Previously, a BCG (Bacillus Calmette Guérin) strain had been generated by antisense-technique exhibiting reduced MDP1 expression. This strain was now used to analyse the impact of reduced amount of MDP1 on the interaction with human blood monocytes, macrophage lines and PBMC (peripheral blood mononuclear cells). MDP1 was revealed to be required for growth at acidic pH and for intracellular replication in human blood monocytes. Down-regulation of MDP1 resulted in reduced secretion of the cytokine IL-1β by infected human PBMC. In addition, a reduction of MDP1 expression had a major impact on the formation of fused multi-nucleated macrophages. In monocyte preparations from human blood as well as in human and mouse macrophage cell lines, both the percentage of multi-nucleated cells and the number of nuclei per cell were much enhanced when the monocytes were infected with BCG expressing less MDP1. CONCLUSION MDP1 from M. bovis BCG affects the growth at acidic pH and the intracellular replication in human monocytes. It furthermore affects cytokine secretion by host cells, and the formation of fused multi-nucleated macrophages. Our results suggest an important role of MDP1 in persistent infection.
Collapse
|
21
|
Niki M, Niki M, Tateishi Y, Ozeki Y, Kirikae T, Lewin A, Inoue Y, Matsumoto M, Dahl JL, Ogura H, Kobayashi K, Matsumoto S. A novel mechanism of growth phase-dependent tolerance to isoniazid in mycobacteria. J Biol Chem 2012; 287:27743-52. [PMID: 22648414 DOI: 10.1074/jbc.m111.333385] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis remains one of the most deadly infectious diseases worldwide and is a leading public health problem. Although isoniazid (INH) is a key drug for the treatment of tuberculosis, tolerance to INH necessitates prolonged treatment, which is a concern for effective tuberculosis chemotherapy. INH is a prodrug that is activated by the mycobacterial enzyme, KatG. Here, we show that mycobacterial DNA-binding protein 1 (MDP1), which is a histone-like protein conserved in mycobacteria, negatively regulates katG transcription and leads to phenotypic tolerance to INH in mycobacteria. Mycobacterium smegmatis deficient for MDP1 exhibited increased expression of KatG and showed enhanced INH activation compared with the wild-type strain. Expression of MDP1 was increased in the stationary phase and conferred growth phase-dependent tolerance to INH in M. smegmatis. Regulation of KatG expression is conserved between M. smegmatis and Mycobacterium tuberculosis complex. Artificial reduction of MDP1 in Mycobacterium bovis BCG was shown to lead to increased KatG expression and susceptibility to INH. These data suggest a mechanism by which phenotypic tolerance to INH is acquired in mycobacteria.
Collapse
Affiliation(s)
- Makoto Niki
- Department of Bacteriology, Virology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
MudPIT analysis of alkaline tolerance by Listeria monocytogenes strains recovered as persistent food factory contaminants. Food Microbiol 2011; 30:187-96. [PMID: 22265300 DOI: 10.1016/j.fm.2011.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/05/2011] [Accepted: 10/05/2011] [Indexed: 12/27/2022]
Abstract
Alkaline solutions are used to clean food production environments but the role of alkaline resistance in persistent food factory contamination by Listeria monocytogenes is unknown. We used shotgun proteomics to characterise alkaline adapted L. monocytogenes recovered as persistent and transient food factory contaminants. Three unrelated strains were studied including two persistent and a transient food factory contaminant determined using multilocus sequence typing (MLST). The strains were adapted to growth at pH 8.5 and harvested in exponential phase. Protein extracts were analysed using multidimensional protein identification technology (MudPIT) and protein abundance compared by spectra counting. The strains elicited core responses to alkaline growth including modulation of intracellular pH, stabilisation of cellular processes and reduced cell-division, independent to lineage, MLST or whether the strains were transient or persistent contaminants. Alkaline adaptation by all strains corresponded to that expected in stringent-response induced cells, with protein expression supporting metabolic shifts concordant with elevated alarmone production and indicating that the alkaline-stringent response results from energy rather than nutrient limitation. We believe this is the first report describing induction of a stringent response in different L. monocytogenes strains by alkaline pH under non-limiting growth conditions. The work emphasises the need for early intervention to avoid persistent food factory contamination by L. monocytogenes.
Collapse
|
23
|
Yee B, Sagulenko E, Fuerst JA. Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus. MICROBIOLOGY-SGM 2011; 157:2012-2021. [PMID: 21511768 DOI: 10.1099/mic.0.047605-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gemmata obscuriglobus has a highly condensed nucleoid which is implicated in its resistance to radiation. However, the mechanisms by which such compaction is achieved, and the proteins responsible, are still unknown. Here we have examined the genome of G. obscuriglobus for the presence of proteins homologous to those that have been associated with nucleoid condensation. We found two different proteins homologous to the bacterial nucleoid-associated protein HU, one with an N-terminal and one with a C-terminal extension relative to the amino acid sequence of the HU found in Escherichia coli. Sequence analysis revealed that one of these HU homologues represents a novel type with a high number of prolines in its C-terminal extension, whereas the other one has motifs similar to the N terminus of the HU homologue from the radio-resistant bacterium Deinococcus radiodurans. The occurrence of two such HU homologue proteins with these two different terminal extensions in one organism appears to be unique among the Bacteria.
Collapse
Affiliation(s)
- Benjamin Yee
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Evgeny Sagulenko
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - John A Fuerst
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|