1
|
Naeij HB, Etemadifar Z, Kilbane J, Karimi-Jafari MH, Mofidifar S. Unraveling the metabolic landscape of Exophiala spinifera strain FM: Model reconstruction, insights into biodesulfurization and beyond. PLoS One 2025; 20:e0317796. [PMID: 39879189 PMCID: PMC11778650 DOI: 10.1371/journal.pone.0317796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/04/2025] [Indexed: 01/31/2025] Open
Abstract
Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However, the specific pathway and enzymes involved in this process remain unclear due to limited genome sequencing and metabolic understanding of E. spinifera. In this study, we sequenced the complete genome of E. spinifera FM to construct the first genome-scale metabolic model (GSMM) for this organism. Through bioinformatics analysis, we identified genes potentially involved in DBT desulfurization and degradation pathways for hazardous pollutants. We focused on understanding the cost associated with metabolites in sulfur assimilation pathway to assess economic feasibility, optimize resource allocation, and guide metabolic engineering and process design. To overcome knowledge gaps, we developed a genome-scale model for E. spinifera, iEsp1694, enabling a comprehensive investigation into its metabolism. The model was rigorously validated against growth phenotypes and gene essentiality data. Through shadow price analysis, we identified costly metabolites such as 3'-phospho-5'-adenylyl sulfate, 5'-adenylyl sulfate, and choline sulfate when DBT was used as the sulfur source. iEsp1694 encompasses the degradation of aromatic compounds, which serves as a crucial first step in comprehending the pan metabolic capabilities of this strain.
Collapse
Affiliation(s)
- Hamta Babaei Naeij
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - John Kilbane
- Division of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | | | - Sepideh Mofidifar
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Lombardi L, Salzberg LI, Cinnéide EÓ, O'Brien C, Morio F, Turner SA, Byrne KP, Butler G. Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis. Nat Commun 2024; 15:9190. [PMID: 39448588 PMCID: PMC11502921 DOI: 10.1038/s41467-024-53442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Candida parapsilosis is an opportunistic fungal pathogen commonly isolated from the environment and associated with nosocomial infection outbreaks worldwide. We describe here the construction of a large collection of gene disruptions, greatly increasing the molecular tools available for probing gene function in C. parapsilosis. We use these to identify transcription factors associated with multiple metabolic pathways, and in particular to dissect the network regulating the assimilation of sulphur. We find that, unlike in other yeasts and filamentous fungi, the transcription factor Met4 is not the main regulator of methionine synthesis. In C. parapsilosis, assimilation of inorganic sulphur (sulphate) and synthesis of cysteine and methionine is regulated by Met28, a paralog of Met4, whereas Met4 regulates expression of a wide array of transporters and enzymes involved in the assimilation of organosulfur compounds. Analysis of transcription factor binding sites suggests that Met4 is recruited by the DNA-binding protein Met32, and Met28 is recruited by Cbf1. Despite having different target genes, Met4 and Met28 have partial functional overlap, possibly because Met4 can contribute to assimilation of inorganic sulphur in the absence of Met28.
Collapse
Affiliation(s)
- Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | - Letal I Salzberg
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin Ó Cinnéide
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Caoimhe O'Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, UR1155, Nantes, France
| | - Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kevin P Byrne
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
3
|
Ohtsuka H, Shimasaki T, Aiba H. Response to sulfur in Schizosaccharomyces pombe. FEMS Yeast Res 2021; 21:6324000. [PMID: 34279603 PMCID: PMC8310684 DOI: 10.1093/femsyr/foab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sulfur is an essential component of various biologically important molecules, including methionine, cysteine and glutathione, and it is also involved in coping with oxidative and heavy metal stress. Studies using model organisms, including budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), have contributed not only to understanding various cellular processes but also to understanding the utilization and response mechanisms of each nutrient, including sulfur. Although fission yeast can use sulfate as a sulfur source, its sulfur metabolism pathway is slightly different from that of budding yeast because it does not have a trans-sulfuration pathway. In recent years, it has been found that sulfur starvation causes various cellular responses in S. pombe, including sporulation, cell cycle arrest at G2, chronological lifespan extension, autophagy induction and reduced translation. This MiniReview identifies two sulfate transporters in S. pombe, Sul1 (encoded by SPBC3H7.02) and Sul2 (encoded by SPAC869.05c), and summarizes the metabolic pathways of sulfur assimilation and cellular response to sulfur starvation. Understanding these responses, including metabolism and adaptation, will contribute to a better understanding of the various stress and nutrient starvation responses and chronological lifespan regulation caused by sulfur starvation.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Samson R, Rajput V, Shah M, Yadav R, Sarode P, Dastager SG, Dharne MS, Khairnar K. Deciphering taxonomic and functional diversity of fungi as potential bioindicators within confluence stretch of Ganges and Yamuna Rivers, impacted by anthropogenic activities. CHEMOSPHERE 2020; 252:126507. [PMID: 32200181 DOI: 10.1016/j.chemosphere.2020.126507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
River confluences are interesting ecological niche with limited information in respect of the structure and the functions of diverse microbial communities. Fungi are gaining global attention as promising biological spectacles for defining the trophic status of riverine systems. We condense existing knowledge in confluence diversity in two Indian rivers (i.e. Ganges and Yamuna), by combining sediment metagenomics using long read aided MinION nanopore sequencing. A total of 63 OTU's were observed, of which top 20 OTU's were considered based on relative abundance of each OTU at a particular location. Fungal genera such as Aspergillus, Penicillium, Kluveromyces, Lodderomyces, and Nakaseomyces were deciphered as potential bio indicators of river pollution and eutrophication in the confluent zone. In silico functional gene analysis uncovered hits for neurodegenerative diseases and xenobiotic degradation potential, supporting bioindication of river pollution in wake of anthropogenic intervention.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, India
| | - Manan Shah
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, India
| | - Rakeshkumar Yadav
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Sarode
- Environmental Virology Cell (EVC), CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Syed G Dastager
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, India
| | - Mahesh S Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Krishna Khairnar
- Environmental Virology Cell (EVC), CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
5
|
Van Stempvoort DR, Spoelstra J, Brown SJ, Robertson WD, Post R, Smyth SA. Sulfamate in environmental waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133734. [PMID: 31422333 DOI: 10.1016/j.scitotenv.2019.133734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Although sulfamate (the anion of sulfamic acid) has been in use for decades in various industrial and other applications, there is no previously published information about its occurrence and fate in environmental waters. In this study sulfamate was widely detected in environmental waters in Ontario, Canada, ranging up to 128,000ng/L. It was always detected (>100ng/L) in bulk precipitation samples and streams, it was usually detected in samples of lake water, and often detected in groundwater. Spatial and temporal variations suggest that both widespread atmospheric deposition and localized land-based anthropogenic sources of sulfamate may be important. Lower concentrations or non-detections of sulfamate in waters that had relatively low dissolved oxygen (e.g. some groundwaters) suggest that sulfamate may be degraded in the environment under suboxic or anoxic conditions. Given our findings of a wide distribution of sulfamate in environmental waters, including precipitation, it is not likely to be very useful as a wastewater tracer.
Collapse
Affiliation(s)
- D R Van Stempvoort
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada.
| | - J Spoelstra
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - S J Brown
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - W D Robertson
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - R Post
- Nottawasaga Valley Conservation Authority, 8195 8th Line, Utopia, Ontario L0M 1T0, Canada
| | - S A Smyth
- Emerging Priorities Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| |
Collapse
|
6
|
Chen KH, Liao HL, Bellenger JP, Lutzoni F. Differential gene expression associated with fungal trophic shifts along the senescence gradient of the moss Dicranum scoparium. Environ Microbiol 2019; 21:2273-2289. [PMID: 30900793 DOI: 10.1111/1462-2920.14605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/05/2023]
Abstract
Bryophytes harbour microbiomes, including diverse communities of fungi. The molecular mechanisms by which perennial mosses interact with these fungal partners along their senescence gradients are unknown, yet this is an ideal system to study variation in gene expression associated with trophic state transitions. We investigated differentially expressed genes of fungal communities and their host Dicranum scoparium across its naturally occurring senescence gradient using a metatranscriptomic approach. Higher activity of fungal nutrient-related (carbon, nitrogen, phosphorus and sulfur) transporters and Carbohydrate-Active enZyme (CAZy) genes was detected toward the bottom, partially decomposed, layer of the moss. The most prominent variation in the expression levels of fungal nutrient transporters was from inorganic nitrogen-related transporters, whereas the breakdown of organonitrogens was detected as the most enriched gene ontology term for the host D. scoparium, for those transcripts having higher expression in the partially decomposed layer. The abundance of bacterial rRNA transcripts suggested that more living members of Cyanobacteria are associated with the photosynthetic layer of D. scoparium, while members of Rhizobiales are detected throughout the gametophytes. Plant genes for specific fungal-plant communication, including defense responses, were differentially expressed, suggesting that different genetic pathways are involved in plant-microbe crosstalk in photosynthetic tissues compared to partially decomposed tissues.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Department of Biology, Duke University, Durham, NC, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | | | | |
Collapse
|
7
|
Linder T. A genomic survey of nitrogen assimilation pathways in budding yeasts (sub-phylum Saccharomycotina). Yeast 2018; 36:259-273. [DOI: 10.1002/yea.3364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tomas Linder
- Department of Molecular Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| |
Collapse
|
8
|
Linder T. Assimilation of alternative sulfur sources in fungi. World J Microbiol Biotechnol 2018; 34:51. [PMID: 29550883 PMCID: PMC5857272 DOI: 10.1007/s11274-018-2435-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/28/2022]
Abstract
Fungi are well known for their metabolic versatility, whether it is the degradation of complex organic substrates or the biosynthesis of intricate secondary metabolites. The vast majority of studies concerning fungal metabolic pathways for sulfur assimilation have focused on conventional sources of sulfur such as inorganic sulfur ions and sulfur-containing biomolecules. Less is known about the metabolic pathways involved in the assimilation of so-called “alternative” sulfur sources such as sulfides, sulfoxides, sulfones, sulfonates, sulfate esters and sulfamates. This review summarizes our current knowledge regarding the structural diversity of sulfur compounds assimilated by fungi as well as the biochemistry and genetics of metabolic pathways involved in this process. Shared sequence homology between bacterial and fungal sulfur assimilation genes have lead to the identification of several candidate genes in fungi while other enzyme activities and pathways so far appear to be specific to the fungal kingdom. Increased knowledge of how fungi catabolize this group of compounds will ultimately contribute to a more complete understanding of sulfur cycling in nature as well as the environmental fate of sulfur-containing xenobiotics.
Collapse
Affiliation(s)
- Tomas Linder
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07, Uppsala, Sweden.
| |
Collapse
|
9
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context. FEMS Yeast Res 2017; 17:4056150. [DOI: 10.1093/femsyr/fox058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
|
10
|
ATP Sulfurylase is Essential for the Utilization of Sulfamate as a Sulfur Source in the Yeast Komagataella pastoris (syn. Pichia pastoris). Curr Microbiol 2017; 74:1021-1025. [PMID: 28603806 PMCID: PMC5534208 DOI: 10.1007/s00284-017-1276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/02/2017] [Indexed: 11/30/2022]
Abstract
The methylotrophic yeast Komagataella pastoris (syn. Pichia pastoris) is one of the few known yeasts that can utilize sulfamate (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{NH}}_{2} {\text{SO}}_{3}^{ - }$$\end{document}NH2SO3-) as a sulfur source. The biochemical pathway responsible for the catabolism of sulfamate has yet to be identified. The present study sought to investigate whether sulfamate catabolism proceeds through either of the inorganic sulfur intermediates sulfate (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{SO}}_{4}^{2 - }$$\end{document}SO42-) or sulfite (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{SO}}_{3}^{2 - }$$\end{document}SO32-) before its assimilation and subsequent incorporation into sulfur-containing amino acids and their derivatives. Two key genes in the K. pastoris inorganic sulfur assimilation pathway were deleted separately and the ability of each deletion mutant to utilize sulfamate and other selected sulfur sources was studied. Deletion of the MET3 gene (which encodes the enzyme ATP sulfurylase) did not affect growth on l-methionine, sulfite, methanesulfonate, or taurine but completely abolished growth on sulfate, methyl sulfate and sulfamate. Deletion of the MET5 gene (which encodes the β subunit of the enzyme sulfite reductase) abolished growth on all tested sulfur sources except l-methionine. These results suggest that the catabolism of sulfamate proceeds through a sulfate intermediate before its assimilation.
Collapse
|
11
|
Ohtsuka H, Takinami M, Shimasaki T, Hibi T, Murakami H, Aiba H. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome. Mol Microbiol 2017; 105:84-97. [PMID: 28388826 DOI: 10.1111/mmi.13686] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 01/11/2023]
Abstract
Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1+ gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Masahiro Takinami
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takahide Hibi
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Murakami
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
12
|
Holt S, Kankipati H, De Graeve S, Van Zeebroeck G, Foulquié-Moreno MR, Lindgreen S, Thevelein JM. Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family. Nat Commun 2017; 8:14247. [PMID: 28165463 PMCID: PMC5303821 DOI: 10.1038/ncomms14247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022] Open
Abstract
Sulfate is a well-established sulfur source for fungi; however, in soils sulfonates and sulfate esters, especially choline sulfate, are often much more prominent. Here we show that Saccharomyces cerevisiae YIL166C(SOA1) encodes an inorganic sulfur (sulfate, sulfite and thiosulfate) transporter that also catalyses sulfonate and choline sulfate uptake. Phylogenetic analysis of fungal SOA1 orthologues and expression of 20 members in the sul1Δ sul2Δ soa1Δ strain, which is deficient in inorganic and organic sulfur compound uptake, reveals that these transporters have diverse substrate preferences for sulfur compounds. We further show that SOA2, a S. cerevisiae SOA1 paralogue found in S. uvarum, S. eubayanus and S. arboricola is likely to be an evolutionary remnant of the uncharacterized open reading frames YOL163W and YOL162W. Our work highlights the importance of sulfonates and choline sulfate as sulfur sources in the natural environment of S. cerevisiae and other fungi by identifying fungal transporters for these compounds. Sulfonates are a major source of sulphur for soil microbes but their cellular uptake is still not fully understood. Here the authors show that Saccharomyces cerevisiae YIL166C(SOA1) encodes for an inorganic sulphur transporter that can also function as a sulfonate and choline sulphate transporter.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Harish Kankipati
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Stijn De Graeve
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Stinus Lindgreen
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 4, 1799 Copenhagen V, Denmark
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| |
Collapse
|
13
|
Utilisation of aromatic organosulfur compounds as sulfur sources by Lipomyces starkeyi CBS 1807. Antonie van Leeuwenhoek 2016; 109:1417-22. [DOI: 10.1007/s10482-016-0729-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/01/2016] [Indexed: 11/25/2022]
|
14
|
Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply. FRONTIERS IN PLANT SCIENCE 2014; 5:723. [PMID: 25566295 PMCID: PMC4267179 DOI: 10.3389/fpls.2014.00723] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 05/23/2023]
Abstract
Plant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax, and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.
Collapse
|
15
|
Linder T. CMO1 encodes a putative choline monooxygenase and is required for the utilization of choline as the sole nitrogen source in the yeast Scheffersomyces stipitis (syn. Pichia stipitis). Microbiology (Reading) 2014; 160:929-940. [DOI: 10.1099/mic.0.073932-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sixteen yeasts with sequenced genomes belonging to the ascomycete subphyla Saccharomycotina and Taphrinomycotina were assayed for their ability to utilize a variety of primary, secondary, tertiary and quartenary aliphatic amines as nitrogen sources. The results support a previously proposed pathway of quaternary amine catabolism whereby glycine betaine is first converted into choline, which is then cleaved to release trimethylamine, followed by stepwise demethylation of trimethylamine to release free ammonia. There were only a few instances of utilization of N-methylated glycine species (sarcosine and N,N-dimethylglycine), which suggests that this pathway is not intact in any of the species tested. The ability to utilize choline as a sole nitrogen source correlated strongly with the presence of a putative Rieske non-haem iron protein homologous to bacterial ring-hydroxylating oxygenases and plant choline monooxygenases. Deletion of the gene encoding the Rieske non-haem iron protein in the yeast Scheffersomyces stipitis abolished its ability to utilize choline as the sole nitrogen source, but did not affect its ability to use methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, ethanolamine or glycine as nitrogen sources. The gene was named CMO1 for putative choline monooxygenase 1. A bioinformatic survey of eukaryotic genomes showed that CMO1 homologues are found throughout the eukaryotic domain.
Collapse
Affiliation(s)
- Tomas Linder
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07, Uppsala, Sweden
| |
Collapse
|