1
|
Du J, Ma W, Li G, Chang W, Chun L. Soil nitrogen-related functional genes undergo abundance changes during vegetation degradation in a Qinghai-Tibet Plateau wet meadow. Appl Environ Microbiol 2024; 90:e0081324. [PMID: 39302130 PMCID: PMC11497797 DOI: 10.1128/aem.00813-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Climate change and anthropogenic activities have significantly contributed to the degradation of wet meadows on the Qinghai-Tibet Plateau (QTP). Soil nitrogen (N) availability is a crucial determinant of the productivity of wet meadow vegetation. Furthermore, soil microbial nitrogen functional genes (NFGs) are critical in the transformation of soil N. Nevertheless, the dynamics of NFGs in response to vegetation degradation, as well as the underlying drivers, remain poorly understood. In this study, wet meadows at varying levels of vegetation degradation on the QTP, categorized as non-degraded (ND), slightly degraded (SD), moderately degraded (MD), and heavily degraded (HD), were examined. Soil samples from depths of 0 to 10 cm and 10 to 20 cm were collected during different growth cycles (June 2020, August 2020, and May 2021). The analysis focused on NFGs involved in organic nitrogen fixation (nifH), archaeal and bacterial ammonia oxidation (amoA-AOA and amoA-AOB, respectively), and nitrite reduction (nirK), utilizing real-time fluorescence quantitative PCR. Our findings indicate a significant decline in the abundance of NFGs with intensified vegetation degradation, exhibiting notable spatial and temporal fluctuations. Specifically, the relative NFGs followed the pattern: nirK > amoA-AOA > amoA-AOB > nifH. Redundancy analysis revealed that vegetation cover was the primary regulator of NFGs abundance, accounting for 56.1%-57% of the variation. Additionally, soil total nitrogen, pH, and total phosphorus content were responsible for 38.5%, 28.2%, and 7% of the variability in NFGs, respectively. The (amoA-AOA + amoA-AOB + nirK) ratios associated with effective N transformation indicated that the vegetation degradation process moderately increased the nitrification potential. IMPORTANCE Our research investigates how the degradation of meadows affects the tiny organisms in soil that help plants use nitrogen, which is essential for their growth. In the Qinghai-Tibet Plateau, a region known for its unique ecosystems, we found that as meadows deteriorate-due to climate change and human activities-the number of these beneficial organisms significantly decreases. This decline could reduce soil fertility, impacting plant life and the overall health of the ecosystem. Understanding these changes helps us grasp how environmental pressures influence soil and plant health. Such knowledge is crucial for developing strategies to preserve these vulnerable ecosystems and ensure they continue to sustain biodiversity and provide resources for local communities.
Collapse
Affiliation(s)
- Jianan Du
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Weiwei Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guang Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wenhua Chang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Longyong Chun
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Bao YQ, Zhang MT, Feng BY, Jieensi W, Xu Y, Xu LR, Han YY, Chen YP. Construction, Characterization, and Application of an Ammonium Transporter (AmtB) Deletion Mutant of the Nitrogen-Fixing Bacterium Kosakonia radicincitans GXGL-4A in Cucumis sativus L. Seedlings. Curr Microbiol 2023; 80:58. [PMID: 36588112 DOI: 10.1007/s00284-022-03160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
Nitrogen is an important factor affecting crop yield, but excessive use of chemical nitrogen fertilizer has caused decline in nitrogen utilization and soil and water pollution. Reducing the utilization of chemical nitrogen fertilizers by biological nitrogen fixation (BNF) is feasible for green production of crops. However, there are few reports on how to have more ammonium produced by nitrogen-fixing bacteria (NFB) flow outside the cell. In the present study, the amtB gene encoding an ammonium transporter (AmtB) in the genome of NFB strain Kosakonia radicincitans GXGL-4A was deleted and the △amtB mutant was characterized. The results showed that deletion of the amtB gene had no influence on the growth of bacterial cells. The extracellular ammonium nitrogen (NH4+) content of the △amtB mutant under nitrogen-free culture conditions was significantly higher than that of the wild-type strain GXGL-4A (WT-GXGL-4A), suggesting disruption of NH4+ transport. Meanwhile, the plant growth-promoting effect in cucumber seedlings was visualized after fertilization using cells of the △amtB mutant. NFB fertilization continuously increased the cucumber rhizosphere soil pH. The nitrate nitrogen (NO3-) content in soil in the △amtB treatment group was significantly higher than that in the WT-GXGL-4A treatment group in the short term but there was no difference in soil NH4+ contents between groups. Soil enzymatic activities varied during a 45-day assessment period, indicating that △amtB fertilization influenced soil nitrogen cycling in the cucumber rhizosphere. The results will provide a solid foundation for developing the NFB GXGL-4A into an efficient biofertilizer agent.
Collapse
Affiliation(s)
- Yu-Qing Bao
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meng-Ting Zhang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bao-Yun Feng
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wulale Jieensi
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu-Rong Xu
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying-Ying Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yun-Peng Chen
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Ministry of Science and Technology, Shanghai Yangtze River Delta Eco-Environmental Change and Research Station, Shanghai, 200240, China.
| |
Collapse
|
3
|
Martien JI, Trujillo EA, Jacobson TB, Tatli M, Hebert AS, Stevenson DM, Coon JJ, Amador-Noguez D. Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis. mSystems 2021; 6:e0098721. [PMID: 34783580 PMCID: PMC8594446 DOI: 10.1128/msystems.00987-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is an ethanologenic bacterium currently being developed for production of advanced biofuels. Recent studies have shown that Z. mobilis can fix dinitrogen gas (N2) as a sole nitrogen source. During N2 fixation, Z. mobilis exhibits increased biomass-specific rates of ethanol production. In order to better understand the physiology of Z. mobilis during N2 fixation and during changes in ammonium (NH4+) availability, we performed liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomics and shotgun proteomics under three regimes of nitrogen availability: continuous N2 fixation, gradual NH4+ depletion, and acute NH4+ addition to N2-fixing cells. We report dynamic changes in abundance of proteins and metabolites related to nitrogen fixation, motility, ammonium assimilation, amino acid biosynthesis, nucleotide biosynthesis, isoprenoid biosynthesis, and Entner-Doudoroff (ED) glycolysis, providing insight into the regulatory mechanisms that control these processes in Z. mobilis. Our analysis identified potential physiological mechanisms that may contribute to increased specific ethanol production during N2 fixation, including decreased activity of biosynthetic pathways, increased protein abundance of alcohol dehydrogenase (ADHI), and increased thermodynamic favorability of the ED pathway. Of particular relevance to advanced biofuel production, we found that intermediates in the methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis were depleted during N2 fixation, coinciding with decreased protein abundance of deoxyxylulose 5-phosphate synthase (DXS), the first enzyme in the pathway. This implies that DXS protein abundance serves as a native control point in regulating MEP pathway activity in Z. mobilis. The results of this study will inform metabolic engineering to further develop Z. mobilis as a platform organism for biofuel production. IMPORTANCE Biofuels and bioproducts have the potential to serve as environmentally sustainable replacements for petroleum-derived fuels and commodity molecules. Advanced fuels such as higher alcohols and isoprenoids are more suitable gasoline replacements than bioethanol. Developing microbial systems to generate advanced biofuels requires metabolic engineering to reroute carbon away from ethanol and other native products and toward desired pathways, such as the MEP pathway for isoprenoid biosynthesis. However, rational engineering of microbial metabolism relies on understanding metabolic control points, in terms of both enzyme activity and thermodynamic favorability. In Z. mobilis, the factors that control glycolytic rates, ethanol production, and isoprenoid production are still not fully understood. In this study, we performed metabolomic, proteomic, and thermodynamic analysis of Z. mobilis during N2 fixation. This analysis identified key changes in metabolite levels, enzyme abundance, and glycolytic thermodynamic favorability that occurred during changes in NH4+ availability, helping to inform future efforts in metabolic engineering.
Collapse
Affiliation(s)
- Julia I. Martien
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Edna A. Trujillo
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tyler B. Jacobson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Nisar A, Gongye X, Huang Y, Khan S, Chen M, Wu B, He M. Genome-Wide Analyses of Proteome and Acetylome in Zymomonas mobilis Under N 2-Fixing Condition. Front Microbiol 2021; 12:740555. [PMID: 34803957 PMCID: PMC8600466 DOI: 10.3389/fmicb.2021.740555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Zymomonas mobilis, a promising candidate for industrial biofuel production, is capable of nitrogen fixation naturally without hindering ethanol production. However, little is known about the regulation of nitrogen fixation in Z. mobilis. We herein conducted a high throughput analysis of proteome and protein acetylation in Z. mobilis under N2-fixing conditions and established its first acetylome. The upregulated proteins mainly belong to processes of nitrogen fixation, motility, chemotaxis, flagellar assembly, energy production, transportation, and oxidation–reduction. Whereas, downregulated proteins are mainly related to energy-consuming and biosynthetic processes. Our acetylome analyses revealed 197 uniquely acetylated proteins, belonging to major pathways such as nitrogen fixation, central carbon metabolism, ammonia assimilation pathway, protein biosynthesis, and amino acid metabolism. Further, we observed acetylation in glycolytic enzymes of central carbon metabolism, the nitrogenase complex, the master regulator NifA, and the enzyme in GS/GOGAT cycle. These findings suggest that protein acetylation may play an important role in regulating various aspects of N2-metabolism in Z. mobilis. This study provides new knowledge of specific proteins and their associated cellular processes and pathways that may be regulated by protein acetylation in Z. mobilis.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Xiangxu Gongye
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yuhuan Huang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Sawar Khan
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mao Chen
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
5
|
Sakamoto T, Takatani N, Sonoike K, Jimbo H, Nishiyama Y, Omata T. Dissection of the Mechanisms of Growth Inhibition Resulting from Loss of the PII Protein in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2021; 62:721-731. [PMID: 33650637 PMCID: PMC8474142 DOI: 10.1093/pcp/pcab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 05/08/2023]
Abstract
In cyanobacteria, the PII protein (the glnB gene product) regulates a number of proteins involved in nitrogen assimilation including PipX, the coactivator of the global nitrogen regulator protein NtcA. In Synechococcus elongatus PCC 7942, construction of a PII-less mutant retaining the wild-type pipX gene is difficult because of the toxicity of uncontrolled action of PipX and the other defect(s) resulting from the loss of PIIper se, but the nature of the PipX toxicity and the PipX-independent defect(s) remains unclear. Characterization of a PipX-less glnB mutant (PD4) in this study showed that the loss of PII increases the sensitivity of PSII to ammonium. Ammonium was shown to stimulate the formation of reactive oxygen species in the mutant cells. The ammonium-sensitive growth phenotype of PD4 was rescued by the addition of an antioxidant α-tocopherol, confirming that photo-oxidative damage was the major cause of the growth defect. A targeted PII mutant retaining wild-type pipX was successfully constructed from the wild-type S. elongatus strain (SPc) in the presence of α-tocopherol. The resulting mutant (PD1X) showed an unusual chlorophyll fluorescence profile, indicating extremely slow reduction and re-oxidation of QA, which was not observed in mutants defective in both glnB and pipX. These results showed that the aberrant action of uncontrolled PipX resulted in an impairment of the electron transport reactions in both the reducing and oxidizing sides of QA.
Collapse
Affiliation(s)
- Takayuki Sakamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Nobuyuki Takatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480 Japan
| | - Haruhiko Jimbo
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
- Graduate School of Arts and Sciences, University of Tokyo,Tokyo 153-8902Japan
| | - Yoshitaka Nishiyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
| | - Tatsuo Omata
- * Corresponding author: E-mail, ; Fax, +81-52-789-4107
| |
Collapse
|
6
|
Schnabel T, Sattely E. Engineering Posttranslational Regulation of Glutamine Synthetase for Controllable Ammonia Production in the Plant Symbiont Azospirillum brasilense. Appl Environ Microbiol 2021; 87:e0058221. [PMID: 33962983 PMCID: PMC8231714 DOI: 10.1128/aem.00582-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Nitrogen requirements for modern agriculture far exceed the levels of bioavailable nitrogen in most arable soils. As a result, the addition of nitrogen fertilizer is necessary to sustain productivity and yields, especially for cereal crops, the planet's major calorie suppliers. Given the unsustainability of industrial fertilizer production and application, engineering biological nitrogen fixation directly at the roots of plants has been a grand challenge for biotechnology. Here, we designed and tested a potentially broadly applicable metabolic engineering strategy for the overproduction of ammonia in the diazotrophic symbiont Azospirillum brasilense. Our approach is based on an engineered unidirectional adenylyltransferase (uAT) that posttranslationally modifies and deactivates glutamine synthetase (GS), a key regulator of nitrogen metabolism in the cell. We show that this circuit can be controlled inducibly, and we leveraged the inherent self-contained nature of our posttranslational approach to demonstrate that multicopy redundancy can improve strain evolutionary stability. uAT-engineered Azospirillum is capable of producing ammonia at rates of up to 500 μM h-1 unit of OD600 (optical density at 600 nm)-1. We demonstrated that when grown in coculture with the model monocot Setaria viridis, these strains increase the biomass and chlorophyll content of plants up to 54% and 71%, respectively, relative to the wild type (WT). Furthermore, we rigorously demonstrated direct transfer of atmospheric nitrogen to extracellular ammonia and then plant biomass using isotopic labeling: after 14 days of cocultivation with engineered uAT strains, 9% of chlorophyll nitrogen in Setaria seedlings was derived from diazotrophically fixed dinitrogen, whereas no nitrogen was incorporated in plants cocultivated with WT controls. This rational design for tunable ammonia overproduction is modular and flexible, and we envision that it could be deployable in a consortium of nitrogen-fixing symbiotic diazotrophs for plant fertilization. IMPORTANCE Nitrogen is the most limiting nutrient in modern agriculture. Free-living diazotrophs, such as Azospirillum, are common colonizers of cereal grasses and have the ability to fix nitrogen but natively do not release excess ammonia. Here, we used a rational engineering approach to generate ammonia-excreting strains of Azospirillum. Our design features posttranslational control of highly conserved central metabolism, enabling tunability and flexibility of circuit placement. We found that our strains promote the growth and health of the model grass S. viridis and rigorously demonstrated that in comparison to WT controls, our engineered strains can transfer nitrogen from 15N2 gas to plant biomass. Unlike previously reported ammonia-producing mutants, our rationally designed approach easily lends itself to further engineering opportunities and has the potential to be broadly deployable.
Collapse
Affiliation(s)
- Tim Schnabel
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University and HHMI, Stanford, California, USA
| |
Collapse
|
7
|
Wilson ST, Caffin M, White AE, Karl DM. Evaluation of argon-induced hydrogen production as a method to measure nitrogen fixation by cyanobacteria. JOURNAL OF PHYCOLOGY 2021; 57:863-873. [PMID: 33450056 DOI: 10.1111/jpy.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The production of dihydrogen (H2 ) is an enigmatic yet obligate component of biological dinitrogen (N2 ) fixation. This study investigates the effect on H2 production by N2 fixing cyanobacteria when they are exposed to either air or a gas mixture consisting of argon, oxygen, and carbon dioxide (Ar:O2 :CO2 ). In the absence of N2 , nitrogenase diverts the flow of electrons to the production of H2 , which becomes a measure of Total Nitrogenase Activity (TNA). This method of argon-induced hydrogen production (AIHP) is much less commonly used to infer rates of N2 fixation than the acetylene reduction (AR) assay. We provide here a full evaluation of the AIHP method and demonstrate its ability to achieve high-resolution measurements of TNA in a gas exchange flow-through system. Complete diel profiles of H2 production were obtained for N2 fixing cyanobacteria despite the absence of N2 that broadly reproduced the temporal patterns observed by the AR assay. Comparison of H2 production under air versus Ar:O2 :CO2 revealed the efficiency of electron usage during N2 fixation and place these findings in the broader context of cell metabolism. Ultimately, AIHP is demonstrated to be a viable alternative to the AR assay with several additional merits that provide an insight into cell physiology and promise for successful field application.
Collapse
Affiliation(s)
- Samuel T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| | - Mathieu Caffin
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| | - Angelicque E White
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| |
Collapse
|
8
|
Seasonal and long-term effects of nutrient additions and liming on the nifH gene in cerrado soils under native vegetation. iScience 2021; 24:102349. [PMID: 33870141 PMCID: PMC8044383 DOI: 10.1016/j.isci.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation (BNF) represents the main input source of N in tropical savannas. BNF could be particularly important for Brazilian savannas (known as Cerrado) that show a highly conservative N cycle. We evaluated the effects of seasonal precipitation and nutrient additions on the nifH gene abundance in soils from a long-term fertilization experiment in a Cerrado's native area. The experiment consists of five treatments: (1) control, (2) liming, (3) nitrogen (N), (4) nitrogen + phosphorus (NP), and (5) phosphorus (P) additions. The nifH gene sequence was related to Bradyrhizobium members. Seasonal effects on N-fixing potential were observed by a decrease in the nifH relative abundance from rainy to dry season in control, N, and NP treatments. A significant reduction in nifH abundance was found in the liming treatment in both seasons. The findings evidenced the multiple factors controlling the potential N-fixing by free-living diazotrophs in these nutrient-limited and seasonally dry ecosystems.
Collapse
|
9
|
Li Q, He X, Liu P, Zhang H, Wang M, Chen S. Synthesis of nitrogenase by Paenibacillus sabinae T27 in presence of high levels of ammonia during anaerobic fermentation. Appl Microbiol Biotechnol 2021; 105:2889-2899. [PMID: 33745008 DOI: 10.1007/s00253-021-11231-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/19/2023]
Abstract
Biological nitrogen fixation is usually inhibited by fixed nitrogen. Paenibacillus sabinae T27, a Gram-positive, spore-forming diazotroph, possesses high nitrogenase activity and has 3 copies of nifH (nifH, nifH2, nifH3), a copy of nifDK, and multiple nifHDK-like genes. In this study, we found that P. sabinae T27 showed nitrogenase activities not only in low (0-3 mM) concentrations of NH4+ but also in high (30-300 mM) concentrations of NH4+, no matter whether this bacterium was grown in a flask or in a fermenter on scale cultivation. qRT-PCR and western blotting analyses supported that Fe protein and MoFe protein were synthesized under both low (0-3 mM) and high (30-300 mM) concentrations of NH4+. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that MoFe protein was encoded by nifDK and Fe protein was encoded by both nifH and nifH2. The cross-reaction suggested the purified Fe and MoFe components from P. sabinae T27 grown in both nitrogen-limited and nitrogen-excess conditions were active. This is the first time to report that diazotrophs show nitrogenase activity in presence of high (30-300 mM) concentrations of NH4+. Our study will provide a clue for studying the mechanisms of nitrogen fixation in presence of the high concentration of NH4+. KEY POINTS: • P. sabinae T27 can synthesize active nitrogenase in presence of high levels of ammonia. •Fe and MoFe proteins of nitrogenase purified in absence of ammonia are the same as those purified from the high concentration of ammonia. • Fe protein is encoded by nifH and nifH2, and MoFe protein is encoded by nifDK.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiaojuan He
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Pengxi Liu
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Mingyang Wang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
The Protein-Protein Interaction Network Reveals a Novel Role of the Signal Transduction Protein PII in the Control of c-di-GMP Homeostasis in Azospirillum brasilense. mSystems 2020; 5:5/6/e00817-20. [PMID: 33144311 PMCID: PMC7646526 DOI: 10.1128/msystems.00817-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The PII proteins sense and integrate important metabolic signals which reflect the cellular nutrition and energy status. Such extraordinary ability was capitalized by nature in such a way that the various PII proteins regulate different facets of metabolism by controlling the activity of a range of target proteins by protein-protein interactions. Here, we determined the PII protein interaction network in the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense. The interactome data along with metabolome analysis suggest that PII functions as a master metabolic regulator hub. We provide evidence that PII proteins act to regulate c-di-GMP levels in vivo and cell motility and adherence behaviors. The PII family comprises a group of widely distributed signal transduction proteins ubiquitous in prokaryotes and in the chloroplasts of plants. PII proteins sense the levels of key metabolites ATP, ADP, and 2-oxoglutarate, which affect the PII protein structure and thereby the ability of PII to interact with a range of target proteins. Here, we performed multiple ligand fishing assays with the PII protein orthologue GlnZ from the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense to identify 37 proteins that are likely to be part of the PII protein-protein interaction network. Among the PII targets identified were enzymes related to nitrogen and fatty acid metabolism, signaling, coenzyme synthesis, RNA catabolism, and transcription. Direct binary PII-target complex was confirmed for 15 protein complexes using pulldown assays with recombinant proteins. Untargeted metabolome analysis showed that PII is required for proper homeostasis of important metabolites. Two enzymes involved in c-di-GMP metabolism were among the identified PII targets. A PII-deficient strain showed reduced c-di-GMP levels and altered aerotaxis and flocculation behavior. These data support that PII acts as a major metabolic hub controlling important enzymes and the homeostasis of key metabolites such as c-di-GMP in response to the prevailing nutritional status. IMPORTANCE The PII proteins sense and integrate important metabolic signals which reflect the cellular nutrition and energy status. Such extraordinary ability was capitalized by nature in such a way that the various PII proteins regulate different facets of metabolism by controlling the activity of a range of target proteins by protein-protein interactions. Here, we determined the PII protein interaction network in the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense. The interactome data along with metabolome analysis suggest that PII functions as a master metabolic regulator hub. We provide evidence that PII proteins act to regulate c-di-GMP levels in vivo and cell motility and adherence behaviors.
Collapse
|
11
|
Santos ARS, Gerhardt ECM, Parize E, Pedrosa FO, Steffens MBR, Chubatsu LS, Souza EM, Passaglia LMP, Sant'Anna FH, de Souza GA, Huergo LF, Forchhammer K. NAD + biosynthesis in bacteria is controlled by global carbon/nitrogen levels via PII signaling. J Biol Chem 2020; 295:6165-6176. [PMID: 32179648 PMCID: PMC7196632 DOI: 10.1074/jbc.ra120.012793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Indexed: 01/01/2023] Open
Abstract
NAD+ is a central metabolite participating in core metabolic redox reactions. The prokaryotic NAD synthetase enzyme NadE catalyzes the last step of NAD+ biosynthesis, converting nicotinic acid adenine dinucleotide (NaAD) to NAD+. Some members of the NadE family use l-glutamine as a nitrogen donor and are named NadEGln. Previous gene neighborhood analysis has indicated that the bacterial nadE gene is frequently clustered with the gene encoding the regulatory signal transduction protein PII, suggesting a functional relationship between these proteins in response to the nutritional status and the carbon/nitrogen ratio of the bacterial cell. Here, using affinity chromatography, bioinformatics analyses, NAD synthetase activity, and biolayer interferometry assays, we show that PII and NadEGln physically interact in vitro, that this complex relieves NadEGln negative feedback inhibition by NAD+. This mechanism is conserved in distantly related bacteria. Of note, the PII protein allosteric effector and cellular nitrogen level indicator 2-oxoglutarate (2-OG) inhibited the formation of the PII-NadEGln complex within a physiological range. These results indicate an interplay between the levels of ATP, ADP, 2-OG, PII-sensed glutamine, and NAD+, representing a metabolic hub that may balance the levels of core nitrogen and carbon metabolites. Our findings support the notion that PII proteins act as a dissociable regulatory subunit of NadEGln, thereby enabling the control of NAD+ biosynthesis according to the nutritional status of the bacterial cell.
Collapse
Affiliation(s)
- Adrian Richard Schenberger Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil; Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | | | - Erick Parize
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Fabio Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Maria Berenice Reynaud Steffens
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Leda Satie Chubatsu
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Emanuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP:91501-970 CP 15053 Brazil
| | - Fernando Hayashi Sant'Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP:91501-970 CP 15053 Brazil
| | - Gustavo Antônio de Souza
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal/RN, CEP: 59072-970 Brazil
| | - Luciano Fernandes Huergo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil; Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany; Setor Litoral, UFPR, Matinhos, Paraná, CEP: 83260-000 Brazil.
| | - Karl Forchhammer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany.
| |
Collapse
|
12
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
13
|
Kaya D, Kjellerup BV, Chourey K, Hettich RL, Taggart DM, Löffler FE. Impact of Fixed Nitrogen Availability on Dehalococcoides mccartyi Reductive Dechlorination Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14548-14558. [PMID: 31693350 DOI: 10.1021/acs.est.9b04463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biostimulation to promote reductive dechlorination is widely practiced, but the value of adding an exogenous nitrogen (N) source (e.g., NH4+) during treatment is unclear. This study investigates the effect of NH4+ availability on organohalide-respiring Dehalococcoides mccartyi (Dhc) growth and reductive dechlorination in enrichment cultures derived from groundwater (PW4) and river sediment (TC) impacted with chlorinated ethenes. In PW4 cultures, the addition of NH4+ increased cis-1,2-dichloroethene (cDCE)-to-ethene dechlorination rates about 5-fold (20.6 ± 1.6 versus 3.8 ± 0.5 μM Cl- d-1), and the total number of Dhc 16S rRNA gene copies were about 43-fold higher in incubations with NH4+ ((1.8 ± 0.9) × 108 mL-1) compared to incubations without NH4+ ((4.1 ± 0.8) × 107 mL-1). In TC cultures, NH4+ also stimulated cDCE-to-ethene dechlorination and Dhc growth. Quantitative polymerase chain reaction (qPCR) revealed that Cornell-type Dhc capable of N2 fixation dominated PW4 cultures without NH4+, but their relative abundance decreased in cultures with NH4+ amendment (i.e., 99 versus 54% of total Dhc). Pinellas-type Dhc incapable of N2 fixation were responsible for cDCE dechlorination in TC cultures, and diazotrophic community members met their fixed N requirement in the medium without NH4+. Responses to NH4+ were apparent at the community level, and N2-fixing bacterial populations increased in incubations without NH4+. Quantitative assessment of Dhc nitrogenase genes, transcripts, and proteomics data linked Cornell-type Dhc nifD and nifK expression with fixed N limitation. NH4+ additions also demonstrated positive effects on Dhc in situ dechlorination activity in the vicinity of well PW4. These findings demonstrate that biostimulation with NH4+ can enhance Dhc reductive dechlorination rates; however, a "do nothing" approach that relies on indigenous diazotrophs can achieve similar dechlorination end points and avoids the potential for stalled dechlorination due to inhibitory levels of NH4+ or transformation products (i.e., nitrous oxide).
Collapse
Affiliation(s)
- Devrim Kaya
- Biosciences Division and ⊥Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Civil and Environmental Engineering , University of Maryland College Park , College Park , Maryland 20742 , United States
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering , University of Maryland College Park , College Park , Maryland 20742 , United States
| | | | | | - Dora M Taggart
- Microbial Insights, Inc. , Knoxville , Tennessee 37932 , United States
| | - Frank E Löffler
- Biosciences Division and ⊥Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
14
|
Wang H, Waluk D, Dixon R, Nordlund S, Norén A. Energy shifts induce membrane sequestration of DraG in Rhodospirillum rubrum independent of the ammonium transporters and diazotrophic conditions. FEMS Microbiol Lett 2019; 365:5053809. [PMID: 30010831 PMCID: PMC6067124 DOI: 10.1093/femsle/fny176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023] Open
Abstract
Metabolic regulation of Rhodospirillum rubrum nitrogenase is mediated at the post-translational level by the enzymes DraT and DraG when subjected to changes in nitrogen or energy status. DraT is activated during switch-off, while DraG is inactivated by reversible membrane association. We confirm here that the ammonium transporter, AmtB1, rather than its paralog AmtB2, is required for ammonium induced switch-off. Amongst several substitutions at the N100 position in DraG, only N100K failed to locate to the membrane following ammonium shock, suggesting loss of interaction through charge repulsion. When switch-off was induced by lowering energy levels, either by darkness during photosynthetic growth or oxygen depletion under respiratory conditions, reversible membrane sequestration of DraG was independent of AmtB proteins and occurred even under non-diazotrophic conditions. We propose that under these conditions, changes in redox status or possibly membrane potential induce interactions between DraG and another membrane protein in response to the energy status.
Collapse
Affiliation(s)
- Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedicinska Centrum, Husarg.3, S-75237 Uppsala, Sweden
| | - Dominik Waluk
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich NR47 UH, UK
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| | - Agneta Norén
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| |
Collapse
|
15
|
Tatli M, Hebert AS, Coon JJ, Amador-Noguez D. Genome Wide Phosphoproteome Analysis of Zymomonas mobilis Under Anaerobic, Aerobic, and N 2-Fixing Conditions. Front Microbiol 2019; 10:1986. [PMID: 31551951 PMCID: PMC6737584 DOI: 10.3389/fmicb.2019.01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022] Open
Abstract
Protein phosphorylation is a post-translational modification with widespread regulatory roles in both eukaryotes and prokaryotes. Using mass spectrometry, we performed a genome wide investigation of protein phosphorylation in the non-model organism and biofuel producer Zymomonas mobilis under anaerobic, aerobic, and N2-fixing conditions. Our phosphoproteome analysis revealed 125 unique phosphorylated proteins, belonging to major pathways such as glycolysis, TCA cycle, electron transport, nitrogen metabolism, and protein synthesis. Quantitative analysis revealed significant and widespread changes in protein phosphorylation across growth conditions. For example, we observed increased phosphorylation of nearly all glycolytic enzymes and a large fraction of ribosomal proteins during aerobic and N2-fixing conditions. We also observed substantial changes in the phosphorylation status of enzymes and regulatory proteins involved in nitrogen fixation and ammonia assimilation during N2-fixing conditions, including nitrogenase, the Rnf electron transport complex, the transcription factor NifA, GS-GOGAT cycle enzymes, and the PII regulatory protein. This suggested that protein phosphorylation may play an important role at regulating all aspects of nitrogen metabolism in Z. mobilis. This study provides new knowledge regarding the specific pathways and cellular processes that may be regulated by protein phosphorylation in this important industrial organism and provides a useful road map for future experiments that investigate the physiological role of specific phosphorylation events in Z. mobilis.
Collapse
Affiliation(s)
- Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander S Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Genome Center of Wisconsin, Madison, WI, United States
| | - Joshua J Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,Morgridge Institute for Research, Madison, WI, United States
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
16
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
17
|
Watzer B, Spät P, Neumann N, Koch M, Sobotka R, Macek B, Hennrich O, Forchhammer K. The Signal Transduction Protein P II Controls Ammonium, Nitrate and Urea Uptake in Cyanobacteria. Front Microbiol 2019; 10:1428. [PMID: 31293555 PMCID: PMC6603209 DOI: 10.3389/fmicb.2019.01428] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/05/2019] [Indexed: 11/22/2022] Open
Abstract
PII signal transduction proteins are widely spread among all domains of life where they regulate a multitude of carbon and nitrogen metabolism related processes. Non-diazotrophic cyanobacteria can utilize a high variety of organic and inorganic nitrogen sources. In recent years, several physiological studies indicated an involvement of the cyanobacterial PII protein in regulation of ammonium, nitrate/nitrite, and cyanate uptake. However, direct interaction of PII has not been demonstrated so far. In this study, we used biochemical, molecular genetic and physiological approaches to demonstrate that PII regulates all relevant nitrogen uptake systems in Synechocystis sp. strain PCC 6803: PII controls ammonium uptake by interacting with the Amt1 ammonium permease, probably similar to the known regulation of E. coli ammonium permease AmtB by the PII homolog GlnK. We could further clarify that PII mediates the ammonium- and dark-induced inhibition of nitrate uptake by interacting with the NrtC and NrtD subunits of the nitrate/nitrite transporter NrtABCD. We further identified the ABC-type urea transporter UrtABCDE as novel PII target. PII interacts with the UrtE subunit without involving the standard interaction surface of PII interactions. The deregulation of urea uptake in a PII deletion mutant causes ammonium excretion when urea is provided as nitrogen source. Furthermore, the urea hydrolyzing urease enzyme complex appears to be coupled to urea uptake. Overall, this study underlines the great importance of the PII signal transduction protein in the regulation of nitrogen utilization in cyanobacteria.
Collapse
Affiliation(s)
- Björn Watzer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Philipp Spät
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany.,Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Niels Neumann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czechia
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Oliver Hennrich
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem Soc Trans 2019; 47:603-614. [PMID: 30936245 PMCID: PMC6490700 DOI: 10.1042/bst20180342] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
Abstract
Biological nitrogen fixation (BNF) is controlled by intricate regulatory mechanisms to ensure that fixed nitrogen is readily assimilated into biomass and not released to the environment. Understanding the complex regulatory circuits that couple nitrogen fixation to ammonium assimilation is a prerequisite for engineering diazotrophic strains that can potentially supply fixed nitrogen to non-legume crops. In this review, we explore how the current knowledge of nitrogen metabolism and BNF regulation may allow strategies for genetic manipulation of diazotrophs for ammonia excretion and provide a contribution towards solving the nitrogen crisis.
Collapse
|
19
|
To Fix or Not To Fix: Controls on Free-Living Nitrogen Fixation in the Rhizosphere. Appl Environ Microbiol 2019; 85:AEM.02546-18. [PMID: 30658971 DOI: 10.1128/aem.02546-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Free-living nitrogen fixation (FLNF) in the rhizosphere, or N fixation by heterotrophic bacteria living on/near root surfaces, is ubiquitous and a significant source of N in some terrestrial systems. FLNF is also of interest in crop production as an alternative to chemical fertilizer, potentially reducing production costs and ameliorating negative environmental impacts of fertilizer N additions. Despite this interest, a mechanistic understanding of controls (e.g., carbon, oxygen, nitrogen, and nutrient availability) on FLNF in the rhizosphere is lacking but necessary. FLNF is distinct from and occurs under more diverse and dynamic conditions than symbiotic N fixation; therefore, predicting FLNF rates and understanding controls on FLNF has proven difficult. This has led to large gaps in our understanding of FLNF, and studies aimed at identifying controls on FLNF are needed. Here, we provide a mechanistic overview of FLNF, including how various controls may influence FLNF in the rhizosphere in comparison with symbiotic N fixation occurring in plant nodules where environmental conditions are moderated by the plant. We apply this knowledge to a real-world example, the bioenergy crop switchgrass (Panicum virgatum), to provide context of how FLNF may function in a managed system. We also highlight future challenges to assessing FLNF and understanding how FLNF functions in the environment and significantly contributes to plant N availability and productivity.
Collapse
|
20
|
Moure VR, Siöberg CLB, Valdameri G, Nji E, Oliveira MAS, Gerdhardt ECM, Pedrosa FO, Mitchell DA, Seefeldt LC, Huergo LF, Högbom M, Nordlund S, Souza EM. The ammonium transporter AmtB and the PII signal transduction protein GlnZ are required to inhibit DraG in Azospirillum brasilense. FEBS J 2019; 286:1214-1229. [PMID: 30633437 DOI: 10.1111/febs.14745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/04/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023]
Abstract
The ammonium-dependent posttranslational regulation of nitrogenase activity in Azospirillum brasilense requires dinitrogenase reductase ADP-ribosyl transferase (DraT) and dinitrogenase reductase ADP-glycohydrolase (DraG). These enzymes are reciprocally regulated by interaction with the PII proteins, GlnB and GlnZ. In this study, purified ADP-ribosylated Fe-protein was used as substrate to study the mechanism involved in the regulation of A. brasilense DraG in vitro. The data show that DraG is partially inhibited by GlnZ and that DraG inhibition is further enhanced by the simultaneous presence of GlnZ and AmtB. These results are the first to demonstrate experimentally that DraG inactivation requires the formation of a ternary DraG-GlnZ-AmtB complex in vitro. Previous structural data have revealed that when the DraG-GlnZ complex associates with AmtB, the flexible T-loops of the trimeric GlnZ bind to AmtB and become rigid; these molecular events stabilize the DraG-GlnZ complex, resulting in DraG inactivation. To determine whether restraining the flexibility of the GlnZ T-loops is a limiting factor in DraG inhibition, we used a GlnZ variant that carries a partial deletion of the T-loop (GlnZΔ42-54). However, although the GlnZΔ42-54 variant was more effective in inhibiting DraG in vitro, it bound to DraG with a slightly lower affinity than does wild-type GlnZ and was not competent to completely inhibit DraG activity either in vitro or in vivo. We, therefore, conclude that the formation of a ternary complex between DraG-GlnZ-AmtB is necessary for the inactivation of DraG.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Catrine L B Siöberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Glaucio Valdameri
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Emmanuel Nji
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Marco Aurelio S Oliveira
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Edileusa C M Gerdhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fabio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - David A Mitchell
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.,Setor Litoral, Universidade Federal do Paraná, Matinhos, Brazil
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
21
|
Prasse D, Schmitz RA. Small RNAs Involved in Regulation of Nitrogen Metabolism. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0018-2018. [PMID: 30027888 PMCID: PMC11633612 DOI: 10.1128/microbiolspec.rwr-0018-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Global (metabolic) regulatory networks allow microorganisms to survive periods of nitrogen starvation or general nutrient stress. Uptake and utilization of various nitrogen sources are thus commonly tightly regulated in Prokarya (Bacteria and Archaea) in response to available nitrogen sources. Those well-studied regulations occur mainly at the transcriptional and posttranslational level. Surprisingly, and in contrast to their involvement in most other stress responses, small RNAs (sRNAs) involved in the response to environmental nitrogen fluctuations are only rarely reported. In addition to sRNAs indirectly affecting nitrogen metabolism, only recently it was demonstrated that three sRNAs were directly involved in regulation of nitrogen metabolism in response to changes in available nitrogen sources. All three trans-acting sRNAs are under direct transcriptional control of global nitrogen regulators and affect expression of components of nitrogen metabolism (glutamine synthetase, nitrogenase, and PII-like proteins) by either masking the ribosome binding site and thus inhibiting translation initiation or stabilizing the respective target mRNAs. Most likely, there are many more sRNAs and other types of noncoding RNAs, e.g., riboswitches, involved in the regulation of nitrogen metabolism in Prokarya that remain to be uncovered. The present review summarizes the current knowledge on sRNAs involved in nitrogen metabolism and their biological functions and targets.
Collapse
Affiliation(s)
- Daniela Prasse
- Christian-Albrechts-University Kiel, Institute of General Microbiology, D-24118 Kiel, Germany
| | - Ruth A Schmitz
- Christian-Albrechts-University Kiel, Institute of General Microbiology, D-24118 Kiel, Germany
| |
Collapse
|
22
|
Santos ARS, Gerhardt ECM, Moure VR, Pedrosa FO, Souza EM, Diamanti R, Högbom M, Huergo LF. Kinetics and structural features of dimeric glutamine-dependent bacterial NAD + synthetases suggest evolutionary adaptation to available metabolites. J Biol Chem 2018; 293:7397-7407. [PMID: 29581233 DOI: 10.1074/jbc.ra118.002241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/11/2018] [Indexed: 01/09/2023] Open
Abstract
NADH (NAD+) and its reduced form NADH serve as cofactors for a variety of oxidoreductases that participate in many metabolic pathways. NAD+ also is used as substrate by ADP-ribosyl transferases and by sirtuins. NAD+ biosynthesis is one of the most fundamental biochemical pathways in nature, and the ubiquitous NAD+ synthetase (NadE) catalyzes the final step in this biosynthetic route. Two different classes of NadE have been described to date: dimeric single-domain ammonium-dependent NadENH3 and octameric glutamine-dependent NadEGln, and the presence of multiple NadE isoforms is relatively common in prokaryotes. Here, we identified a novel dimeric group of NadEGln in bacteria. Substrate preferences and structural analyses suggested that dimeric NadEGln enzymes may constitute evolutionary intermediates between dimeric NadENH3 and octameric NadEGln The characterization of additional NadE isoforms in the diazotrophic bacterium Azospirillum brasilense along with the determination of intracellular glutamine levels in response to an ammonium shock led us to propose a model in which these different NadE isoforms became active accordingly to the availability of nitrogen. These data may explain the selective pressures that support the coexistence of multiple isoforms of NadE in some prokaryotes.
Collapse
Affiliation(s)
| | | | | | | | | | - Riccardo Diamanti
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Luciano Fernandes Huergo
- Department of Biochemistry and Molecular Biology, Curitiba, PR, 512 Brazil; Setor Litoral, Universidade Federal do Paraná (UFPR), Curitiba, PR, 512 Brazil.
| |
Collapse
|
23
|
Prasse D, Förstner KU, Jäger D, Backofen R, Schmitz RA. sRNA 154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Gö1. RNA Biol 2017; 14:1544-1558. [PMID: 28296572 DOI: 10.1080/15476286.2017.1306170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Trans-encoded sRNA154 is exclusively expressed under nitrogen (N)-deficiency in Methanosarcina mazei strain Gö1. The sRNA154 deletion strain showed a significant decrease in growth under N-limitation, pointing toward a regulatory role of sRNA154 in N-metabolism. Aiming to elucidate its regulatory function we characterized sRNA154 by means of biochemical and genetic approaches. 24 homologs of sRNA154 were identified in recently reported draft genomes of Methanosarcina strains, demonstrating high conservation in sequence and predicted secondary structure with two highly conserved single stranded loops. Transcriptome studies of sRNA154 deletion mutants by an RNA-seq approach uncovered nifH- and nrpA-mRNA, encoding the α-subunit of nitrogenase and the transcriptional activator of the nitrogen fixation (nif)-operon, as potential targets besides other components of the N-metabolism. Furthermore, results obtained from stability, complementation and western blot analysis, as well as in silico target predictions combined with electrophoretic mobility shift-assays, argue for a stabilizing effect of sRNA154 on the polycistronic nif-mRNA and nrpA-mRNA by binding with both loops. Further identified N-related targets were studied, which demonstrates that translation initiation of glnA2-mRNA, encoding glutamine synthetase2, appears to be affected by sRNA154 masking the ribosome binding site, whereas glnA1-mRNA appears to be stabilized by sRNA154. Overall, we propose that sRNA154 has a crucial regulatory role in N-metabolism in M. mazei by stabilizing the polycistronic mRNA encoding nitrogenase and glnA1-mRNA, as well as allowing a feed forward regulation of nif-gene expression by stabilizing nrpA-mRNA. Consequently, sRNA154 represents the first archaeal sRNA, for which a positive posttranscriptional regulation is demonstrated as well as inhibition of translation initiation.
Collapse
Affiliation(s)
- Daniela Prasse
- a Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel , Am Botanischen Garten 1-9, Kiel , Germany
| | - Konrad U Förstner
- b Zentrum für Infektionsforschung , Universität Würzburg , Josef Schneider-Str. 2/ Bau D15, Würzburg
| | - Dominik Jäger
- a Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel , Am Botanischen Garten 1-9, Kiel , Germany
| | - Rolf Backofen
- c Institut für Informatik, Albert-Ludwigs-Universität zu Freiburg , Georges-Koehler-Allee, Freiburg , Germany
| | - Ruth A Schmitz
- a Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel , Am Botanischen Garten 1-9, Kiel , Germany
| |
Collapse
|
24
|
Rubel ET, Raittz RT, Coimbra NADR, Gehlen MAC, Pedrosa FDO. ProClaT, a new bioinformatics tool for in silico protein reclassification: case study of DraB, a protein coded from the draTGB operon in Azospirillum brasilense. BMC Bioinformatics 2016; 17:455. [PMID: 28105917 PMCID: PMC5249018 DOI: 10.1186/s12859-016-1338-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Azopirillum brasilense is a plant-growth promoting nitrogen-fixing bacteria that is used as bio-fertilizer in agriculture. Since nitrogen fixation has a high-energy demand, the reduction of N2 to NH4+ by nitrogenase occurs only under limiting conditions of NH4+ and O2. Moreover, the synthesis and activity of nitrogenase is highly regulated to prevent energy waste. In A. brasilense nitrogenase activity is regulated by the products of draG and draT. The product of the draB gene, located downstream in the draTGB operon, may be involved in the regulation of nitrogenase activity by an, as yet, unknown mechanism. Results A deep in silico analysis of the product of draB was undertaken aiming at suggesting its possible function and involvement with DraT and DraG in the regulation of nitrogenase activity in A. brasilense. In this work, we present a new artificial intelligence strategy for protein classification, named ProClaT. The features used by the pattern recognition model were derived from the primary structure of the DraB homologous proteins, calculated by a ProClaT internal algorithm. ProClaT was applied to this case study and the results revealed that the A. brasilense draB gene codes for a protein highly similar to the nitrogenase associated NifO protein of Azotobacter vinelandii. Conclusions This tool allowed the reclassification of DraB/NifO homologous proteins, hypothetical, conserved hypothetical and those annotated as putative arsenate reductase, ArsC, as NifO-like. An analysis of co-occurrence of draB, draT, draG and of other nif genes was performed, suggesting the involvement of draB (nifO) in nitrogen fixation, however, without the definition of a specific function. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1338-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Terumi Rubel
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil.,, Rua Dr. Alcides Vieira Arcoverde 1225, Curitiba, Paraná, Brazil
| | - Roberto Tadeu Raittz
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil.,, Rua Dr. Alcides Vieira Arcoverde 1225, Curitiba, Paraná, Brazil
| | - Nilson Antonio da Rocha Coimbra
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil.,, Rua Dr. Alcides Vieira Arcoverde 1225, Curitiba, Paraná, Brazil
| | - Michelly Alves Coutinho Gehlen
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil.,, Rua Dr. Alcides Vieira Arcoverde 1225, Curitiba, Paraná, Brazil
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil. .,, Av. Cel. Francisco H. dos Santos, s/n, Curitiba, Paraná, Brazil.
| |
Collapse
|
25
|
Tsoy OV, Ravcheev DA, Čuklina J, Gelfand MS. Nitrogen Fixation and Molecular Oxygen: Comparative Genomic Reconstruction of Transcription Regulation in Alphaproteobacteria. Front Microbiol 2016; 7:1343. [PMID: 27617010 PMCID: PMC4999443 DOI: 10.3389/fmicb.2016.01343] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/15/2016] [Indexed: 11/13/2022] Open
Abstract
Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics approach for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.
Collapse
Affiliation(s)
- Olga V Tsoy
- Research and Training Center on Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| | - Jelena Čuklina
- Research and Training Center on Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia; Moscow Institute of Physics and TechnologyDolgoprudny, Russia
| | - Mikhail S Gelfand
- Research and Training Center on Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia; Faculty of Bioengineering and Bioinformatics, Moscow State UniversityMoscow, Russia; Skolkovo Institute of Science and TechnologySkolkovo, Russia; Faculty of Computer Science, Higher School of EconomicsMoscow, Russia
| |
Collapse
|
26
|
Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci U S A 2016; 113:10163-7. [PMID: 27551090 DOI: 10.1073/pnas.1611043113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nitrogenase is an ATP-requiring enzyme capable of carrying out multielectron reductions of inert molecules. A purified remodeled nitrogenase containing two amino acid substitutions near the site of its FeMo cofactor was recently described as having the capacity to reduce carbon dioxide (CO2) to methane (CH4). Here, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of light-driven CO2 reduction to CH4 in vivo using this remodeled nitrogenase. Conversion of CO2 to CH4 by R. palustris required constitutive expression of nitrogenase, which was achieved by using a variant of the transcription factor NifA that is able to activate expression of nitrogenase under all growth conditions. Also, light was required for generation of ATP by cyclic photophosphorylation. CH4 production by R. palustris could be controlled by manipulating the distribution of electrons and energy available to nitrogenase. This work shows the feasibility of using microbes to generate hydrocarbons from CO2 in one enzymatic step using light energy.
Collapse
|
27
|
Chen YYM, Chen YY, Hung JL, Chen PM, Chia JS. The GlnR Regulon in Streptococcus mutans Is Differentially Regulated by GlnR and PmrA. PLoS One 2016; 11:e0159599. [PMID: 27454482 PMCID: PMC4959772 DOI: 10.1371/journal.pone.0159599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
GlnR-mediated repression of the GlnR regulon at acidic pH is required for optimal acid tolerance in Streptococcus mutans, the etiologic agent for dental caries. Unlike most streptococci, the GlnR regulon is also regulated by newly identified PmrA (SMUGS5_RS05810) at the transcriptional level in S. mutans GS5. Results from gel mobility shift assays confirmed that both GlnR and PmrA recognized the putative GlnR box in the promoter regions of the GlnR regulon genes. By using a chemostat culture system, we found that PmrA activated the expression of the GlnR regulon at pH 7, and that this activation was enhanced by excess glucose. Deletion of pmrA (strain ΔPmrA) reduced the survival rate of S. mutans GS5 at pH 3 moderately, whereas the GlnR mutant (strain ΔGlnR) exhibited an acid-sensitive phenotype in the acid killing experiments. Elevated biofilm formation in both ΔGlnR and ΔPmrA mutant strains is likely a result of indirect regulation of the GlnR regulon since GlnR and PmrA regulate the regulon differently. Taken together, it is suggested that activation of the GlnR regulon by PmrA at pH 7 ensures adequate biosynthesis of amino acid precursor, whereas repression by GlnR at acidic pH allows greater ATP generation for acid tolerance. The tight regulation of the GlnR regulon in response to pH provides an advantage for S. mutans to better survive in its primary niche, the oral cavity.
Collapse
Affiliation(s)
- Yi-Ywan M. Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| | - Yueh-Ying Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jui-Lung Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Min Chen
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean-San Chia
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Abstract
The metabolite 2-oxoglutarate (also known as α-ketoglutarate, 2-ketoglutaric acid, or oxoglutaric acid) lies at the intersection between the carbon and nitrogen metabolic pathways. This compound is a key intermediate of one of the most fundamental biochemical pathways in carbon metabolism, the tricarboxylic acid (TCA) cycle. In addition, 2-oxoglutarate also acts as the major carbon skeleton for nitrogen-assimilatory reactions. Experimental data support the conclusion that intracellular levels of 2-oxoglutarate fluctuate according to nitrogen and carbon availability. This review summarizes how nature has capitalized on the ability of 2-oxoglutarate to reflect cellular nutritional status through evolution of a variety of 2-oxoglutarate-sensing regulatory proteins. The number of metabolic pathways known to be regulated by 2-oxoglutarate levels has increased significantly in recent years. The signaling properties of 2-oxoglutarate are highlighted by the fact that this metabolite regulates the synthesis of the well-established master signaling molecule, cyclic AMP (cAMP), in Escherichia coli.
Collapse
|
29
|
Forchhammer K, Lüddecke J. Sensory properties of the PII signalling protein family. FEBS J 2015; 283:425-37. [PMID: 26527104 DOI: 10.1111/febs.13584] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent.
Collapse
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| | - Jan Lüddecke
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| |
Collapse
|
30
|
Lüddecke J, Forchhammer K. Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. PLoS One 2015; 10:e0137114. [PMID: 26317540 PMCID: PMC4552645 DOI: 10.1371/journal.pone.0137114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET) sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state.
Collapse
Affiliation(s)
- Jan Lüddecke
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, D-72076, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, D-72076, Tübingen, Germany
- * E-mail:
| |
Collapse
|
31
|
Badri H, Monsieurs P, Coninx I, Nauts R, Wattiez R, Leys N. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays. PLoS One 2015; 10:e0135565. [PMID: 26308624 PMCID: PMC4550399 DOI: 10.1371/journal.pone.0135565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022] Open
Abstract
The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of microbial cells, in particularly for photosynthetic organisms as the cyanobacterium Arthrospira.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Robin Nauts
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| |
Collapse
|
32
|
Salvado B, Vilaprinyo E, Sorribas A, Alves R. A survey of HK, HPt, and RR domains and their organization in two-component systems and phosphorelay proteins of organisms with fully sequenced genomes. PeerJ 2015; 3:e1183. [PMID: 26339559 PMCID: PMC4558063 DOI: 10.7717/peerj.1183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Two Component Systems and Phosphorelays (TCS/PR) are environmental signal transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal domain organization of proteins and the topology of TCS/PR cascades play an important role in shaping the responses of the circuits. It is thus important to maintain updated censuses of TCS/PR proteins in order to identify the various topologies used by nature and enable a systematic study of the dynamics associated with those topologies. To create such a census, we analyzed the proteomes of 7,609 organisms from all domains of life with fully sequenced and annotated genomes. To begin, we survey each proteome searching for proteins containing domains that are associated with internal signal transmission within TCS/PR: Histidine Kinase (HK), Response Regulator (RR) and Histidine Phosphotranfer (HPt) domains, and analyze how these domains are arranged in the individual proteins. Then, we find all types of operon organization and calculate how much more likely are proteins that contain TCS/PR domains to be coded by neighboring genes than one would expect from the genome background of each organism. Finally, we analyze if the fusion of domains into single TCS/PR proteins is more frequently observed than one might expect from the background of each proteome. We find 50 alternative ways in which the HK, HPt, and RR domains are observed to organize into single proteins. In prokaryotes, TCS/PR coding genes tend to be clustered in operons. 90% of all proteins identified in this study contain just one of the three domains, while 8% of the remaining proteins combine one copy of an HK, a RR, and/or an HPt domain. In eukaryotes, 25% of all TCS/PR proteins have more than one domain. These results might have implications for how signals are internally transmitted within TCS/PR cascades. These implications could explain the selection of the various designs in alternative circumstances.
Collapse
Affiliation(s)
- Baldiri Salvado
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| | - Ester Vilaprinyo
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain ; IRBLleida , Lleida, Catalonya , Spain
| | - Albert Sorribas
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| | - Rui Alves
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| |
Collapse
|
33
|
Zhang LH, Chen SF. Influence of different factors on the nitrogenase activity of the engineered Escherichia coli 78-7. World J Microbiol Biotechnol 2015; 31:921-7. [PMID: 25850532 DOI: 10.1007/s11274-015-1846-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
The engineered Escherichia coli 78-7 is a derivative of E. coli JM109 carrying a nitrogen fixation (nif) gene cluster composed of nine genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV) and its own σ(70)-dependent nif promoter from a gram-positive bacterium Paenibacillus sp. WLY78. The physiological and biochemical characteristics of the engineered E. coli 78-7 were analyzed by using Biolog GEN III MicroPlate, with E. coli JM109 and JM109/pHY300PLK (E. coli JM109 carrying empty vector) as controls. Analysis of 94 phenotypic tests: 71 carbon source utilization assays and 23 chemical sensitivity tests showed that the engineered E. coli 78-7, E. coli JM109 and JM109/pHY300PLK gave similar patterns of utilization of various substrates as carbon and energy sources. Furthermore, the effect of carbon source, nitrogen source, culture temperature on the nitrogenase activity of the engineered E. coli 78-7 was investigated. Our study demonstrates that the nif capacity of E. coli 78-7 was affected significantly by the different culture condition. The significant nitrogenase activity of E. coli 78-7 were obtained when cells were cultivated in the medium containing 4 g/l glucose (carbon source) and 2 mM glutamate (nitrogen source) and at 30 °C.
Collapse
Affiliation(s)
- Li-hong Zhang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Yuanmingyuan Road, Haidian District, Beijing, 100193, China,
| | | |
Collapse
|
34
|
Moure VR, Costa FF, Cruz LM, Pedrosa FO, Souza EM, Li XD, Winkler F, Huergo LF. Regulation of nitrogenase by reversible mono-ADP-ribosylation. Curr Top Microbiol Immunol 2015; 384:89-106. [PMID: 24934999 DOI: 10.1007/82_2014_380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Posttranslational modification of proteins plays a key role in the regulation of a plethora of metabolic functions. Protein modification by mono-ADP-ribosylation was first described as a mechanism of action of bacterial toxins. Since these pioneering studies, the number of pathways regulated by ADP-ribosylation in organisms from all domains of life expanded significantly. However, in only a few cases the full regulatory ADP-ribosylation circuit is known. Here, we review the system where mono-ADP-ribosylation regulates the activity of an enzyme: the regulation of nitrogenase in bacteria. When the nitrogenase product, ammonium, becomes available, the ADP-ribosyltransferase (DraT) covalently links an ADP-ribose moiety to a specific arginine residue on nitrogenase switching-off nitrogenase activity. After ammonium exhaustion, the ADP-ribosylhydrolase (DraG) removes the modifying group, restoring nitrogenase activity. DraT and DraG activities are reversibly regulated through interaction with PII signaling proteins . Bioinformatics analysis showed that DraT homologs are restricted to a few nitrogen-fixing bacteria while DraG homologs are widespread in Nature. Structural comparisons indicated that bacterial DraG is closely related to Archaea and mammalian ADP-ribosylhydrolases (ARH). In all available structures, the ARH active site consists of a hydrophilic cleft carrying a binuclear Mg(2+) or Mn(2+) cluster, which is critical for catalysis.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Merrick M. Post-translational modification of P II signal transduction proteins. Front Microbiol 2015; 5:763. [PMID: 25610437 PMCID: PMC4285133 DOI: 10.3389/fmicb.2014.00763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/15/2014] [Indexed: 11/13/2022] Open
Abstract
The PII proteins constitute one of the most widely distributed families of signal transduction proteins in nature. They are pivotal players in the control of nitrogen metabolism in bacteria and archaea, and are also found in the plastids of plants. Quite remarkably PII proteins control the activities of a diverse range of enzymes, transcription factors and membrane transport proteins, and in all known cases they achieve their regulatory effect by direct interaction with their target. PII proteins in the Proteobacteria and the Actinobacteria are subject to post-translational modification by uridylylation or adenylylation respectively, whilst in some Cyanobacteria they can be modified by phosphorylation. In all these cases the protein's modification state is influenced by the cellular nitrogen status and is thought to regulate its activity. However, in many organisms there is no evidence for modification of PII proteins and indeed the ability of these proteins to respond to the cellular nitrogen status is fundamentally independent of post-translational modification. In this review we explore the role of post-translational modification in PII proteins in the light of recent studies.
Collapse
Affiliation(s)
- Mike Merrick
- Department of Molecular Microbiology, John Innes Centre Norwich, UK
| |
Collapse
|
36
|
Inaba J, Thornton J, Huergo LF, Monteiro RA, Klassen G, Pedrosa FDO, Merrick M, de Souza EM. Mutational analysis of GlnB residues critical for NifA activation in Azospirillum brasilense. Microbiol Res 2014; 171:65-72. [PMID: 25644954 DOI: 10.1016/j.micres.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 11/28/2022]
Abstract
PII proteins are signal transduction that sense cellular nitrogen status and relay this signals to other targets. Azospirillum brasilense is a nitrogen fixing bacterium, which associates with grasses and cereals promoting beneficial effects on plant growth and crop yields. A. brasilense contains two PII encoding genes, named glnB and glnZ. In this paper, glnB was mutagenised in order to identify amino acid residues involved in GlnB signaling. Two variants were obtained by random mutagenesis, GlnBL13P and GlnBV100A and a site directed mutant, GlnBY51F, was obtained. Their ability to complement nitrogenase activity of glnB mutant strains of A. brasilense were determined. The variant proteins were also overexpressed in Escherichia coli, purified and characterized biochemically. None of the GlnB variant forms was able to restore nitrogenase activity in glnB mutant strains of A. brasilense LFH3 and 7628. The purified GlnBY51F and GlnBL13P proteins could not be uridylylated by GlnD, whereas GlnBV100A was uridylylated but at only 20% of the rate for wild type GlnB. Biochemical and computational analyses suggest that residue Leu13, located in the α helix 1 of GlnB, is important to maintain GlnB trimeric structure and function. The substitution V100A led to a lower affinity for ATP binding. Together the results suggest that NifA activation requires uridylylated GlnB bound to ATP.
Collapse
Affiliation(s)
- Juliana Inaba
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, CEP 84030-900 Ponta Grossa, PR, Brazil.
| | - Jeremy Thornton
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | - Luciano Fernandes Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| | - Giseli Klassen
- Department of Basic Pathology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| | - Mike Merrick
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| |
Collapse
|
37
|
Souza EM, Chubatsu LS, Huergo LF, Monteiro R, Camilios-Neto D, Wassem R, de Oliveira Pedrosa F. Use of nitrogen-fixing bacteria to improve agricultural productivity. BMC Proc 2014. [PMCID: PMC4204347 DOI: 10.1186/1753-6561-8-s4-o23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Truan D, Bjelić S, Li XD, Winkler FK. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense. J Mol Biol 2014; 426:2783-99. [PMID: 24846646 DOI: 10.1016/j.jmb.2014.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions.
Collapse
Affiliation(s)
- Daphné Truan
- Macromolecular Crystallography, Swiss Light Source, CH-5232 Villigen PSI, Switzerland
| | - Saša Bjelić
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Xiao-Dan Li
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Fritz K Winkler
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
39
|
Zeth K, Fokina O, Forchhammer K. Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein. J Biol Chem 2014; 289:8960-72. [PMID: 24519945 DOI: 10.1074/jbc.m113.536557] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII signaling proteins comprise one of the most versatile signaling devices in nature and have a highly conserved structure. In cyanobacteria, PipX and N-acetyl-L-glutamate kinase are receptors of PII signaling, and these interactions are modulated by ADP, ATP, and 2-oxoglutarate. These effector molecules bind interdependently to three anti-cooperative binding sites on the trimeric PII protein and thereby affect its structure. Here we used the PII protein from Synechococcus elongatus PCC 7942 to reveal the structural basis of anti-cooperative ADP binding. Furthermore, we clarified the mutual influence of PII-receptor interaction and sensing of the ATP/ADP ratio. The crystal structures of two forms of trimeric PII, one with one ADP bound and the other with all three ADP-binding sites occupied, revealed significant differences in the ADP binding mode: at one site (S1) ADP is tightly bound through side-chain and main-chain interactions, whereas at the other two sites (S2 and S3) the ADP molecules are only bound by main-chain interactions. In the presence of the PII-receptor PipX, the affinity of ADP to the first binding site S1 strongly increases, whereas the affinity for ATP decreases due to PipX favoring the S1 conformation of PII-ADP. In consequence, the PII-PipX interaction is highly sensitive to subtle fluctuations in the ATP/ADP ratio. By contrast, the PII-N-acetyl-L-glutamate kinase interaction, which is negatively affected by ADP, is insensitive to these fluctuations. Modulation of the metabolite-sensing properties of PII by its receptors allows PII to differentially perceive signals in a target-specific manner and to perform multitasking signal transduction.
Collapse
Affiliation(s)
- Kornelius Zeth
- From the Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, 72076 Tübingen, Germany and
| | | | | |
Collapse
|
40
|
Rodrigues TE, Gerhardt ECM, Oliveira MA, Chubatsu LS, Pedrosa FO, Souza EM, Souza GA, Müller-Santos M, Huergo LF. Search for novel targets of the PII signal transduction protein in Bacteria identifies the BCCP component of acetyl-CoA carboxylase as a PII binding partner. Mol Microbiol 2014; 91:751-61. [PMID: 24329683 DOI: 10.1111/mmi.12493] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
Abstract
The PII family comprises a group of widely distributed signal transduction proteins. The archetypal function of PII is to regulate nitrogen metabolism in bacteria. As PII can sense a range of metabolic signals, it has been suggested that the number of metabolic pathways regulated by PII may be much greater than described in the literature. In order to provide experimental evidence for this hypothesis a PII protein affinity column was used to identify PII targets in Azospirillum brasilense. One of the PII partners identified was the biotin carboxyl carrier protein (BCCP), a component of the acetyl-CoA carboxylase which catalyses the committed step in fatty acid biosynthesis. As BCCP had been previously identified as a PII target in Arabidopsis thaliana we hypothesized that the PII -BCCP interaction would be conserved throughout Bacteria. In vitro experiments using purified proteins confirmed that the PII -BCCP interaction is conserved in Escherichia coli. The BCCP-PII interaction required MgATP and was dissociated by increasing 2-oxoglutarate. The interaction was modestly affected by the post-translational uridylylation status of PII ; however, it was completely dependent on the post-translational biotinylation of BCCP.
Collapse
Affiliation(s)
- Thiago E Rodrigues
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang L, Zhang L, Liu Z, Zhao D, Liu X, Zhang B, Xie J, Hong Y, Li P, Chen S, Dixon R, Li J. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet 2013; 9:e1003865. [PMID: 24146630 PMCID: PMC3798268 DOI: 10.1371/journal.pgen.1003865] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/21/2013] [Indexed: 11/23/2022] Open
Abstract
Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. Biological nitrogen fixation plays an essential role in the nitrogen cycle, sustaining agricultural productivity by providing a source of fixed nitrogen for plants and ultimately animals. The enzyme nitrogenase that catalyses the reduction of atmospheric dinitrogen to ammonia contains one of the most complex heterometal cofactors found in biology. Biosynthesis of nitrogenase and provision of support for its activity requires a large number of nitrogen fixation (nif) genes, which vary according to the physiological lifestyle of the host organism. In this study, we identified a nif cluster with reduced genetic complexity, consisting of nine genes organized as a single operon in the genome of Paenibacillus sp. WLY78. When transferred to Escherichia coli, the Paenibacllus nif cluster enables synthesis of catalytically active nitrogenase, which is competent to reduce both acetylene and dinitrogen as substrates of the enzyme. Environmental regulation of nif gene expression in Paenibacillus, in response to either oxygen or fixed nitrogen, is circumvented when the nif operon is expressed from its native promoter in E. coli, suggesting that nif transcription in Paenibacillus is negatively regulated in response to these effectors.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Lihong Zhang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- College of Life Science, Shanxi Normal University, Linfen, P. R. China
| | - Zhangzhi Liu
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Dehua Zhao
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Xiaomeng Liu
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Bo Zhang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Jianbo Xie
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yuanyuan Hong
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Pengfei Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail: (SC); (RD)
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- * E-mail: (SC); (RD)
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
42
|
Jain S, Mandal RS, Anand S, Maiti S, Ramachandran S. Probing the amino acids critical for protein oligomerisation and protein-nucleotide interaction in Mycobacterium tuberculosis PII protein through integration of computational and experimental approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2736-49. [PMID: 24129075 DOI: 10.1016/j.bbapap.2013.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
We investigated the interacting amino acids critical for the stability and ATP binding of Mycobacterium tuberculosis PII protein through a series of site specific mutagenesis experiments. We assessed the effect of mutants using glutaraldehyde crosslinking and size exclusion chromatography and isothermal titration calorimetry. Mutations in the amino acid pair R60-E62 affecting central electrostatic interaction resulted in insoluble proteins. Multiple sequence alignment of PII orthologs displayed a conserved pattern of charged residues at these positions. Mutation of amino acid D97 to a neutral residue was tolerated whereas positive charge was not acceptable. Mutation of R107 alone had no effect on trimer formation. However, the combination of neutral residues both at positions 97 and 107 was not acceptable even with the pair at 60-62 intact. Reversal of charge polarity could partially restore the interaction. The residues including K90, R101 and R103 with potential to form H-bonds to ATP are conserved throughout across numerous orthologs of PII but when mutated to Alanine, they did not show significant differences in the total free energy change of the interaction as examined through isothermal titration calorimetry. The ATP binding pattern showed anti-cooperativity using three-site binding model. We observed compensatory effect in enthalpy and entropy changes and these may represent structural adjustments to accommodate ATP in the cavity even in absence of some interactions to perform the requisite function. In this respect these small differences between the PII orthologs may have evolved to suite species specific physiological niches.
Collapse
Affiliation(s)
- Sriyans Jain
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110 007, India
| | | | | | | | | |
Collapse
|
43
|
Nomata J, Kondo T, Itoh S, Fujita Y. Nicotinamide is a specific inhibitor of dark-operative protochlorophyllide oxidoreductase, a nitrogenase-like enzyme, from Rhodobacter capsulatus. FEBS Lett 2013; 587:3142-7. [PMID: 23954297 DOI: 10.1016/j.febslet.2013.07.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 11/18/2022]
Abstract
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of two components, L-protein as a reductase component and NB-protein as a catalytic component. Elucidation of the crystal structures of NB-protein (Muraki et al., Nature 2010, 465: 110-114) has enabled us to study its reaction mechanism in combination with biochemical analysis. Here we demonstrate that nicotinamide (NA) inhibits DPOR activity by blocking the electron transfer from L-protein to NB-protein. A reaction scheme of DPOR, in which the binding of protochlorophyllide (Pchlide) to the NB-protein precedes the electron transfer from the L-protein, is proposed based on the NA effects.
Collapse
Affiliation(s)
- Jiro Nomata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
44
|
Nordlund S, Högbom M. ADP-ribosylation, a mechanism regulating nitrogenase activity. FEBS J 2013; 280:3484-90. [PMID: 23574616 DOI: 10.1111/febs.12279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/26/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
Abstract
Nitrogen fixation is the vital biochemical process in which atmospheric molecular nitrogen is made available to the biosphere. The process is highly energetically costly and thus tightly regulated. The activity of the key enzyme, nitrogenase, is controlled by reversible mono-ADP-ribosylation of one of its components, the Fe protein. This protein provides the other component, the MoFe protein, with the electrons required for the reduction of molecular nitrogen. The Fe-protein is ADP-ribosylated and de-ADP-ribosylated by dinitrogenase reductase ADP-ribosyl transferase and dinitrogenase reductase activating glycohydrolase, respectively. Here we review the current biochemical and structural knowledge of this central regulatory reaction.
Collapse
Affiliation(s)
- Stefan Nordlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
45
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
46
|
The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB. J Bacteriol 2012; 195:279-86. [PMID: 23144248 DOI: 10.1128/jb.01517-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fe protein (dinitrogenase reductase) activity is reversibly inactivated by dinitrogenase reductase ADP-ribosyltransferase (DraT) in response to an increase in the ammonium concentration or a decrease in cellular energy in Azospirillum brasilense, Rhodospirillum rubrum, and Rhodobacter capsulatus. The ADP-ribosyl is removed by the dinitrogenase reductase-activating glycohydrolase (DraG), promoting Fe protein reactivation. The signaling pathway leading to DraT activation by ammonium is still not completely understood, but the available evidence shows the involvement of direct interaction between the enzyme and the nitrogen-signaling P(II) proteins. In A. brasilense, two P(II) proteins, GlnB and GlnZ, were identified. We used Fe protein from Azotobacter vinelandii as the substrate to assess the activity of A. brasilense DraT in vitro complexed or not with P(II) proteins. Under our conditions, GlnB was necessary for DraT activity in the presence of Mg-ADP. The P(II) effector 2-oxoglutarate, in the presence of Mg-ATP, inhibited DraT-GlnB activity, possibly by inducing complex dissociation. DraT was also activated by GlnZ and by both uridylylated P(II) proteins, but not by a GlnB variant carrying a partial deletion of the T loop. Kinetics studies revealed that the A. brasilense DraT-GlnB complex was at least 18-fold more efficient than DraT purified from R. rubrum, but with a similar K(m) value for NAD(+). Our results showed that ADP-ribosylation of the Fe protein does not affect the electronic state of its metal cluster and prevents association between the Fe and MoFe proteins, thus inhibiting electron transfer.
Collapse
|
47
|
Sotomaior P, Araújo LM, Nishikawa CY, Huergo LF, Monteiro RA, Pedrosa FO, Chubatsu LS, Souza EM. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense. Braz J Med Biol Res 2012; 45:1135-40. [PMID: 22983183 PMCID: PMC3854208 DOI: 10.1590/s0100-879x2012007500146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/27/2012] [Indexed: 12/03/2022] Open
Abstract
Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.
Collapse
Affiliation(s)
- P Sotomaior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501. Res Microbiol 2012; 163:332-9. [PMID: 22659337 DOI: 10.1016/j.resmic.2012.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/19/2012] [Indexed: 01/16/2023]
Abstract
The nitrogen-fixing Pseudomonas stutzeri strain A1501 contains two ammonium transporter genes, amtB1 and amtB2, linked to glnK. Growth of an amtB1-amtB2 double deletion mutant strain was not impaired compared to that of the wild type under any conditions tested, and it was still capable of taking up ammonium ions at nearly wild-type rates. Nitrogenase activity was repressed in wild-type strain A1501 in response to the addition of ammonium, but nitrogenase activity was only partially impaired in the amtB1 and amtB2 double mutant, suggesting that the two AmtB proteins are involved in regulating expression of nitrogenase or its activity in response to ammonium. An interaction between GlnK and AmtB1 or AmtB2 was observed in a yeast two-hybrid assay. Ammonium was excreted by the amtB double mutant strain under nitrogen fixation conditions, particularly when nifA was expressed constitutively. This suggests that AmtB proteins play a role in controlling the internal pool of ammonia within the cell.
Collapse
|
49
|
Gerhardt ECM, Araújo LM, Ribeiro RR, Chubatsu LS, Scarduelli M, Rodrigues TE, Monteiro RA, Pedrosa FO, Souza EM, Huergo LF. Influence of the ADP/ATP ratio, 2-oxoglutarate and divalent ions on Azospirillum brasilense PII protein signalling. MICROBIOLOGY-SGM 2012; 158:1656-1663. [PMID: 22461486 DOI: 10.1099/mic.0.058446-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Proteins belonging to the P(II) family coordinate cellular nitrogen metabolism by direct interaction with a variety of enzymes, transcriptional regulators and transporters. The sensing function of P(II) relies on its ability to bind the nitrogen/carbon signalling molecule 2-oxoglutarate (2-OG). In Proteobacteria, P(II) is further subject to reversible uridylylation according to the intracellular levels of glutamine, which reflect the cellular nitrogen status. A number of P(II) proteins have been shown to bind ADP and ATP in a competitive manner, suggesting that P(II) might act as an energy sensor. Here, we analyse the influence of the ADP/ATP ratio, 2-OG levels and divalent metal ions on in vitro uridylylation of the Azospirillum brasilense P(II) proteins GlnB and GlnZ, and on interaction with their targets AmtB, DraG and DraT. The results support the notion that the cellular concentration of 2-OG is a key factor governing occupation of the GlnB and GlnZ nucleotide binding sites by ATP or ADP, with high 2-OG levels favouring the occupation of P(II) by ATP. Both P(II) uridylylation and interaction with target proteins responded to the ADP/ATP ratio within the expected physiological range, supporting the concept that P(II) proteins might act as cellular energy sensors.
Collapse
Affiliation(s)
- Edileusa C M Gerhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Luíza M Araújo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Ronny R Ribeiro
- Departamento de Química, Centro Politécnico, Jardim das Américas, Caixa Postal 19081, UFPR Curitiba, Paraná, Brazil
| | - Leda S Chubatsu
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Marcelo Scarduelli
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Thiago E Rodrigues
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Rose A Monteiro
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Fábio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológica, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Caixa Postal 19046, UFPR Curitiba, Paraná, Brazil
| |
Collapse
|