1
|
Shi Q, Wang Q, Shen Y, Chen S, Gan S, Lin T, Song F, Ma Y. Escherichia coli LTB26 mutant enhances immune responses to rotavirus antigen VP8 in a mouse model. Mol Immunol 2024; 173:10-19. [PMID: 39004021 DOI: 10.1016/j.molimm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Adjuvant is a major supplementary component of vaccines to boost adaptive immune responses. To select an efficient adjuvant from the heat-labile toxin B subunit (LTB) of E. coli, four LTB mutants (numbered LTB26, LTB34, LTB57, and LTB85) were generated by multi-amino acid random replacement. Mice have been intranasally vaccinated with human rotavirus VP8 admixed. Among the four mutants, enzyme-linked immunosorbent assay (ELISA) revealed that LTB26 had enhanced mucosal immune adjuvanticity compared to LTB, showing significantly enhanced immune responses in both serum IgG and mucosal sIgA levels. The 3D modeling analysis suggested that the enhanced immune adjuvanticity of LTB26 might be due to the change of the first LTB α-helix to a β-sheet. The molecular mechanism was studied using transcriptomic and flow cytometric (FCM) analysis. The transcriptomic data demonstrated that LTB26 enhanced immune response by enhancing B cell receptor (BCR) and major histocompatibility complex (MHC) II+-related pathways. Furthermore, LTB26 promoted Th1 and Th2-type immune responses which were confirmed by detecting IFN-γ and IL-4 expression levels. Immunohistochemical analysis demonstrated that LTB26 enhanced both Th1 and Th2 type immunity. Therefore, LTB26 was a potent mucosal immune adjuvant meeting the requirement for use in human clinics in the future.
Collapse
Affiliation(s)
- Qinlin Shi
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qiujuan Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Yanxi Shen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Sijing Chen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Sijie Gan
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Yongping Ma
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China.
| |
Collapse
|
2
|
Ghatani K, Prasad Sha S, Thapa S, Chakraborty P, Sarkar S. Bifidobacterial Genome Editing for Potential Probiotic Development. GENOME EDITING IN BACTERIA (PART 1) 2024:62-87. [DOI: 10.2174/9789815165678124010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Genome editing is a promising tool in the era of modern biotechnology that
can alter the DNA of many organisms. It is now extensively used in various industries
to obtain the well-desired and enhanced characteristics to improve the yield and
nutritional quality of products. The positive health attributes of Bifidobacteria, such as
prevention of diarrhoea, reduction of ulcerative colitis, prevention of necrotizing
enterocolitis, etc., have shown promising reports in many clinical trials. The potential
use of Bifidobacteria as starter or adjunct cultures has become popular. Currently,
Bifidobacterium bifidum, B. adolescentis, B. breve, B. infantis, B. longum, and B. lactis
find a significant role in the development of probiotic fermented dairy products.
However, Bifidobacteria, one of the first colonizers of the human GI tract and an
indicator of the health status of an individual, has opened new avenues for research
and, thereby, its application. Besides this, the GRAS/QPS (Generally Regarded as
Safe/Qualified Presumption of Safety) status of Bifidobacteria makes it safe for use.
They belong to the subgroup (which are the fermentative types that are primarily found
in the natural cavities of humans and animals) of Actinomycetes. B. lactis has been used
industrially in fermented foods, such as yogurt, cheese, beverages, sausages, infant
formulas, and cereals. In the present book chapter, the authors tried to explore the
origin, health attributes, and various genetic engineering tools for genome editing of
Bifidobacteria for the development of starter culture for dairy and non-dairy industrial
applications as well as probiotics.
Collapse
Affiliation(s)
- Kriti Ghatani
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Shankar Prasad Sha
- Department of Botany, Food Microbiology Lab, Kurseong College, University of North Bengal,
Dow Hill Road, Kurseong, Darjeeling 7342003, West Bengal, India
| | - Subarna Thapa
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Priya Chakraborty
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Sagnik Sarkar
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| |
Collapse
|
3
|
Li S, Zhao W, Xia L, Kong L, Yang L. How Long Will It Take to Launch an Effective Helicobacter pylori Vaccine for Humans? Infect Drug Resist 2023; 16:3787-3805. [PMID: 37342435 PMCID: PMC10278649 DOI: 10.2147/idr.s412361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Helicobacter pylori infection often occurs in early childhood, and can last a lifetime if not treated with medication. H. pylori infection can also cause a variety of stomach diseases, which can only be treated with a combination of antibiotics. Combinations of antibiotics can cure H. pylori infection, but it is easy to relapse and develop drug resistance. Therefore, a vaccine is a promising strategy for prevention and therapy for the infection of H. pylori. After decades of research and development, there has been no appearance of any H. pylori vaccine reaching the market, unfortunately. This review summarizes the aspects of candidate antigens, immunoadjuvants, and delivery systems in the long journey of H. pylori vaccine research, and also introduces some clinical trials that have displayed encouraging or depressing results. Possible reasons for the inability of an H. pylori vaccine to be available over the counter are cautiously discussed and some propositions for the future of H. pylori vaccines are outlined.
Collapse
Affiliation(s)
- Songhui Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Wenfeng Zhao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Xia
- Bloomage Biotechnology Corporation Limited, Jinan, People’s Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| |
Collapse
|
4
|
Developing a Live Probiotic Vaccine Based on the Enterococcus faecium L3 Strain Expressing Influenza Neuraminidase. Microorganisms 2021; 9:microorganisms9122446. [PMID: 34946050 PMCID: PMC8707194 DOI: 10.3390/microorganisms9122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Probiotic microorganisms are currently considered as a promising platform for the development of recombinant vaccines expressing foreign antigens. In this study, we generated and evaluated the live mucosal recombinant vaccine by integrating genes encoding influenza virus neuraminidase (NA) of the N2 subtype into the DNA of the probiotic strain Enterococcus faecium L3 (L3). We confirmed NA expression in the pili of L3 using immune electron microscopy. Mice were fed with a probiotic vaccine containing the NA gene (L3-NA) or pure L3. Oral administration of L3-NA caused detectable increase in virus-specific serum IgG and local IgA after the third feeding. Immunization with L3-NA increased the survival rate by 34% when the mice were infected using A(H1N1)pdm09 influenza virus after the third feeding. After S. pneumoniae post-influenza infection, the L3-NA-immunized mice were 50% more protected from lethality in comparison with L3-fed mice. Thus, a live probiotic vaccine candidate based on L3 induced the formation of systemic and local immunity and provide partial protection against complicated influenza.
Collapse
|
5
|
Ma J, Liu W, Wang B, Yu S, Yu L, Song B, Yu Y, Zhu Z, Cui Y. Als3-Th-cell-epitopes plus the novel combined adjuvants of CpG, MDP, and FIA synergistically enhanced the immune response of recombinant TRAP derived from Staphylococcus aureus in mice. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:971-983. [PMID: 34010502 PMCID: PMC8342198 DOI: 10.1002/iid3.456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is a gram-positive opportunistic pathogen, there are currently no high effective vaccine against S. aureus in humans and animals, the development of an efficient vaccine remains an important challenge to prevent S. aureus infection. Here, we prepared Als3-Th-cell-epitope-Target of RNAIII Activating Protein (TRAP) (ATT) proteins plus the novel combined adjuvants to develop a promising vaccine candidate against S. aureus. METHODS The recombinant pET-28a (+)-att plasmids were constructed, and the ATT proteins were expressed and obtained, then, ATT plus Freund's adjuvant or the novel combined adjuvants of cytosine-phosphate-guanosine oligodeoxynucleotides (CpG), muramyl dipeptides (MDP), and FIA were immunized in mice. After booster immunization, the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), IL-10 and IL-17A cytokine were evaluated, the humoral immune responses against TRAP were detected in mice, and the survival rate of mice was confirmed by challenge assay. RESULTS The mice immunized with ATT plus Freund's adjuvant exhibited significantly higher level of IFN-γ, IL-4, IL-10, and IL-17A, and displayed the stronger humoral immune response against TRAP than control groups, importantly, the survival rate of these mice was significantly higher than control groups. In addition, compared with the control groups, ATT + CpG + MDP + FIA group was elicited significantly higher level of IFN-γ, IL-4, IL-10, and IL-17A and was triggered the stronger humoral immune responses against TRAP, moreover, generated the higher survival rate of mice. CONCLUSION Als3 epitopes significantly enhanced TRAP immunogenicity. ATT plus the novel combined adjuvants of CpG, MDP, and FIA induced the strong immune response and protection against S. aureus, revealing the combination of CpG, MDP, and FIA adjuvant acts the synergistic effect.
Collapse
Affiliation(s)
- Jinzhu Ma
- College of Life Science and Technology, Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wei Liu
- College of Life Science and Technology, Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Beiyan Wang
- College of Life Science and Technology, Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Simiao Yu
- College of Life Science and Technology, Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Liquan Yu
- College of Life Science and Technology, Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Baifen Song
- College of Life Science and Technology, Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yongzhong Yu
- College of Life Science and Technology, Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yudong Cui
- College of Life Science and Technology, Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
6
|
Primary Human Dendritic Cells and Whole-Blood Based Assays to Evaluate Immuno-Modulatory Properties of Heat-Killed Commensal Bacteria. Vaccines (Basel) 2021; 9:vaccines9030225. [PMID: 33807734 PMCID: PMC8001086 DOI: 10.3390/vaccines9030225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
There is mounting evidence that the microbiome plays a critical role in training and maturation of the host immune system. Pre-clinical and clinical studies have shown that microbiome perturbation is correlated with sub-optimal host responses to vaccines and cancer immunotherapy. As such, identifying species of commensal bacteria capable of modulating immunological outcomes is of considerable interest. Currently, the lack of reliable primary immune cell-based assays capable of differentiating immuno-modulatory properties of various commensal bacteria is a major limitation. Here, we demonstrate that primary human monocyte-derived dendritic cells (MoDC) are capable of stratifying different strains of live and heat-killed commensal bacteria in an in vitro culture system. Specifically, heat-killed bacterial strains were able to differentially modulate co-stimulation/maturation markers CD80, CD83, and HLA-DR, as well as cytokine/chemokine signatures, such as IL-1b, MIP-1a, and TNFa in primary human MoDC. We further validated our observations using the TruCulture® (Myriad RBM, Inc., Austin, TX, USA) whole-blood ex vivo culture system. Using this ex vivo system allowed us to measure immune-altering effects of commensal bacteria in primary human whole-blood. As such, we report that both these primary in vitro and ex vivo systems are robust and enable identification, stratification, and differentiation of various commensal bacteria as potential modulators of host immunity.
Collapse
|
7
|
A Resource for Cloning and Expression Vectors Designed for Bifidobacteria: Overview of Available Tools and Biotechnological Applications. Methods Mol Biol 2021. [PMID: 33649956 DOI: 10.1007/978-1-0716-1274-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2023]
Abstract
Bifidobacteria represent an important group of (mostly) commensal microorganisms, which have enjoyed increasing scientific and industrial attention due to their purported health-promoting attributes. For the latter reason, several species have been granted "generally recognized as safe" (GRAS) and "qualified presumption of safety" (QPS) status by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA) organizations. Increasing scientific evidence supports their potential as oral delivery vectors to produce bioactive and therapeutic molecules at intestinal level. In order to achieve an efficient utilization of bifidobacterial strains as health-promoting (food) ingredients, it is necessary to provide evidence on the molecular mechanisms behind their purported beneficial and probiotic traits, and precise mechanisms of interaction with their human (or other mammalian) host. In this context, developing appropriate molecular tools to generate and investigate recombinant strains is necessary. While bifidobacteria have long remained recalcitrant to genetic manipulation, a wide array of Bifidobacterium-specific replicating vectors and genetic modification procedures have been described in literature. The current chapter intends to provide an updated overview on the vectors used to genetically modify and manipulate bifidobacteria, including their general characteristics, reviewing examples of their use to successfully generate recombinant bifidobacterial strains for specific purposes, and providing a general workflow and cautions to design and conduct heterologous expression in bifidobacteria. Knowledge gaps and fields of research that may help to widen the molecular toolbox to improve the functional and technological potential of bifidobacteria are also discussed.
Collapse
|
8
|
Protective Immunity Against Enterotoxigenic Escherichia coli by Oral Vaccination of Engineered Lactococcus lactis. Curr Microbiol 2021; 78:3464-3473. [PMID: 34264362 PMCID: PMC8280578 DOI: 10.1007/s00284-021-02601-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea in children globally, and thus suitable vaccines are desired. Antigen display on lactic acid bacteria is a reliable approach for efficient oral vaccination and preventing bowel diseases. To develop an oral vaccine against ETEC, the gene of the binding domain from heat-labile toxin (LTB), a key ETEC virulence factor, was codon-optimized and cloned into a construct containing a signal peptide and an anchor for display on L. lactis. Bioinformatics analysis showed a codon adaptation index of 0.95 for the codon-optimized gene. Cell surface expression of LTB was confirmed by transmission electron microscopy and blotting. White New Zealand rabbits were immunized per os (PO) with the recombinant L. lactis, and the antibody titers were assayed with ELISA. In vitro neutralization assay was performed using mouse adrenal tumor cells and rabbit ileal loop test was performed as the in vivo assay. ELISA results indicated that oral administration of the engineered L. lactis elicited a significant production of IgA in the intestine. In vitro neutralization assay showed that the effect of the toxin could be neutralized with 500 µg/ml of IgG isolated from the oral vaccine group. Furthermore, the dose of ETEC causing fluid accumulation in the ileal loop test showed a tenfold increase in rabbits immunized with either recombinant L. lactis or LTB protein compared to other groups. Our results imply that recombinant L. lactis could potentially be an effective live oral vaccine against ETEC toxicity.
Collapse
|
9
|
Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol Adv 2020; 45:107654. [DOI: 10.1016/j.biotechadv.2020.107654] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
|
10
|
Thinbanmai T, Lulitanond V, Mayo B, Lulitanond A, Panya M. Cloning and expression of enterovirus 71 capsid protein 1 in a probiotic Bifidobacterium pseudocatenulatum. Lett Appl Microbiol 2018; 68:9-16. [PMID: 30357884 DOI: 10.1111/lam.13089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
This study investigated cloning and expression of enterovirus 71 viral capsid protein 1 (EV71-VP1) in Bifidobacterium pseudocatenulatum (B. pseudocatenulatum) M115. To achieve this, a codon-optimized gene coding for EV71-VP1 was analysed, designed, synthesized and cloned into a plasmid vector flanked by a transcriptional promoter and terminator sequences. The promoter was based on that of P919, a constitutive promoter of the gene encoding the large ribosomal protein of B. bifidum BGN4, while the terminator was based on that of the peptidase N gene of Lactococcus lactis. The construct was amplified in Escherichia coli XL1-blue and then transferred into B. pseudocatenulatum M115 by electrotransformation. Western blot analysis revealed that the EV71-VP1 was intracellularly expressed in B. pseudocatenulatum M115 under the control of the selected heterologous promoter. In addition, plasmid stability analysis showed the construct was maintained stably for more than 160 generations, enough for most future applications. The results derived from this study open the possibility to utilize the bacterium carrying a specific expression plasmid as cell factory for the production of proteins with high commercial and health-promoting value. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the first successful expression of a codon-optimized gene coding for enterovirus 71 viral capsid protein 1 (EV71-VP1) in Bifidobacterium pseudocatenulatum M115, a novel probiotic strain isolated from human intestines. The EV71-VP1 was constitutively expressed under the control of P919 promoter derived from B. bifidum BGN4 in the cytoplasm of bacterial cells supporting the use of heterologous promoter and terminator sequences for viral gene expression in Bifidobacterium species.
Collapse
Affiliation(s)
- T Thinbanmai
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - V Lulitanond
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - B Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - A Lulitanond
- Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - M Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
11
|
ADP-ribosylating enterotoxins as vaccine adjuvants. Curr Opin Pharmacol 2018; 41:42-51. [PMID: 29702466 DOI: 10.1016/j.coph.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023]
Abstract
Most infections are caused by pathogens that access the body at mucosal sites. Hence, development of mucosal vaccines to prevent local infection or invasion of pathogens appears highly warranted, especially since only mucosal immunization will stimulate strong local IgA responses and tissue resident memory CD4 and CD8 T cells. The most significant obstacle to developing such vaccines is the lack of approved adjuvants that can effectively and safely enhance relevant mucosal and systemic immune responses. The most potent mucosal adjuvants known today are the adenosine diphosphate (ADP)-ribosylating bacterial enterotoxins cholera toxin (CT) and Escherichia coli heat-labile toxins (LTs). Unfortunately, these molecules are also very toxic, which precludes their clinical use. However, much effort has been devoted to developing derivatives of these enterotoxins with low or no toxicity and retained adjuvant activity. Although it is fair to say that we know more about how these toxins affect the immune system than ever before, we still lack a detailed understanding of how and why these toxins are effective adjuvants. In the present review, we provide a state-of-the-art overview of the mechanism of action of the holotoxins and the strategies used for improving the toxin-based adjuvants.
Collapse
|
12
|
Ma J, Yu L, Song B, Yu Y, Zhang S, Wei Y, Wu Z, Yao D, Yu W, Zhu Z, Cui Y. The double adjuvants LTB and CpG significantly enhanced the immuno-protective effects of recombinant GIT derived from Staphylococcus aureus and Streptococcus in mice. J Med Microbiol 2018; 67:432-440. [PMID: 29458538 DOI: 10.1099/jmm.0.000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE In this study, we prepared GapC1-150-IsdB126-361-TRAP (GIT) proteins plus heat-labile enterotoxin B (LTB) as an intra-molecular adjuvant, together with CpG to further enhance its immunogenicity. METHODOLOGY Initially, the target genes were acquired and inserted into pET-32a (+) vectors to express LTB-GIT protein. LTB-GIT expression was confirmed by Western blotting and its immunocompetence was estimated through ELISA. Further, we immunized BALB/c mice with the LTB-GIT plus CpG adjuvant. After the second immunization, the antigen-specific CD4+ cell responses for IFN-γ, IL-2, IL-4 and IL-10 were monitored by intracellular cytokine staining (ICS) assay. After the third immunization, the level of IgG antibodies in the serum from immunized groups was assessed by ELISA, and the protective immune response was appraised by Staphylococcus aureus and Streptococcus dysgalactiae challenge. RESULTS The ELISA results showed that the OD450nm value of the LTB-GIT group was significantly higher than that of the BSA group. The group immunized with LTB-GIT plus CpG exhibited significantly stronger CD4+ T cell responses for IFN-γ, IL-2, IL-4 and IL-10 compared to the group immunized with LTB-GIT, GIT alone orLTB-GIT plus CpG. In addition, the group immunized with LTB-GIT plus CpG generated the highest level of IgG antibodies against GIT among all of the groups, and our results also showed that LTB-GIT plus CpG markedly improved the survival percentage of mice compared to other groups. CONCLUSION We confirmed that the novel double adjuvants, LTB and CpG, are able to significantly improve GIT-induced immune responses. This formula could be a promising strategy for enhancing the immune efficacy of multi-subunit vaccines against Staphylococcus aureus and streptococcal infection.
Collapse
Affiliation(s)
- Jinzhu Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yongzhong Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shaoduo Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yuhua Wei
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Zhijun Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Di Yao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Wei Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
13
|
Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1. Int J Mol Sci 2016; 17:ijms17091419. [PMID: 27618897 PMCID: PMC5037698 DOI: 10.3390/ijms17091419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system.
Collapse
|
14
|
Wang C, Ma Y, Hu Q, Xie T, Wu J, Zeng F, Song F. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors. BMC Cancer 2016; 16:545. [PMID: 27464624 PMCID: PMC4964087 DOI: 10.1186/s12885-016-2608-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/25/2016] [Indexed: 01/10/2023] Open
Abstract
Background Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Methods Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. Results The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. Conclusions BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim without inducing necroptosis and autophagy. Furthermore, BF-rTK + GCV showed to repress the inflammation of tumor through downregulating TNF-α expression. Survival analysis results of multiple cancer models confirmed that BF-rTK + GCV system has a wide field of application in solid tumor gene therapy.
Collapse
Affiliation(s)
- Changdong Wang
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Yongping Ma
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China.
| | - Qiongwen Hu
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Tingting Xie
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Jiayan Wu
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Fan Zeng
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| | - Fangzhou Song
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing, 400016, People's Republic of China
| |
Collapse
|
15
|
Zhou H, He Z, Wang C, Xie T, Liu L, Liu C, Song F, Ma Y. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir. Int J Mol Sci 2016; 17:ijms17060891. [PMID: 27275821 PMCID: PMC4926425 DOI: 10.3390/ijms17060891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV) system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF) and HSV TK/GCV (BF-rTK/GCV). However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV) was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF) expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Zhiliang He
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Changdong Wang
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Tingting Xie
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Lin Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Chuanyang Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Fangzhou Song
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Yongping Ma
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| |
Collapse
|
16
|
Ma Y. Recent advances in nontoxicEscherichia coliheat-labile toxin and its derivative adjuvants. Expert Rev Vaccines 2016; 15:1361-1371. [DOI: 10.1080/14760584.2016.1182868] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Shkoporov AN, Khokhlova EV, Savochkin KA, Kafarskaia LI, Efimov BA. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum. FEMS Microbiol Lett 2015; 362:fnv083. [PMID: 25994292 DOI: 10.1093/femsle/fnv083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 01/01/2023] Open
Abstract
Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease.
Collapse
Affiliation(s)
- A N Shkoporov
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Ostrovitjanova str. 1, Moscow 117997, Russia Pharmbacter LLC, Skladochnaya ul., 1 - 1, Moscow 127018, Russia
| | - E V Khokhlova
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Ostrovitjanova str. 1, Moscow 117997, Russia
| | - K A Savochkin
- Pharmbacter LLC, Skladochnaya ul., 1 - 1, Moscow 127018, Russia
| | - L I Kafarskaia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Ostrovitjanova str. 1, Moscow 117997, Russia
| | - B A Efimov
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Ostrovitjanova str. 1, Moscow 117997, Russia
| |
Collapse
|
18
|
Ma Y, Xie TT, Hu Q, Qiu Z, Song F. Sequencing analysis and characterization of the plasmid pBIF10 isolated from Bifidobacterium longum. Can J Microbiol 2015; 61:124-30. [DOI: 10.1139/cjm-2014-0581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A resident plasmid, pBIF10, was isolated from Bifidobacterium longum B200304, and the full-length sequence of pBIF10 was analyzed. In this sequence, we identified at least 17 major open reading frames longer than 200 bp. A tetracycline resistance gene, tetQ, was identified and verified to confer antibiotic resistance to tetracycline. The plasmid replicon with replication protein B gene (repB) and a typical iteron was identified in pBIF10. An artificial clone vector was constructed with the replicon of pBIF10; the results showed that repB controlled plasmid replication in other bifidobacteria host cells at low transformation frequency. Taken together, the analysis and characterization of pBIF10 provided necessary information for the understanding of antibiotic resistance mediated by a plasmid in a Bifidobacterium strain. GC% and repB sequence analyses indicated that pBIF10 was a molecular hybrid of at least 2 other bacterial genera plasmids.
Collapse
Affiliation(s)
- Yongping Ma
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| | - Ting-ting Xie
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| | - Qiongwen Hu
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| | - Zongyin Qiu
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| | - Fangzhou Song
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| |
Collapse
|
19
|
Generation of an attenuated strain oral vaccine candidate using a novel double selection platform in Escherichia coli. Appl Microbiol Biotechnol 2014; 99:855-67. [PMID: 25301580 DOI: 10.1007/s00253-014-6099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Live attenuated bacteria delivered orally are interesting tools for mucosal immunization. The objective of this study was to construct a novel counter-selection platform based on an attenuated wild-type Escherichia coli (E. coli) strain and to utilize it for the delivery of LTR192G-STaA13Q fusion protein as an oral vaccine. First, a counter-selectable marker, namely, PRPL-Kil, was inserted into an attenuated wild-type E. coli strain through the use of the red and G-DOC homologous recombination systems to construct the counter-selection platform, and PRPL-Kil was subsequently replaced by the LT192-STa13 fusion gene to construct the oral vaccine O142 (yaiT::LT192-STa13) (ER-A). Subsequently, BALB/c mice were orogastrically inoculated with ER-A. Our results showed that ER-A could induce the production of specific IgA and IgG against fimbriae (F41) and enterotoxins (LT and STa), with neutralizing activity in BALB/c mice. In addition, assays of cellular immune responses showed that the stimulation index (SI) values of immunized mice were significantly higher than those of control mice (P<0.05), and revealed a marked shift toward Th2-mediated immunity. These findings suggest that ER-A is a suitable candidate for an oral vaccine strain to protect animals from enter toxigenic Escherichia coli (ETEC) infection.
Collapse
|
20
|
Bhatia B, Solanki AK, Kaushik H, Dixit A, Garg LC. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein: Expression, purification and characterization of the chimeric protein. Protein Expr Purif 2014; 102:38-44. [DOI: 10.1016/j.pep.2014.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
21
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 898] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
22
|
Ruiz L, Motherway MO, Lanigan N, van Sinderen D. Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS One 2013; 8:e64699. [PMID: 23737995 PMCID: PMC3667832 DOI: 10.1371/journal.pone.0064699] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/17/2013] [Indexed: 01/20/2023] Open
Abstract
Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Mary O’Connell Motherway
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Noreen Lanigan
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
- * E-mail:
| |
Collapse
|
23
|
Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 2012; 78:5035-42. [PMID: 22582076 DOI: 10.1128/aem.00551-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacteria are an important group of the human intestinal microbiota that have been shown to exert a number of beneficial probiotic effects on the health status of their host. Due to these effects, bifidobacteria have attracted strong interest in health care and food industries for probiotic applications and several species are listed as so-called "generally recognized as safe" (GRAS) microorganisms. Moreover, recent studies have pointed out their potential as an alternative or supplementary strategy in tumor therapy or as live vaccines. In order to study the mechanisms by which these organisms exert their beneficial effects and to generate recombinant strains that can be used as drug delivery vectors or live vaccines, appropriate molecular tools are indispensable. This review provides an overview of the currently available methods and tools to generate recombinant strains of bifidobacteria. The currently used protocols for transformation of bifidobacteria, as well as replicons, selection markers, and determinants of expression, will be summarized. We will further discuss promoters, terminators, and localization signals that have been used for successful generation of expression vectors.
Collapse
|