1
|
Muchová K, Pospíšil J, Kalocsaiová E, Chromiková Z, Žarnovičanová S, Šanderová H, Krásný L, Barák I. Spatio-temporal control of asymmetric septum positioning during sporulation in Bacillus subtilis. J Biol Chem 2024; 300:107339. [PMID: 38705388 PMCID: PMC11154705 DOI: 10.1016/j.jbc.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.
Collapse
Affiliation(s)
- Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evelína Kalocsaiová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Žarnovičanová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
2
|
Moderate high-pressure superdormancy in Bacillus spores: properties of superdormant spores and proteins potentially influencing moderate high-pressure germination. Appl Environ Microbiol 2021; 88:e0240621. [PMID: 34910565 PMCID: PMC8863042 DOI: 10.1128/aem.02406-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Resistant bacterial spores are a major concern in industrial decontamination processes. An approach known as pressure-mediated germination-inactivation strategy aims to artificially germinate spores by isostatic pressure to mitigate their resistance to inactivation processes. The successful implementation of such a germination-inactivation strategy relies on the germination of all spores. However, germination is heterogeneous, with some “superdormant” spores germinating extremely slowly or not at all. The present study investigated potential underlying reasons for moderate high-pressure (150 MPa; 37°C) superdormancy of Bacillus subtilis spores. The water and dipicolinic acid content of superdormant spores was compared with that of the initial dormant spore population. The results suggest that water and dipicolinic acid content are not major drivers of moderate high-pressure superdormancy. A proteomic analysis was used to identify proteins that were quantified at significantly different levels in superdormant spores. Subsequent validation of the germination capacity of deletion mutants revealed that the presence of protein YhcN is required for efficient moderate high-pressure germination and that proteins MinC, cse60, and SspK may also play a role, albeit a minor one. IMPORTANCE Spore-forming bacteria are ubiquitous in nature and, as a consequence, inevitably enter the food chain or other processing environments. Their presence can lead to significant spoilage or safety-related issues. Intensive treatment is usually required to inactivate them; however, this treatment harms important product quality attributes. A pressure-mediated germination-inactivation approach can balance the need for effective spore inactivation and retention of sensitive ingredients. However, superdormant spores are the bottleneck preventing the successful and safe implementation of such a strategy. An in-depth understanding of moderate high-pressure germination and the underlying causes of superdormancy is necessary to advance the development of mild high pressure-based spore control technologies. The approach used in this work allowed the identification of proteins that have not yet been associated with reduced germination at moderate high pressure. This research paves the way for further studies on the germination and superdormancy mechanisms in spores, assisting the development of mild spore inactivation strategies.
Collapse
|
3
|
Cardiolipin-Containing Lipid Membranes Attract the Bacterial Cell Division Protein DivIVA. Int J Mol Sci 2021; 22:ijms22158350. [PMID: 34361115 PMCID: PMC8348161 DOI: 10.3390/ijms22158350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 02/04/2023] Open
Abstract
DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.
Collapse
|
4
|
Ramm B, Heermann T, Schwille P. The E. coli MinCDE system in the regulation of protein patterns and gradients. Cell Mol Life Sci 2019; 76:4245-4273. [PMID: 31317204 PMCID: PMC6803595 DOI: 10.1007/s00018-019-03218-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Molecular self-organziation, also regarded as pattern formation, is crucial for the correct distribution of cellular content. The processes leading to spatiotemporal patterns often involve a multitude of molecules interacting in complex networks, so that only very few cellular pattern-forming systems can be regarded as well understood. Due to its compositional simplicity, the Escherichia coli MinCDE system has, thus, become a paradigm for protein pattern formation. This biological reaction diffusion system spatiotemporally positions the division machinery in E. coli and is closely related to ParA-type ATPases involved in most aspects of spatiotemporal organization in bacteria. The ATPase MinD and the ATPase-activating protein MinE self-organize on the membrane as a reaction matrix. In vivo, these two proteins typically oscillate from pole-to-pole, while in vitro they can form a variety of distinct patterns. MinC is a passenger protein supposedly operating as a downstream cue of the system, coupling it to the division machinery. The MinCDE system has helped to extract not only the principles underlying intracellular patterns, but also how they are shaped by cellular boundaries. Moreover, it serves as a model to investigate how patterns can confer information through specific and non-specific interactions with other molecules. Here, we review how the three Min proteins self-organize to form patterns, their response to geometric boundaries, and how these patterns can in turn induce patterns of other molecules, focusing primarily on experimental approaches and developments.
Collapse
Affiliation(s)
- Beatrice Ramm
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tamara Heermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
5
|
Abstract
Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity.
Collapse
|
6
|
Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci Rep 2019; 9:1371. [PMID: 30718562 PMCID: PMC6362236 DOI: 10.1038/s41598-018-37679-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 01/16/2023] Open
Abstract
Clostridium beijerinckii NRRL B-598 is a sporulating, butanol and hydrogen producing strain that utilizes carbohydrates by the acetone-butanol-ethanol (ABE) fermentative pathway. The pathway consists of two metabolic phases, acidogenesis and solventogenesis, from which the latter one can be coupled with sporulation. Thorough transcriptomic profiling during a complete life cycle and both metabolic phases completed with flow cytometry, microscopy and a metabolites analysis helped to find out key genes involved in particular cellular events. The description of genes/operons that are closely involved in metabolism or the cell cycle is a necessary condition for metabolic engineering of the strain and will be valuable for all C. beijerinckii strains and other Clostridial species. The study focused on glucose transport and catabolism, hydrogen formation, metabolic stress response, binary fission, motility/chemotaxis and sporulation, which resulted in the composition of the unique image reflecting clostridial population changes. Surprisingly, the main change in expression of individual genes was coupled with the sporulation start and not with the transition from acidogenic to solventogenic metabolism. As expected, solvents formation started at pH decrease and the accumulation of butyric and acetic acids in the cultivation medium.
Collapse
|
7
|
The Min Oscillator Defines Sites of Asymmetric Cell Division in Cyanobacteria during Stress Recovery. Cell Syst 2018; 7:471-481.e6. [PMID: 30414921 DOI: 10.1016/j.cels.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
When resources are abundant, many rod-shaped bacteria reproduce through precise, symmetric divisions. However, realistic environments entail fluctuations between restrictive and permissive growth conditions. Here, we use time-lapse microscopy to study the division of the cyanobacterium Synechococcus elongatus as illumination intensity varies. We find that dim conditions produce elongated cells whose divisions follow a simple rule: cells shorter than ∼8 μm divide symmetrically, but above this length divisions become asymmetric, typically producing a short ∼3-μm daughter. We show that this division strategy is implemented by the Min system, which generates multi-node patterns and traveling waves in longer cells that favor the production of a short daughter. Mathematical modeling reveals that the feedback loops that create oscillatory Min patterns are needed to implement these generalized cell division rules. Thus, the Min system, which enforces symmetric divisions in short cells, acts to strongly suppress mid-cell divisions when S. elongatus cells are long.
Collapse
|
8
|
The MinDE system is a generic spatial cue for membrane protein distribution in vitro. Nat Commun 2018; 9:3942. [PMID: 30258191 PMCID: PMC6158289 DOI: 10.1038/s41467-018-06310-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023] Open
Abstract
The E. coli MinCDE system has become a paradigmatic reaction-diffusion system in biology. The membrane-bound ATPase MinD and ATPase-activating protein MinE oscillate between the cell poles followed by MinC, thus positioning the main division protein FtsZ at midcell. Here we report that these energy-consuming MinDE oscillations may play a role beyond constraining MinC/FtsZ localization. Using an in vitro reconstitution assay, we show that MinDE self-organization can spatially regulate a variety of functionally completely unrelated membrane proteins into patterns and gradients. By concentration waves sweeping over the membrane, they induce a direct net transport of tightly membrane-attached molecules. That the MinDE system can spatiotemporally control a much larger set of proteins than previously known, may constitute a MinC-independent pathway to division site selection and chromosome segregation. Moreover, the here described phenomenon of active transport through a traveling diffusion barrier may point to a general mechanism of spatiotemporal regulation in cells.
Collapse
|
9
|
MacCready JS, Vecchiarelli AG. In long bacterial cells, the Min system can act off-center. Mol Microbiol 2018; 109:268-272. [DOI: 10.1111/mmi.13995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua S. MacCready
- Molecular, Cellular, and Developmental Biology; University of Michigan College of Literature Science and the Arts; Biological Sciences Building Ann Arbor MI USA
| | - Anthony G. Vecchiarelli
- Molecular, Cellular, and Developmental Biology; University of Michigan College of Literature Science and the Arts; Biological Sciences Building Ann Arbor MI USA
| |
Collapse
|
10
|
Barák I, Muchová K. The positioning of the asymmetric septum during sporulation in Bacillus subtilis. PLoS One 2018; 13:e0201979. [PMID: 30092000 PMCID: PMC6084994 DOI: 10.1371/journal.pone.0201979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022] Open
Abstract
Probably one of the most controversial questions about the cell division of Bacillus subtilis, a rod-shaped bacterium, concerns the mechanism that ensures correct division septum placement-at mid-cell during vegetative growth but closer to one end during sporulation. In general, bacteria multiply by binary fission, in which the division septum forms almost exactly at the cell centre. How the division machinery achieves such accuracy is a question of continuing interest. We understand in some detail how this is achieved during vegetative growth in Escherichia coli and B. subtilis, where two main negative regulators, nucleoid occlusion and the Min system, help to determine the division site, but we still do not know exactly how the asymmetric septation site is determined during sporulation in B. subtilis. Clearly, the inhibitory effects of the nucleoid occlusion and Min system on polar division have to be overcome. We evaluated the positioning of the asymmetric septum and its accuracy by statistical analysis of the site of septation. We also clarified the role of SpoIIE, RefZ and MinCD on the accuracy of this process. We determined that the sporulation septum forms approximately 1/6 of a cell length from one of the cell poles with high precision and that SpoIIE, RefZ and MinCD have a crucial role in precisely localizing the sporulation septum. Our results strongly support the idea that asymmetric septum formation is a very precise and highly controlled process regulated by a still unknown mechanism.
Collapse
Affiliation(s)
- Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
11
|
Valenčíková R, Krascsenitsová E, Labajová N, Makroczyová J, Barák I. Clostridial DivIVA and MinD interact in the absence of MinJ. Anaerobe 2018; 50:22-31. [PMID: 29408597 DOI: 10.1016/j.anaerobe.2018.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 11/25/2022]
Abstract
One of the key regulators ensuring proper Z-ring placement in rod-shaped bacteria is the Min system. It does so by creating a concentration gradient of the MinC septation inhibitor along the cell axis. In Escherichia coli, this gradient is established by a MinE-mediated pole-to-pole oscillation of the MinCDE complex. In Bacillus subtilis, the creation of an inhibitory gradient relies on the MinJ and DivIVA pair of topological determinants, which target MinCD to the newly formed cell poles. Introducing the E. coli oscillating Min system into B. subtilis leads to a sporulation defect, suggesting that oscillation is incompatible with sporulation. However, Clostridia, close endospore-forming relatives of Bacilli, do encode oscillating Min homologues in various combinations together with homologues from the less dynamic B. subtilis Min system. Here we address the questions of how these two systems could exist side-by-side and how they influence one another by studying the Clostridium beijerinckii and Clostridium difficile Min systems. The toolbox of genetic manipulations and fluorescent protein fusions in Clostridia is limited, therefore B. subtilis and E. coli were chosen as heterologous systems for studying these proteins. In B. subtilis, MinD and DivIVA interact through MinJ; here, however, we discovered that the MinD and DivIVA proteins of both C. difficile, and C. beijerinckii, interact directly, which is surprising in the latter case, since that organism also encodes a MinJ homologue. We confirm this interaction using both in vitro and in vivo methods. We also show that C. beijerinckii MinJ is probably not in direct contact with DivIVACb and, unlike B. subtilis MinJ, does not mediate the MinDCb and DivIVACb interaction. Our results suggest that the Clostridia Min system uses a new mechanism of function.
Collapse
Affiliation(s)
- Romana Valenčíková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Eva Krascsenitsová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Naďa Labajová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Jana Makroczyová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
12
|
Makroczyová J, Jamroškovič J, Krascsenitsová E, Labajová N, Barák I. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis. Microbiologyopen 2016; 5:387-401. [PMID: 26817670 PMCID: PMC4905992 DOI: 10.1002/mbo3.337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/20/2015] [Accepted: 12/30/2015] [Indexed: 01/07/2023] Open
Abstract
In rod‐shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well‐studied gram‐negative and gram‐positive bacteria. While in gram‐negative Escherichia coli, the Min system undergoes pole‐to‐pole oscillation, in gram‐positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore‐forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host.
Collapse
Affiliation(s)
- Jana Makroczyová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Jamroškovič
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Krascsenitsová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nad'a Labajová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
13
|
Rowlett VW, Margolin W. The Min system and other nucleoid-independent regulators of Z ring positioning. Front Microbiol 2015; 6:478. [PMID: 26029202 PMCID: PMC4429545 DOI: 10.3389/fmicb.2015.00478] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
Rod-shaped bacteria such as E. coli have mechanisms to position their cell division plane at the precise center of the cell, to ensure that the daughter cells are equal in size. The two main mechanisms are the Min system and nucleoid occlusion (NO), both of which work by inhibiting assembly of FtsZ, the tubulin-like scaffold that forms the cytokinetic Z ring. Whereas NO prevents Z rings from constricting over unsegregated nucleoids, the Min system is nucleoid-independent and even functions in cells lacking nucleoids and thus NO. The Min proteins of E. coli and B. subtilis form bipolar gradients that inhibit Z ring formation most at the cell poles and least at the nascent division plane. This article will outline the molecular mechanisms behind Min function in E. coli and B. subtilis, and discuss distinct Z ring positioning systems in other bacterial species.
Collapse
Affiliation(s)
- Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston , Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston , Houston, TX, USA
| |
Collapse
|
14
|
Valachova I, Takac P, Majtan J. Midgut lysozymes of Lucilia sericata - new antimicrobials involved in maggot debridement therapy. INSECT MOLECULAR BIOLOGY 2014; 23:779-787. [PMID: 25098233 DOI: 10.1111/imb.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Larvae of Lucilia sericata are used for maggot debridement therapy (MDT) because of their ability to remove necrotic tissue and eradicate bacterial pathogens of infected wounds. So far, very few antibacterial factors have been fully characterized (eg lucifensin). Using a molecular approach, some other putative antimicrobial compounds, including three novel lysozymes, have been previously identified and predicted to be involved in MDT. Nevertheless, data on lysozymes tissue origin and their functions have never been elucidated. Therefore, the aim of this study was to investigate the expression of three lysozymes in L. sericata and confirm their antibacterial effects within MDT. Moreover, we characterized the eradication process of bacteria within the digestive system of maggots and determined the role of lysozymes in this process. We found that three lysozymes are expressed in specific sections of the L. sericata midgut. Recombinant lysozymes displayed comparable antibacterial activity against Micrococcus luteus. Furthermore, the majority of Gram-positive bacteria were destroyed in vivo within the particular section of the L. sericata midgut where lysozymes are produced. Larval ingestion and subsequent eradication of wound pathogens during their passage through the intestine of maggots are due to, at least in part, antibacterial action of three midgut lysozymes.
Collapse
Affiliation(s)
- I Valachova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | |
Collapse
|
15
|
Dalla Vecchia E, Visser M, Stams AJM, Bernier-Latmani R. Investigation of sporulation in the Desulfotomaculum genus: a genomic comparison with the genera Bacillus and Clostridium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:756-766. [PMID: 25132579 DOI: 10.1111/1758-2229.12200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
The genus Desulfotomaculum, belonging to the Firmicutes, comprises strictly anaerobic and endospore-forming bacteria capable of dissimilatory sulfate reduction. These microorganisms are metabolically versatile and are widely distributed in the environment. Spore formation allows them to survive prolonged environmental stress. Information on the mechanism of sporulation in Desulfotomaculum species is scarce. Herein, this process was probed from a genomic standpoint, using the Bacillus subtilis model system as a reference and clostridial sporulation for comparison. Desulfotomaculum falls somewhere in between the Bacillus and Clostridium in terms of conservation of sporulation proteins. Furthermore, it showcased the conservation of a core regulatory cascade throughout genera, while uncovering variability in the initiation of sporulation and the structural characteristics of spores from different genera. In particular, while in Clostridium species sporulation is not initiated by a phosphorelay, Desulfotomaculum species harbour homologues of the B. subtilis proteins involved in this process. Conversely, both Clostridium and Desulfotomaculum species conserve very few B. subtilis structural proteins, particularly those found in the outer layers of the spore. Desulfotomaculum species seem to share greater similarity to the outer layers of Clostridium difficile.
Collapse
Affiliation(s)
- Elena Dalla Vecchia
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, CH A1 375 Station 6, Lausanne, CH-1015, Switzerland
| | | | | | | |
Collapse
|
16
|
Vecchiarelli AG, Li M, Mizuuchi M, Mizuuchi K. Differential affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in vitro. Mol Microbiol 2014; 93:453-63. [PMID: 24930948 DOI: 10.1111/mmi.12669] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning.
Collapse
Affiliation(s)
- Anthony G Vecchiarelli
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
17
|
Barák I. Open questions about the function and evolution of bacterial Min systems. Front Microbiol 2013; 4:378. [PMID: 24367361 PMCID: PMC3856364 DOI: 10.3389/fmicb.2013.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Science Bratislava, Slovakia
| |
Collapse
|
18
|
|