1
|
Zhang Y, Long S, Duret MT, Bullock LA, Lam P, Yang A. Modeling and Feasibility Assessment of Mineral Carbonation Based on Biological pH Swing for Atmospheric CO 2 Removal. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:6972-6981. [PMID: 40406548 PMCID: PMC12093374 DOI: 10.1021/acssuschemeng.4c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/26/2025]
Abstract
Mitigating climate change requires both the reduction of greenhouse gas emissions and the removal of CO2 from the atmosphere. This study investigates a novel biological pH swing strategy for mineral carbonation at ambient conditions as a potential option for atmospheric CO2 removal. Through mathematical modeling, we evaluated a mineral carbonation system that utilized Desulfovibrio vulgaris and Acidithiobacillus thiooxidans to achieve alternating sulfur reduction and oxidation, respectively, with the cyclic process to effect pH swing for promoting the dissolution of a silicate mineral and the subsequent precipitation of a carbonate mineral to store CO2. Sulfur cycles employing two reduced compounds, namely, hydrogen sulfide and thiosulfate, were compared. Our simulation results predicted that it is feasible to use the sulfur cycles to achieve the intended pH swing in a range of 1-10 and hence the acceleration of CO2 removal from the air. Despite the implementation of the pH swing, gas-liquid mass transfer and mineral dissolution remained rate-limiting compared to biological conversion. Dissolving 35 kg of forsterite in a 1 m3 reactor takes between 250 and 300 h, leading to the removal of approximately 22 kg of CO2 through MgCO3 precipitation, which requires about 180 h. Between the two forms of reduced sulfur, thiosulfate would offer considerable operational advantages over hydrogen sulfide. This theoretical exploration also identified key areas to be investigated to further establish the potential of the sulfur-cycle-based carbonation approach to CO2 removal.
Collapse
Affiliation(s)
- Yukun Zhang
- Department
of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K.
| | - Spencer Long
- School
of Ocean and Earth Science, University of
Southampton, Southampton SO14 3ZH, U.K.
| | - Manon T. Duret
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
- Climate
Systems Engineering Initiative, University
of Chicago, Chicago, Illinois 60637, United States
| | - Liam A. Bullock
- Geological
and Mining Institute of Spain, IGME C/Rios Rosas 23, Madrid 28003, Spain
| | - Phyllis Lam
- School
of Ocean and Earth Science, University of
Southampton, Southampton SO14 3ZH, U.K.
| | - Aidong Yang
- Department
of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K.
| |
Collapse
|
2
|
Dyksma S, Pester M. Growth of sulfate-reducing Desulfobacterota and Bacillota at periodic oxygen stress of 50% air-O 2 saturation. MICROBIOME 2024; 12:191. [PMID: 39367500 PMCID: PMC11451228 DOI: 10.1186/s40168-024-01909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) are frequently encountered in anoxic-to-oxic transition zones, where they are transiently exposed to microoxic or even oxic conditions on a regular basis. This can be marine tidal sediments, microbial mats, and freshwater wetlands like peatlands. In the latter, a cryptic but highly active sulfur cycle supports their anaerobic activity. Here, we aimed for a better understanding of how SRB responds to periodically fluctuating redox regimes. RESULTS To mimic these fluctuating redox conditions, a bioreactor was inoculated with peat soil supporting cryptic sulfur cycling and consecutively exposed to oxic (one week) and anoxic (four weeks) phases over a period of > 200 days. SRB affiliated to the genus Desulfosporosinus (Bacillota) and the families Syntrophobacteraceae, Desulfomonilaceae, Desulfocapsaceae, and Desulfovibrionaceae (Desulfobacterota) successively established growing populations (up to 2.9% relative abundance) despite weekly periods of oxygen exposures at 133 µM (50% air saturation). Adaptation mechanisms were analyzed by genome-centric metatranscriptomics. Despite a global drop in gene expression during oxic phases, the perpetuation of gene expression for energy metabolism was observed for all SRBs. The transcriptional response pattern for oxygen resistance was differentiated across individual SRBs, indicating different adaptation strategies. Most SRB transcribed differing sets of genes for oxygen consumption, reactive oxygen species detoxification, and repair of oxidized proteins as a response to the periodical redox switch from anoxic to oxic conditions. Noteworthy, a Desulfosporosinus, a Desulfovibrionaceaea, and a Desulfocapsaceaea representative maintained high transcript levels of genes encoding oxygen defense proteins even under anoxic conditions, while representing dominant SRB populations after half a year of bioreactor operation. CONCLUSIONS In situ-relevant peatland SRB established large populations despite periodic one-week oxygen levels that are one order of magnitude higher than known to be tolerated by pure cultures of SRB. The observed decrease in gene expression regulation may be key to withstand periodically occurring changes in redox regimes in these otherwise strictly anaerobic microorganisms. Our study provides important insights into the stress response of SRB that drives sulfur cycling at oxic-anoxic interphases. Video Abstract.
Collapse
Affiliation(s)
- Stefan Dyksma
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | - Michael Pester
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
- Technical University of Braunschweig, Institute of Microbiology, Braunschweig, Germany.
| |
Collapse
|
3
|
Kop LFM, Koch H, Jetten MSM, Daims H, Lücker S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME COMMUNICATIONS 2024; 4:ycad017. [PMID: 38317822 PMCID: PMC10839748 DOI: 10.1093/ismeco/ycad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The most abundant known nitrite-oxidizing bacteria in the marine water column belong to the phylum Nitrospinota. Despite their importance in marine nitrogen cycling and primary production, there are only few cultured representatives that all belong to the class Nitrospinia. Moreover, although Nitrospinota were traditionally thought to be restricted to marine environments, metagenome-assembled genomes have also been recovered from groundwater. Over the recent years, metagenomic sequencing has led to the discovery of several novel classes of Nitrospinota (UBA9942, UBA7883, 2-12-FULL-45-22, JACRGO01, JADGAW01), which remain uncultivated and have not been analyzed in detail. Here, we analyzed a nonredundant set of 98 Nitrospinota genomes with focus on these understudied Nitrospinota classes and compared their metabolic profiles to get insights into their potential role in biogeochemical element cycling. Based on phylogenomic analysis and average amino acid identities, the highly diverse phylum Nitrospinota could be divided into at least 33 different genera, partly with quite distinct metabolic capacities. Our analysis shows that not all Nitrospinota are nitrite oxidizers and that members of this phylum have the genomic potential to use sulfide and hydrogen for energy conservation. This study expands our knowledge of the phylogeny and potential ecophysiology of the phylum Nitrospinota and offers new avenues for the isolation and cultivation of these elusive bacteria.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
4
|
Brockhurst M, Cavet J, Diggle SP, Grainger D, Mangenelli R, Sychrova H, Martin-Verstraete I, Welch M, Palmer T, Thomas GH. Shaping microbiology for 75 years: highlights of research published in Microbiology. Part 1 - Physiology and growth. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37379229 DOI: 10.1099/mic.0.001356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Michael Brockhurst
- Division of Evolution, Infection and Genomics, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Jennifer Cavet
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Stephen P Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - David Grainger
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Hana Sychrova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | | | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
5
|
Barton LL, Duarte AG, Staicu LC. Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments. Biometals 2023; 36:339-350. [PMID: 35767096 DOI: 10.1007/s10534-022-00410-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Historically, sulfate-reducing bacteria (SRB) have been considered to be strict anaerobes, but reports in the past couple of decades indicate that SRB tolerate exposure to O2 and can even grow in aerophilic environments. With the transition from anaerobic to microaerophilic conditions, the uptake of Fe(III) from the environment by SRB would become important. In evaluating the metabolic capability for the uptake of iron, the genomes of 26 SRB, representing eight families, were examined. All SRB reviewed carry genes (feoA and feoB) for the ferrous uptake system to transport Fe(II) across the plasma membrane into the cytoplasm. In addition, all of the SRB genomes examined have putative genes for a canonical ABC transporter that may transport ferric siderophore or ferric chelated species from the environment. Gram-negative SRB have additional machinery to import ferric siderophores and ferric chelated species since they have the TonB system that can work alongside any of the outer membrane porins annotated in the genome. Included in this review is the discussion that SRB may use the putative siderophore uptake system to import metals other than iron.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM, 87131, USA
| | - Americo G Duarte
- Instituto de Tecnologia Química E Biológica António Xavier/Universidade NOVA de Lisboa, Av. República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Lucian C Staicu
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
6
|
Li JT, Jia P, Wang XJ, Ou SN, Yang TT, Feng SW, Lu JL, Fang Z, Liu J, Liao B, Shu WS, Liang JL. Metagenomic and metatranscriptomic insights into sulfate-reducing bacteria in a revegetated acidic mine wasteland. NPJ Biofilms Microbiomes 2022; 8:71. [PMID: 36068230 PMCID: PMC9448743 DOI: 10.1038/s41522-022-00333-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread occurrence of sulfate-reducing microorganisms (SRMs) in temporarily oxic/hypoxic aquatic environments indicates an intriguing possibility that SRMs can prevail in constantly oxic/hypoxic terrestrial sulfate-rich environments. However, little attention has been given to this possibility, leading to an incomplete understanding of microorganisms driving the terrestrial part of the global sulfur (S) cycle. In this study, genome-centric metagenomics and metatranscriptomics were employed to explore the diversity, metabolic potential, and gene expression profile of SRMs in a revegetated acidic mine wasteland under constantly oxic/hypoxic conditions. We recovered 16 medium- to high-quality metagenome-assembled genomes (MAGs) containing reductive dsrAB. Among them, 12 and four MAGs belonged to Acidobacteria and Deltaproteobacteria, respectively, harboring three new SRM genera. Comparative genomic analysis based on seven high-quality MAGs (completeness >90% and contamination <10%; including six acidobacterial and one deltaproteobacterial) and genomes of three additional cultured model species showed that Acidobacteria-related SRMs had more genes encoding glycoside hydrolases, oxygen-tolerant hydrogenases, and cytochrome c oxidases than Deltaproteobacteria-related SRMs. The opposite pattern was observed for genes encoding superoxide reductases and thioredoxin peroxidases. Using VirSorter, viral genome sequences were found in five of the 16 MAGs and in all three cultured model species. These prophages encoded enzymes involved in glycoside hydrolysis and antioxidation in their hosts. Moreover, metatranscriptomic analysis revealed that 15 of the 16 SRMs reported here were active in situ. An acidobacterial MAG containing a prophage dominated the SRM transcripts, expressing a large number of genes involved in its response to oxidative stress and competition for organic matter.
Collapse
Affiliation(s)
- Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Juan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Tao-Tao Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhou Fang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
7
|
Spring S, Rohde M, Bunk B, Spröer C, Will SE, Neumann-Schaal M. New insights into the energy metabolism and taxonomy of Deferribacteres revealed by the characterization of a new isolate from a hypersaline microbial mat. Environ Microbiol 2022; 24:2543-2575. [PMID: 35415868 DOI: 10.1111/1462-2920.15999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Strain L21-Ace-BEST , isolated from a lithifying cyanobacterial mat, could be assigned to a novel species and genus within the Deferribacteres. It is an important model organism for the study of anaerobic acetate degradation under hypersaline conditions. The metabolism of strain L21-Ace-BEST was characterized by biochemical studies, comparative genome analyses, and the evaluation of gene expression patterns. The central metabolic pathway is the citric acid cycle, which is mainly controlled by the enzyme succinyl-CoA:acetate-CoA transferase. The potential use of a reversed oxidative citric acid cycle to fix CO2 has been revealed through genome analysis. However, no autotrophic growth was detected in this strain, whereas sulfide and H2 can be used mixotrophically. Preferred electron acceptors for the anaerobic oxidation of acetate are nitrate, fumarate and DMSO, while oxygen can be utilized only under microoxic conditions. Aerotolerant growth by fermentation was observed at higher oxygen concentrations. The redox cycling of sulfur/sulfide enables the generation of reducing power for the assimilation of acetate during growth and could prevent the over-reduction of cells in stationary phase. Extracellular electron transfer appears to be an essential component of the respiratory metabolism in this clade of Deferribacteres and may be involved in the reduction of nitrite to ammonium. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Eva Will
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
8
|
Murali R, Gennis RB, Hemp J. Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA' in Archaea. THE ISME JOURNAL 2021; 15:3534-3548. [PMID: 34145390 PMCID: PMC8630170 DOI: 10.1038/s41396-021-01019-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Cytochrome bd-type oxygen reductases (cytbd) belong to one of three enzyme superfamilies that catalyze oxygen reduction to water. They are widely distributed in Bacteria and Archaea, but the full extent of their biochemical diversity is unknown. Here we used phylogenomics to identify three families and several subfamilies within the cytbd superfamily. The core architecture shared by all members of the superfamily consists of four transmembrane helices that bind two active site hemes, which are responsible for oxygen reduction. While previously characterized cytochrome bd-type oxygen reductases use quinol as an electron donor to reduce oxygen, sequence analysis shows that only one of the identified families has a conserved quinol binding site. The other families are missing this feature, suggesting that they use an alternative electron donor. Multiple gene duplication events were identified within the superfamily, resulting in significant evolutionary and structural diversity. The CydAA' cytbd, found exclusively in Archaea, is formed by the co-association of two superfamily paralogs. We heterologously expressed CydAA' from Caldivirga maquilingensis and demonstrated that it performs oxygen reduction with quinol as an electron donor. Strikingly, CydAA' is the first isoform of cytbd containing only b-type hemes shown to be active when isolated from membranes, demonstrating that oxygen reductase activity in this superfamily is not dependent on heme d.
Collapse
Affiliation(s)
- Ranjani Murali
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - James Hemp
- The Metrodora Institute, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Trojan D, Garcia-Robledo E, Meier DV, Hausmann B, Revsbech NP, Eichorst SA, Woebken D. Microaerobic Lifestyle at Nanomolar O 2 Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria. mSystems 2021; 6:e0025021. [PMID: 34227829 PMCID: PMC8407424 DOI: 10.1128/msystems.00250-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022] Open
Abstract
High-affinity terminal oxidases (TOs) are believed to permit microbial respiration at low oxygen (O2) levels. Genes encoding such oxidases are widespread, and their existence in microbial genomes is taken as an indicator for microaerobic respiration. We combined respiratory kinetics determined via highly sensitive optical trace O2 sensors, genomics, and transcriptomics to test the hypothesis that high-affinity TOs are a prerequisite to respire micro- and nanooxic concentrations of O2 in environmentally relevant model soil organisms: acidobacteria. Members of the Acidobacteria harbor branched respiratory chains terminating in low-affinity (caa3-type cytochrome c oxidases) as well as high-affinity (cbb3-type cytochrome c oxidases and/or bd-type quinol oxidases) TOs, potentially enabling them to cope with varying O2 concentrations. The measured apparent Km (Km(app)) values for O2 of selected strains ranged from 37 to 288 nmol O2 liter-1, comparable to values previously assigned to low-affinity TOs. Surprisingly, we could not detect the expression of the conventional high-affinity TO (cbb3 type) at micro- and nanomolar O2 concentrations but detected the expression of low-affinity TOs. To the best of our knowledge, this is the first observation of microaerobic respiration imparted by low-affinity TOs at O2 concentrations as low as 1 nM. This challenges the standing hypothesis that a microaerobic lifestyle is exclusively imparted by the presence of high-affinity TOs. As low-affinity TOs are more efficient at generating ATP than high-affinity TOs, their utilization could provide a great benefit, even at low-nanomolar O2 levels. Our findings highlight energy conservation strategies that could promote the success of Acidobacteria in soil but might also be important for as-yet-unrevealed microorganisms. IMPORTANCE Low-oxygen habitats are widely distributed on Earth, ranging from the human intestine to soils. Microorganisms are assumed to have the capacity to respire low O2 concentrations via high-affinity terminal oxidases. By utilizing strains of a ubiquitous and abundant group of soil bacteria, the Acidobacteria, and combining respiration kinetics, genomics, and transcriptomics, we provide evidence that these microorganisms use the energetically more efficient low-affinity terminal oxidases to respire low-nanomolar O2 concentrations. This questions the standing hypothesis that the ability to respire traces of O2 stems solely from the activity of high-affinity terminal oxidases. We propose that this energetically efficient strategy extends into other, so-far-unrevealed microbial clades. Our findings also demonstrate that physiological predictions regarding the utilization of different O2 concentrations based solely on the presence or absence of terminal oxidases in bacterial genomes can be misleading.
Collapse
Affiliation(s)
- Daniela Trojan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Emilio Garcia-Robledo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Dimitri V. Meier
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Stephanie A. Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Fincker M, Huber JA, Orphan VJ, Rappé MS, Teske A, Spormann AM. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ Microbiol 2020; 22:3188-3204. [PMID: 32372496 DOI: 10.1111/1462-2920.15061] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Uncultured members of the Chloroflexi phylum are highly enriched in numerous subseafloor environments. Their metabolic potential was evaluated by reconstructing 31 Chloroflexi genomes from six different subseafloor habitats. The near ubiquitous presence of enzymes of the Wood-Ljungdahl pathway, electron bifurcation, and ferredoxin-dependent transport-coupled phosphorylation indicated anaerobic acetogenesis was central to their catabolism. Most of the genomes simultaneously contained multiple degradation pathways for complex carbohydrates, detrital protein, aromatic compounds, and hydrogen, indicating the coupling of oxidation of chemically diverse organic substrates to ubiquitous CO2 reduction. Such pathway combinations may confer a fitness advantage in subseafloor environments by enabling these Chloroflexi to act as primary fermenters and acetogens in one microorganism without the need for syntrophic H2 consumption. While evidence for catabolic oxygen respiration was limited to two phylogenetic clusters, the presence of genes encoding putative reductive dehalogenases throughout the phylum expanded the phylogenetic boundary for potential organohalide respiration past the Dehalococcoidia class.
Collapse
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Michael S Rappé
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Andreas Teske
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Gong X, Garcia-Robledo E, Lund MB, Lehner P, Borisov SM, Klimant I, Revsbech NP, Schramm A. Gene expression of terminal oxidases in two marine bacterial strains exposed to nanomolar oxygen concentrations. FEMS Microbiol Ecol 2019; 94:4983120. [PMID: 29688454 DOI: 10.1093/femsec/fiy072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/18/2018] [Indexed: 11/12/2022] Open
Abstract
The final step of aerobic respiration is carried out by a terminal oxidase transporting electrons to oxygen (O2). Prokaryotes harbor diverse terminal oxidases that differ in phylogenetic origin, structure, biochemical function, and affinity for O2. Here we report on the expression of high-affinity (cytochrome cbb3 oxidase), low-affinity (cytochrome aa3 oxidase), and putative low-affinity (cyanide-insensitive oxidase (CIO)) terminal oxidases in the marine bacteria Idiomarina loihiensis L2-TR and Marinobacter daepoensis SW-156 upon transition to very low O2 concentrations (<200 nM), measured by RT-qPCR. In both strains, high-affinity cytochrome cbb3 oxidase showed the highest expression levels and was significantly up-regulated upon transition to low O2 concentrations. Low-affinity cytochrome aa3 oxidase showed very low transcription levels throughout the incubation. Surprisingly, however, it was also up-regulated upon transition to low O2 concentrations. In contrast, putative low-affinity CIO had much lower expression levels and markedly different regulation patterns between the two strains. These results demonstrate that exposure to low O2 concentrations regulates the gene expression of different types of terminal oxidases, but also that the type and magnitude of transcriptional response is species-dependent. Therefore, in situ transcriptome data cannot, without detailed knowledge of the transcriptional regulation of the species involved, be translated into relative respiratory activity.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, PR China.,Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| | - Emilio Garcia-Robledo
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark.,Department of Biology, University of Cadiz, Spain
| | - Marie Braad Lund
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Denmark
| | - Philipp Lehner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | | | - Andreas Schramm
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| |
Collapse
|
13
|
Bukhtiyarova PA, Antsiferov DV, Brasseur G, Avakyan MR, Frank YA, Ikkert OP, Pimenov NV, Tuovinen OH, Karnachuk OV. Isolation, characterization, and genome insights into an anaerobic sulfidogenic Tissierella bacterium from Cu-bearing coins. Anaerobe 2019; 56:66-77. [PMID: 30776428 DOI: 10.1016/j.anaerobe.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/27/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023]
Abstract
Recent reports on antimicrobial effects of metallic Cu prompted this study of anaerobic microbial communities on copper surfaces. Widely circulating copper-containing coinage was used as a potential source for microorganisms that had had human contact and were tolerant to copper. This study reports on the isolation, characterization, and genome of an anaerobic sulfidogenic Tissierella sp. P1from copper-containing brass coinage. Dissimilatory (bi)sulfite reductase dsrAB present in strain P1 genome and the visible absorbance around 630 nm in the cells suggested the presence of a desulfoviridin-type protein. However, the sulfate reduction rate measurements with 35SO42- did not confirm the dissimilatory sulfate reduction by the strain. The P1 genome lacks APS reductase, sulfate adenylyltransferase, DsrC, and DsrMK necessary for dissimilatory sulfate reduction. The isolate produced up to 0.79 mM H2S during growth, possibly due to cysteine synthase (CysK) and/or cysteine desulfhydrase (CdsH) activities, encoded in the genome. The strain can tolerate up to 2.4 mM Cu2+(150 mg/l) in liquid medium, shows affinity to metallic copper, and can survive on copper-containing coins up to three days under ambient air and dry conditions. The genome sequence of strain P1 contained cutC, encoding a copper resistance protein, which distinguishes it from all other Tissierella strains with published genomes.
Collapse
Affiliation(s)
- Polina A Bukhtiyarova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Dmitry V Antsiferov
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Gael Brasseur
- Laboratoire de Chimie Bactérienne, CNRS, Mediterranean Institute of Microbiology, Marseille, France
| | - Marat R Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Yulia A Frank
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Olga P Ikkert
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
14
|
Schoeffler M, Gaudin AL, Ramel F, Valette O, Denis Y, Hania WB, Hirschler-Réa A, Dolla A. Growth of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory energy conservation after O 2 -driven experimental evolution. Environ Microbiol 2018; 21:360-373. [PMID: 30394641 DOI: 10.1111/1462-2920.14466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Abstract
Desulfovibrio species are representatives of microorganisms at the boundary between anaerobic and aerobic lifestyles, since they contain the enzymatic systems required for both sulfate and oxygen reduction. However, the latter has been shown to be solely a protective mechanism. By implementing the oxygen-driven experimental evolution of Desulfovibrio vulgaris Hildenborough, we have obtained strains that have evolved to grow with energy derived from oxidative phosphorylation linked to oxygen reduction. We show that a few mutations are sufficient for the emergence of this phenotype and reveal two routes of evolution primarily involving either inactivation or overexpression of the gene encoding heterodisulfide reductase. We propose that the oxygen respiration for energy conservation that sustains the growth of the O2 -evolved strains is associated with a rearrangement of metabolite fluxes, especially NAD+ /NADH, leading to an optimized O2 reduction. These evolved strains are the first sulfate-reducing bacteria that exhibit a demonstrated oxygen respiratory process that enables growth.
Collapse
Affiliation(s)
- Marine Schoeffler
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Anne-Laure Gaudin
- Aix Marseille Université, CNRS, LCB, Marseille, France.,GERME SA, Technopôle de Château Gombert, Marseille, France
| | - Fanny Ramel
- Aix Marseille Université, CNRS, LCB, Marseille, France
| | - Odile Valette
- Aix Marseille Université, CNRS, LCB, Marseille, France
| | - Yann Denis
- Aix Marseille Université, CNRS, IMM, Marseille, France
| | - Wagdi Ben Hania
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Agnès Hirschler-Réa
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Alain Dolla
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
15
|
Marshall IPG, Starnawski P, Cupit C, Fernández Cáceres E, Ettema TJG, Schramm A, Kjeldsen KU. The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:397-403. [PMID: 28488795 DOI: 10.1111/1758-2229.12544] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Calditrichaeota is a recently recognized bacterial phylum with three cultured representatives, isolated from hydrothermal vents. Here we expand the phylogeny and ecology of this novel phylum with metagenome-derived and single-cell genomes from six uncultivated bacteria previously not recognized as members of Calditrichaeota. Using 16S rRNA gene sequences from these genomes, we then identified 322 16S rRNA gene sequences from cultivation-independent studies that can now be classified as Calditrichaeota for the first time. This dataset was used to re-analyse a collection of 16S rRNA gene amplicon datasets from marine sediments showing that the Calditrichaeota are globally distributed in the seabed at high abundance, making up to 6.7% of the total bacterial community. This wide distribution and high abundance of Calditrichaeota in cold marine sediment has gone unrecognized until now. All Calditrichaeota genomes show indications of a chemoorganoheterotrophic metabolism with the potential to degrade detrital proteins through the use of extracellular peptidases. Most of the genomes contain genes encoding proteins that confer O2 tolerance, consistent with the relatively high abundance of Calditrichaeota in surficial bioturbated part of the seabed and, together with the genes encoding extracellular peptidases, suggestive of a general ecophysiological niche for this newly recognized phylum in marine sediment.
Collapse
Affiliation(s)
- Ian P G Marshall
- Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| | - Piotr Starnawski
- Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| | - Carina Cupit
- Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| | - Eva Fernández Cáceres
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Andreas Schramm
- Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| | - Kasper U Kjeldsen
- Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| |
Collapse
|
16
|
Gavrilov S, Podosokorskaya O, Alexeev D, Merkel A, Khomyakova M, Muntyan M, Altukhov I, Butenko I, Bonch-Osmolovskaya E, Govorun V, Kublanov I. Respiratory Pathways Reconstructed by Multi-Omics Analysis in Melioribacter roseus, Residing in a Deep Thermal Aquifer of the West-Siberian Megabasin. Front Microbiol 2017; 8:1228. [PMID: 28713355 PMCID: PMC5492636 DOI: 10.3389/fmicb.2017.01228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/16/2017] [Indexed: 01/19/2023] Open
Abstract
Melioribacter roseus, a representative of recently proposed Ignavibacteriae phylum, is a metabolically versatile thermophilic bacterium, inhabiting subsurface biosphere of the West-Siberian megabasin and capable of growing on various substrates and electron acceptors. Genomic analysis followed by inhibitor studies and membrane potential measurements of aerobically grown M. roseus cells revealed the activity of aerobic respiratory electron transfer chain comprised of respiratory complexes I and IV, and an alternative complex III. Phylogeny reconstruction revealed that oxygen reductases belonged to atypical cc(o/b)o3-type and canonical cbb3–type cytochrome oxidases. Also, two molybdoenzymes of M. roseus were affiliated either with Ttr or Psr/Phs clades, but not with typical respiratory arsenate reductases of the Arr clade. Expression profiling, both at transcripts and protein level, allowed us to assign the role of the terminal respiratory oxidase under atmospheric oxygen concentration for the cc(o/b)o3 cytochrome oxidase, previously proposed to serve for oxygen detoxification only. Transcriptomic analysis revealed the involvement of both molybdoenzymes of M. roseus in As(V) respiration, yet differences in the genomic context of their gene clusters allow to hypothesize about their distinct roles in arsenate metabolism with the ‘Psr/Phs’-type molybdoenzyme being the most probable candidate respiratory arsenate reductase. Basing on multi-omics data, the pathways for aerobic and arsenate respiration were proposed. Our results start to bridge the vigorously increasing gap between homology-based predictions and experimentally verified metabolic processes, what is especially important for understudied microorganisms of novel lineages from deep subsurface environments of Eurasia, which remained separated from the rest of the biosphere for several geological periods.
Collapse
Affiliation(s)
- Sergey Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Olga Podosokorskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Dmitry Alexeev
- Saint Petersburg State University of Information Technologies, Mechanics and OpticsSt. Petersburg, Russia
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Maria Khomyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Maria Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | - Ilya Altukhov
- Federal Research and Clinical Centre of Physico-Chemical MedicineMoscow, Russia.,Moscow Institute of Physics and TechnologyDolgoprudny, Russia
| | - Ivan Butenko
- Federal Research and Clinical Centre of Physico-Chemical MedicineMoscow, Russia
| | - Elizaveta Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Centre of Physico-Chemical MedicineMoscow, Russia.,Moscow Institute of Physics and TechnologyDolgoprudny, Russia
| | - Ilya Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia.,Laboratory of Microbial Genomics, Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| |
Collapse
|
17
|
Kublanov IV, Sigalova OM, Gavrilov SN, Lebedinsky AV, Rinke C, Kovaleva O, Chernyh NA, Ivanova N, Daum C, Reddy TBK, Klenk HP, Spring S, Göker M, Reva ON, Miroshnichenko ML, Kyrpides NC, Woyke T, Gelfand MS, Bonch-Osmolovskaya EA. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota. Front Microbiol 2017; 8:195. [PMID: 28265262 PMCID: PMC5317091 DOI: 10.3389/fmicb.2017.00195] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family, while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.
Collapse
Affiliation(s)
- Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Olga M Sigalova
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Sergey N Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Alexander V Lebedinsky
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD, Australia
| | - Olga Kovaleva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Nikolai A Chernyh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | | | - Chris Daum
- DOE Joint Genome Institute, Walnut Creek CA, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Walnut Creek CA, USA
| | | | - Stefan Spring
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Oleg N Reva
- Center for Bioinformatics and Computational Biology, Department of Biochemistry, University of Pretoria Pretoria, South Africa
| | - Margarita L Miroshnichenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut CreekCA, USA; Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, BerkeleyCA, USA
| | - Mikhail S Gelfand
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia; Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State UniversityMoscow, Russia; Skolkovo Institute of Science and TechnologyMoscow, Russia; Faculty of Computer Science, National Research University - Higher School of EconomicsMoscow, Russia
| | | |
Collapse
|
18
|
Bryukhanov AL, Korneeva VA, Dinarieva TY, Karnachuk OV, Netrusov AI, Pimenov NV. Components of antioxidant systems in the cells of aerotolerant sulfate-reducing bacteria of the genus Desulfovibrio (strains A2 and TomC) isolated from metal mining waste. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716060047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Lefèvre CT, Howse PA, Schmidt ML, Sabaty M, Menguy N, Luther GW, Bazylinski DA. Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:1003-1015. [PMID: 27701830 DOI: 10.1111/1758-2229.12479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Although dissimilatory sulfate-reducing bacteria (SRB) are generally described as strictly anaerobic organisms with regard to growth, several reports have shown that some SRB, particularly Desulfovibrio species, are quite resistant to O2 . For example, SRB remain viable in many aerobic environments while some even reduce O2 to H2 O. However, reproducible aerobic growth of SRB has not been unequivocally documented. Desulfovibrio magneticus is a SRB that is also a magnetotactic bacterium (MTB). MTB biomineralize magnetosomes which are intracellular, membrane-bounded, magnetic iron mineral crystals. The ability of D. magneticus to grow aerobically in several different media under air where an O2 concentration gradient formed, or under O2 -free N2 gas was tested. Under air, cells grew as a microaerophilic band of cells at the oxic-anoxic interface in media lacking sulfate. These results show that D. magneticus is capable of aerobic growth with O2 as a terminal electron acceptor. This is the first report of consistent, reproducible aerobic growth of SRB. This finding is critical in determining important ecological roles SRB play in the environment. Interestingly, the crystal structure of the magnetite crystals of D. magneticus grown under microaerobic conditions showed significant differences compared with those produced anaerobically providing more evidence that environmental parameters influence magnetosome formation.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université UMR7265 Institut de biosciences et biotechnologies Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, 13108, France
| | - Paul A Howse
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Marian L Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Monique Sabaty
- CNRS/CEA/Aix-Marseille Université UMR7265 Institut de biosciences et biotechnologies Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, 13108, France
| | - Nicolas Menguy
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, Université Pierre et Marie Curie, UMR 7590 CNRS, Institut de Recherche pour le Développement UMR 206, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd. Lewes, DE, 19958, USA
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| |
Collapse
|
20
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
21
|
Ramel F, Brasseur G, Pieulle L, Valette O, Hirschler-Réa A, Fardeau ML, Dolla A. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases. PLoS One 2015; 10:e0123455. [PMID: 25837676 PMCID: PMC4383621 DOI: 10.1371/journal.pone.0123455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022] Open
Abstract
Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions that permit PFOR to stay in its active state.
Collapse
Affiliation(s)
- Fanny Ramel
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Gael Brasseur
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | | | - Odile Valette
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Agnès Hirschler-Réa
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO, UM110, 13288 Marseille, Cedex 09, France
| | - Marie Laure Fardeau
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO, UM110, 13288 Marseille, Cedex 09, France
| | - Alain Dolla
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
- * E-mail:
| |
Collapse
|
22
|
Karnachuk OV, Gavrilov SN, Avakyan MR, Podosokorskaya OA, Frank YA, Bonch-Osmolovskaya EA, Kublanov IV. Diversity of copper proteins and copper homeostasis systems in Melioribacter roseus, a facultatively anaerobic thermophilic member of the new phylum Ignavibacteriae. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715020058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
23
|
Price MN, Ray J, Wetmore KM, Kuehl JV, Bauer S, Deutschbauer AM, Arkin AP. The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. Front Microbiol 2014; 5:577. [PMID: 25400629 PMCID: PMC4215793 DOI: 10.3389/fmicb.2014.00577] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/13/2014] [Indexed: 11/13/2022] Open
Abstract
Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but it remains unclear how reducing sulfate yields energy. To determine the genetic basis of energy conservation, we measured the fitness of thousands of pooled mutants of Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is required whenever substrate-level phosphorylation is not possible. The uncharacterized complex Hdr/flox-1 (Dde_1207:13) is sometimes important alongside Rnf and may perform an electron bifurcation to generate more reduced ferredoxin from NADH to allow further ion pumping. Similarly, during the oxidation of malate or fumarate, the electron-bifurcating transhydrogenase NfnAB-2 (Dde_1250:1) is important and may generate reduced ferredoxin to allow additional ion pumping by Rnf. During formate oxidation, the periplasmic [NiFeSe] hydrogenase HysAB is required, which suggests that hydrogen forms in the periplasm, diffuses to the cytoplasm, and is used to reduce ferredoxin, thus providing a substrate for Rnf. During hydrogen utilization, the transmembrane electron transport complex Tmc is important and may move electrons from the periplasm into the cytoplasmic sulfite reduction pathway. Finally, mutants of many other putative electron carriers have no clear phenotype, which suggests that they are not important under our growth conditions, although we cannot rule out genetic redundancy.
Collapse
Affiliation(s)
- Morgan N. Price
- Physical Biosciences Division, Lawrence Berkeley LabBerkeley, CA, USA
| | - Jayashree Ray
- Physical Biosciences Division, Lawrence Berkeley LabBerkeley, CA, USA
| | - Kelly M. Wetmore
- Physical Biosciences Division, Lawrence Berkeley LabBerkeley, CA, USA
| | - Jennifer V. Kuehl
- Physical Biosciences Division, Lawrence Berkeley LabBerkeley, CA, USA
| | - Stefan Bauer
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
| | | | - Adam P. Arkin
- Physical Biosciences Division, Lawrence Berkeley LabBerkeley, CA, USA
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
- Department of Bioengineering, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
24
|
Le Laz S, Kpebe A, Bauzan M, Lignon S, Rousset M, Brugna M. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1. PLoS One 2014; 9:e86343. [PMID: 24466040 PMCID: PMC3899249 DOI: 10.1371/journal.pone.0086343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa3-type oxidase in S. oneidensis MR-1 are discussed.
Collapse
Affiliation(s)
- Sébastien Le Laz
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
| | - Arlette Kpebe
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
| | - Marielle Bauzan
- CNRS, Aix-Marseille Université, Unité de fermentation, FR3479, IMM, Marseille, France
| | - Sabrina Lignon
- CNRS, Aix-Marseille Université, Plate-forme Protéomique, FR3479, IMM, MaP IBiSA, Marseille, France
| | - Marc Rousset
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
| | - Myriam Brugna
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
- * E-mail:
| |
Collapse
|
25
|
Ramel F, Amrani A, Pieulle L, Lamrabet O, Voordouw G, Seddiki N, Brèthes D, Company M, Dolla A, Brasseur G. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation. MICROBIOLOGY-SGM 2013; 159:2663-2673. [PMID: 24085836 DOI: 10.1099/mic.0.071282-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.
Collapse
Affiliation(s)
- F Ramel
- Laboratoire de Chimie Bactérienne, CNRS-UMR7283, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - A Amrani
- Laboratoire de Chimie Bactérienne, CNRS-UMR7283, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - L Pieulle
- Laboratoire de Chimie Bactérienne, CNRS-UMR7283, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - O Lamrabet
- Laboratoire de Chimie Bactérienne, CNRS-UMR7283, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - G Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada
| | - N Seddiki
- Laboratoire de Métabolisme Énergétique Cellulaire, IBGC-CNRS, et Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, 33077 Bordeaux CEDEX, France
| | - D Brèthes
- Laboratoire de Métabolisme Énergétique Cellulaire, IBGC-CNRS, et Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, 33077 Bordeaux CEDEX, France
| | - M Company
- Laboratoire de Chimie Bactérienne, CNRS-UMR7283, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - A Dolla
- Laboratoire de Chimie Bactérienne, CNRS-UMR7283, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - G Brasseur
- Laboratoire de Chimie Bactérienne, CNRS-UMR7283, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| |
Collapse
|
26
|
Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, Ravin NV, Bonch-Osmolovskaya EA, Kublanov IV. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol 2013; 15:1759-71. [PMID: 23297868 DOI: 10.1111/1462-2920.12067] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/28/2012] [Indexed: 11/30/2022]
Abstract
A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M-2(T) was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775-m-deep oil exploration well (Tomsk region, Russia). Strain P3M-2(T) is a moderate thermophile and facultative anaerobe growing on mono-, di- or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M-2(T) . Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum-level lineage. Hence, we propose a new phylum Ignavibacteriae within the Bacteroidetes-Chlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically.
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Santana MM, Portillo MC, Gonzalez JM. Mutualistic growth of the sulfate-reducer Desulfovibrio vulgaris Hildenborough with different carbohydrates. Microbiology (Reading) 2012. [DOI: 10.1134/s002626171206015x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Figueiredo MCO, Lobo SAL, Carita JN, Nobre LS, Saraiva LM. Bacterioferritin protects the anaerobe Desulfovibrio vulgaris Hildenborough against oxygen. Anaerobe 2012; 18:454-8. [PMID: 22706208 DOI: 10.1016/j.anaerobe.2012.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/20/2012] [Accepted: 06/05/2012] [Indexed: 12/23/2022]
Abstract
Intracellular free iron, is under aerobic conditions and via the Fenton reaction a catalyst for the formation of harmful reactive oxygen species. In this article, we analyzed the relation between intracellular iron storage and oxidative stress response in the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough, an anaerobe that is often found in oxygenated niches. To this end, we investigated the role of the iron storage protein bacterioferritin using transcriptomic and physiological approaches. We observed that transcription of bacterioferritin is strongly induced upon exposure of cells to an oxygenated atmosphere. When grown in the presence of high concentrations of oxygen the D. vulgaris bacterioferritin mutant exhibited, in comparison with the wild type strain, lower viability and a higher content of intracellular reactive oxygen species. Furthermore, the bacterioferritin gene is under the control of the oxidative stress response regulator D. vulgaris PerR. Altogether the data revealed a previously unrecognized ability for the iron storage bacterioferritin to contribute to the oxygen tolerance exhibited by D. vulgaris.
Collapse
Affiliation(s)
- Mafalda C O Figueiredo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
29
|
Lobo SAL, Warren MJ, Saraiva LM. Sulfate-reducing bacteria reveal a new branch of tetrapyrrole metabolism. Adv Microb Physiol 2012; 61:267-95. [PMID: 23046956 DOI: 10.1016/b978-0-12-394423-8.00007-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulfate-reducing microorganisms are a diverse group of bacteria and archaea that occupy important environmental niches and have potential for significant biotechnological impact. Desulfovibrio, the most studied genus among the sulfate-reducing microorganisms, contains proteins with a wide variety of tetrapyrrole-derived cofactors, including some unique derivatives such as uroporphyrin I and coproporphyrin III. Herein, we review tetrapyrrole metabolism in Desulfovibrio spp., including the production of sirohaem and cobalamin, and compare and contrast the biochemical properties of the enzymes involved in these biosynthetic pathways. Furthermore, we describe a novel pathway used by Desulfovibrio to synthesize haem b, which provides a previously unrecognized link between haem, sirohaem, and haem d(1). Finally, the organization and regulation of genes involved in the tetrapyrrole biosynthetic pathway is discussed.
Collapse
Affiliation(s)
- Susana A L Lobo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República EAN, Oeiras, Portugal
| | | | | |
Collapse
|