1
|
Hernández‐Valle J, Vega‐Baray B, Poggio S, Camarena L. CerM and Its Antagonist CerN Are New Components of the Quorum Sensing System in Cereibacter sphaeroides, Signaling to the CckA/ChpT/CtrA System. Microbiologyopen 2024; 13:e012. [PMID: 39696824 PMCID: PMC11655674 DOI: 10.1002/mbo3.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/31/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
Cereibacter sphaeroides has a quorum sensing (QS) system that has been partially characterized. Using a bioinformatic approach, six LuxR homologs and one homolog of the acylhomoserine lactone synthase were identified in this bacterium, including the previously characterized CerR and CerI proteins. This study focused on determining the roles of two LuxR homologs, CerM and CerN. CerN lacks the HTH domain and, together with CerM, controls the expression of ctrA, which is part of the TCS CckA/ChpT/CtrA. CtrA is widely conserved in alpha-proteobacteria and regulates flagellar motility and other cellular processes. Genetic and biochemical data suggest that CerM indirectly represses ctrA expression, which is counteracted by its interaction with CerN-AHL. A transcriptomic study identified 181 genes regulated by CerM/CerN, with a conserved sequence in their regulatory regions likely indicating the CerM binding site. This hypothesis was supported by in vitro and in vivo DNA-protein interaction assays. Our results identified a transcription factor that could connect the QS system with the regulation of the two-component system CckA/ChpT/CtrA.
Collapse
Affiliation(s)
- José Hernández‐Valle
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Benjamín Vega‐Baray
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Sebastián Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Laura Camarena
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
2
|
Banks EJ, Le TBK. Co-opting bacterial viruses for DNA exchange: structure and regulation of gene transfer agents. Curr Opin Microbiol 2024; 78:102431. [PMID: 38309246 DOI: 10.1016/j.mib.2024.102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Horizontal gene transfer occurs via a range of mechanisms, including transformation, conjugation and bacteriophage transduction. Gene transfer agents (GTAs) are an alternative, less-studied route for interbacterial DNA exchange. Encoded within bacterial or archaeal genomes, GTAs assemble into phage-like particles that selflessly package and transmit host DNA to recipient bacteria. Several unique features distinguish GTAs from canonical phages such as an inability to self-replicate, thus producing non-infectious particles. GTAs are also deeply integrated into the physiology of the host cell and are maintained under tight host-regulatory control. Recent advances in understanding the structure and regulation of GTAs have provided further insights into a DNA transfer mechanism that is proving increasingly widespread across the bacterial tree of life.
Collapse
Affiliation(s)
- Emma J Banks
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
3
|
Tomasch J, Koppenhöfer S, Lang AS. Connection Between Chromosomal Location and Function of CtrA Phosphorelay Genes in Alphaproteobacteria. Front Microbiol 2021; 12:662907. [PMID: 33995326 PMCID: PMC8116508 DOI: 10.3389/fmicb.2021.662907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
Most bacterial chromosomes are circular, with replication starting at one origin (ori) and proceeding on both replichores toward the terminus (ter). Several studies have shown that the location of genes relative to ori and ter can have profound effects on regulatory networks and physiological processes. The CtrA phosphorelay is a gene regulatory system conserved in most alphaproteobacteria. It was first discovered in Caulobacter crescentus where it controls replication and division into a stalked and a motile cell in coordination with other factors. The locations of the ctrA gene and targets of this response regulator on the chromosome affect their expression through replication-induced DNA hemi-methylation and specific positioning along a CtrA activity gradient in the dividing cell, respectively. Here we asked to what extent the location of CtrA regulatory network genes might be conserved in the alphaproteobacteria. We determined the locations of the CtrA phosphorelay and associated genes in closed genomes with unambiguously identifiable ori from members of five alphaproteobacterial orders. The location of the phosphorelay genes was the least conserved in the Rhodospirillales followed by the Sphingomonadales. In the Rhizobiales a trend toward certain chromosomal positions could be observed. Compared to the other orders, the CtrA phosphorelay genes were conserved closer to ori in the Caulobacterales. In contrast, the genes were highly conserved closer to ter in the Rhodobacterales. Our data suggest selection pressure results in differential positioning of CtrA phosphorelay and associated genes in alphaproteobacteria, particularly in the orders Rhodobacterales, Caulobacterales and Rhizobiales that is worth deeper investigation.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Sonja Koppenhöfer
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Lindsey ARI. Sensing, Signaling, and Secretion: A Review and Analysis of Systems for Regulating Host Interaction in Wolbachia. Genes (Basel) 2020; 11:E813. [PMID: 32708808 PMCID: PMC7397232 DOI: 10.3390/genes11070813] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Wolbachia (Anaplasmataceae) is an endosymbiont of arthropods and nematodes that resides within host cells and is well known for manipulating host biology to facilitate transmission via the female germline. The effects Wolbachia has on host physiology, combined with reproductive manipulations, make this bacterium a promising candidate for use in biological- and vector-control. While it is becoming increasingly clear that Wolbachia's effects on host biology are numerous and vary according to the host and the environment, we know very little about the molecular mechanisms behind Wolbachia's interactions with its host. Here, I analyze 29 Wolbachia genomes for the presence of systems that are likely central to the ability of Wolbachia to respond to and interface with its host, including proteins for sensing, signaling, gene regulation, and secretion. Second, I review conditions under which Wolbachia alters gene expression in response to changes in its environment and discuss other instances where we might hypothesize Wolbachia to regulate gene expression. Findings will direct mechanistic investigations into gene regulation and host-interaction that will deepen our understanding of intracellular infections and enhance applied management efforts that leverage Wolbachia.
Collapse
Affiliation(s)
- Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
5
|
Ding H, Grüll MP, Mulligan ME, Lang AS, Beatty JT. Induction of Rhodobacter capsulatus Gene Transfer Agent Gene Expression Is a Bistable Stochastic Process Repressed by an Extracellular Calcium-Binding RTX Protein Homologue. J Bacteriol 2019; 201:e00430-19. [PMID: 31501287 PMCID: PMC6832060 DOI: 10.1128/jb.00430-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/06/2019] [Indexed: 01/28/2023] Open
Abstract
Bacteriophage-like gene transfer agents (GTAs) have been discovered in both of the prokaryotic branches of the three-domain phylogenetic tree of life. The production of a GTA (RcGTA) by the phototrophic alphaproteobacterium Rhodobacter capsulatus is regulated by quorum sensing and a phosphorelay homologous to systems in other species that control essential functions such as the initiation of chromosome replication and cell division. In wild-type strains, RcGTA is produced in <3% of cells in laboratory cultures. Mutants of R. capsulatus that exhibit greatly elevated production of RcGTA were created decades ago by chemical mutagenesis, but the nature and molecular consequences of the mutation were unknown. We show that the number of cells in a population that go on to express RcGTA genes is controlled by a stochastic process, in contrast to a genetic process. We used transposon mutagenesis along with a fluorescent protein reporter system and genome sequence data to identify a gene, rcc00280, that encodes an RTX family calcium-binding protein homologue. The Rc280 protein acts as an extracellular repressor of RcGTA gene expression by decreasing the percentage of cells that induce the production of RcGTA.IMPORTANCE GTAs catalyze horizontal gene transfer (HGT), which is important for genomic evolution because the majority of genes found in bacterial genomes have undergone HGT at some point in their evolution. Therefore, it is important to determine how the production of GTAs is regulated to understand the factors that modulate the frequency of gene transfer and thereby specify the tempo of evolution. This work describes a new type of genetic regulation in which an extracellular calcium-binding protein homologue represses the induction of the Rhodobacter capsulatus GTA, RcGTA.
Collapse
Affiliation(s)
- Hao Ding
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc P Grüll
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Martin E Mulligan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Koppenhöfer S, Wang H, Scharfe M, Kaever V, Wagner-Döbler I, Tomasch J. Integrated Transcriptional Regulatory Network of Quorum Sensing, Replication Control, and SOS Response in Dinoroseobacter shibae. Front Microbiol 2019; 10:803. [PMID: 31031742 PMCID: PMC6473078 DOI: 10.3389/fmicb.2019.00803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing (QS) coordinates population wide gene expression of bacterial species. Highly adaptive traits like gene transfer agents (GTA), morphological heterogeneity, type 4 secretion systems (T4SS), and flagella are QS controlled in Dinoroseobacter shibae, a Roseobacter model organism. Its QS regulatory network is integrated with the CtrA phosphorelay that controls cell division in alphaproteobacteria. To elucidate the network topology, we analyzed the transcriptional response of the QS-negative D. shibae strain ΔluxI1 toward externally added autoinducer (AI) over a time period of 3 h. The signaling cascade is initiated by the CtrA phosphorelay, followed by the QS genes and other target genes, including the second messenger c-di-GMP, competence, flagella and pili. Identification of transcription factor binding sites in promoters of QS induced genes revealed the integration of QS, CtrA phosphorelay and the SOS stress response mediated by LexA. The concentration of regulatory genes located close to the origin or terminus of replication suggests that gene regulation and replication are tightly coupled. Indeed, addition of AI first stimulates and then represses replication. The restart of replication comes along with increased c-di-GMP levels. We propose a model in which QS induces replication followed by differentiation into GTA producing and non-producing cells. CtrA-activity is controlled by the c-di-GMP level, allowing some of the daughter cells to replicate again. The size of the GTA producing subpopulation is tightly controlled by QS via the AI Synthase LuxI2. Finally, induction of the SOS response allows for integration of GTA DNA into the host chromosome.
Collapse
Affiliation(s)
- Sonja Koppenhöfer
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Hui Wang
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| | - Maren Scharfe
- Group Genomic Analytics, Helmholtz Centre for Infection Research, Helmholtz Association of German Research Centers, Braunschweig, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Irene Wagner-Döbler
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Poncin K, Gillet S, De Bolle X. Learning from the master: targets and functions of the CtrA response regulator in Brucella abortus and other alpha-proteobacteria. FEMS Microbiol Rev 2018; 42:500-513. [PMID: 29733367 DOI: 10.1093/femsre/fuy019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The α-proteobacteria are a fascinating group of free-living, symbiotic and pathogenic organisms, including the Brucella genus, which is responsible for a worldwide zoonosis. One common feature of α-proteobacteria is the presence of a conserved response regulator called CtrA, first described in the model bacterium Caulobacter crescentus, where it controls gene expression at different stages of the cell cycle. Here, we focus on Brucella abortus and other intracellular α-proteobacteria in order to better assess the potential role of CtrA in the infectious context. Comparative genomic analyses of the CtrA control pathway revealed the conservation of specific modules, as well as the acquisition of new factors during evolution. The comparison of CtrA regulons also suggests that specific clades of α-proteobacteria acquired distinct functions under its control, depending on the essentiality of the transcription factor. Other CtrA-controlled functions, for instance motility and DNA repair, are proposed to be more ancestral. Altogether, these analyses provide an interesting example of the plasticity of a regulation network, subject to the constraints of inherent imperatives such as cell division and the adaptations to diversified environmental niches.
Collapse
Affiliation(s)
- Katy Poncin
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Sébastien Gillet
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Xavier De Bolle
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| |
Collapse
|
8
|
The Protease ClpXP and the PAS Domain Protein DivL Regulate CtrA and Gene Transfer Agent Production in Rhodobacter capsulatus. Appl Environ Microbiol 2018; 84:AEM.00275-18. [PMID: 29625982 DOI: 10.1128/aem.00275-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 01/01/2023] Open
Abstract
Several members of the Rhodobacterales (Alphaproteobacteria) produce a conserved horizontal gene transfer vector, called the gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system used to study GTA biology is the Rhodobacter capsulatus GTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in the Alphaproteobacteria and is an essential regulator of RcGTA production: it controls the production and maturation of the RcGTA particle and RcGTA release from cells. CtrA also controls the natural transformation-like system required for cells to receive RcGTA-donated DNA. Here, we report that dysregulation of the CckA-ChpT-CtrA phosphorelay either by the loss of the PAS domain protein DivL or by substitution of the autophosphorylation residue of the hybrid histidine kinase CckA decreased CtrA phosphorylation and greatly increased RcGTA protein production in R. capsulatus We show that the loss of the ClpXP protease or the three C-terminal residues of CtrA results in increased CtrA levels in R. capsulatus and identify ClpX(P) to be essential for the maturation of RcGTA particles. Furthermore, we show that CtrA phosphorylation is important for head spike production. Our results provide novel insight into the regulation of CtrA and GTAs in the RhodobacteralesIMPORTANCE Members of the Rhodobacterales are abundant in ocean and freshwater environments. The conserved GTA produced by many Rhodobacterales may have an important role in horizontal gene transfer (HGT) in aquatic environments and provide a significant contribution to their adaptation. GTA production is controlled by bacterial regulatory systems, including the conserved CckA-ChpT-CtrA phosphorelay; however, several questions about GTA regulation remain. Our identification that a short DivL homologue and ClpXP regulate CtrA in R. capsulatus extends the model of CtrA regulation from Caulobacter crescentus to a member of the Rhodobacterales We found that the magnitude of RcGTA production greatly depends on DivL and CckA kinase activity, adding yet another layer of regulatory complexity to RcGTA. RcGTA is known to undergo CckA-dependent maturation, and we extend the understanding of this process by showing that the ClpX chaperone is required for formation of tailed, DNA-containing particles.
Collapse
|
9
|
Westbye AB, Beatty JT, Lang AS. Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr Opin Microbiol 2017; 38:122-129. [DOI: 10.1016/j.mib.2017.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
10
|
Grüll MP, Peña-Castillo L, Mulligan ME, Lang AS. Genome-wide identification and characterization of small RNAs in Rhodobacter capsulatus and identification of small RNAs affected by loss of the response regulator CtrA. RNA Biol 2017; 14:914-925. [PMID: 28296577 PMCID: PMC5546546 DOI: 10.1080/15476286.2017.1306175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are involved in the control of numerous cellular processes through various regulatory mechanisms, and in the past decade many studies have identified sRNAs in a multitude of bacterial species using RNA sequencing (RNA-seq). Here, we present the first genome-wide analysis of sRNA sequencing data in Rhodobacter capsulatus, a purple nonsulfur photosynthetic alphaproteobacterium. Using a recently developed bioinformatics approach, sRNA-Detect, we detected 422 putative sRNAs from R. capsulatus RNA-seq data. Based on their sequence similarity to sRNAs in a sRNA collection, consisting of published putative sRNAs from 23 additional bacterial species, and RNA databases, the sequences of 124 putative sRNAs were conserved in at least one other bacterial species; and, 19 putative sRNAs were assigned a predicted function. We bioinformatically characterized all putative sRNAs and applied machine learning approaches to calculate the probability of a nucleotide sequence to be a bona fide sRNA. The resulting quantitative model was able to correctly classify 95.2% of sequences in a validation set. We found that putative cis-targets for antisense and partially overlapping sRNAs were enriched with protein-coding genes involved in primary metabolic processes, photosynthesis, compound binding, and with genes forming part of macromolecular complexes. We performed differential expression analysis to compare the wild type strain to a mutant lacking the response regulator CtrA, an important regulator of gene expression in R. capsulatus, and identified 18 putative sRNAs with differing levels in the two strains. Finally, we validated the existence and expression patterns of four novel sRNAs by Northern blot analysis.
Collapse
Affiliation(s)
- Marc P Grüll
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Lourdes Peña-Castillo
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada.,b Department of Computer Science , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Martin E Mulligan
- c Department of Biochemistry , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Andrew S Lang
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
11
|
Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen. Proc Natl Acad Sci U S A 2015; 112:E3709-18. [PMID: 26124143 DOI: 10.1073/pnas.1503118112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have functionally and structurally defined an essential protein phosphorelay that regulates expression of genes required for growth, division, and intracellular survival of the global zoonotic pathogen Brucella abortus. Our study delineates phosphoryl transfer through this molecular pathway, which initiates from the sensor kinase CckA and proceeds through the ChpT phosphotransferase to two regulatory substrates: CtrA and CpdR. Genetic perturbation of this system results in defects in cell growth and division site selection, and a specific viability deficit inside human phagocytic cells. Thus, proper control of B. abortus division site polarity is necessary for survival in the intracellular niche. We further define the structural foundations of signaling from the central phosphotransferase, ChpT, to its response regulator substrate, CtrA, and provide evidence that there are at least two modes of interaction between ChpT and CtrA, only one of which is competent to catalyze phosphoryltransfer. The structure and dynamics of the active site on each side of the ChpT homodimer are distinct, supporting a model in which quaternary structure of the 2:2 ChpT-CtrA complex enforces an asymmetric mechanism of phosphoryl transfer between ChpT and CtrA. Our study provides mechanistic understanding, from the cellular to the atomic scale, of a conserved transcriptional regulatory system that controls the cellular and infection biology of B. abortus. More generally, our results provide insight into the structural basis of two-component signal transduction, which is broadly conserved in bacteria, plants, and fungi.
Collapse
|
12
|
The flagellar set Fla2 in Rhodobacter sphaeroides is controlled by the CckA pathway and is repressed by organic acids and the expression of Fla1. J Bacteriol 2014; 197:833-47. [PMID: 25512309 DOI: 10.1128/jb.02429-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhodobacter sphaeroides has two different sets of flagellar genes. Under the growth conditions commonly used in the laboratory, the expression of the fla1 set is constitutive, whereas the fla2 genes are not expressed. Phylogenetic analyses have previously shown that the fla1 genes were acquired by horizontal transfer from a gammaproteobacterium and that the fla2 genes are endogenous genes of this alphaproteobacterium. In this work, we characterized a set of mutants that were selected for swimming using the Fla2 flagella in the absence of the Fla1 flagellum (Fla2(+) strains). We determined that these strains have a single missense mutation in the histidine kinase domain of CckA. The expression of these mutant alleles in a Fla1(-) strain allowed fla2-dependent motility without selection. Motility of the Fla2(+) strains is also dependent on ChpT and CtrA. The mutant versions of CckA showed an increased autophosphorylation activity in vitro. Interestingly, we found that cckA is transcriptionally repressed by the presence of organic acids, suggesting that the availability of carbon sources could be a part of the signal that turns on this flagellar set. Evidence is presented showing that reactivation of fla1 gene expression in the Fla2(+) background strongly reduces the number of cells with Fla2 flagella.
Collapse
|
13
|
Brimacombe CA, Ding H, Beatty JT. Rhodobacter capsulatus DprA is essential for RecA-mediated gene transfer agent (RcGTA) recipient capability regulated by quorum-sensing and the CtrA response regulator. Mol Microbiol 2014; 92:1260-78. [DOI: 10.1111/mmi.12628] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Cedric A. Brimacombe
- Department of Microbiology and Immunology; The University of British Columbia; 2350 Health Sciences Mall Vancouver BC Canada V6T 1Z3
| | - Hao Ding
- Department of Microbiology and Immunology; The University of British Columbia; 2350 Health Sciences Mall Vancouver BC Canada V6T 1Z3
| | - J. Thomas Beatty
- Department of Microbiology and Immunology; The University of British Columbia; 2350 Health Sciences Mall Vancouver BC Canada V6T 1Z3
| |
Collapse
|
14
|
The CtrA phosphorelay integrates differentiation and communication in the marine alphaproteobacterium Dinoroseobacter shibae. BMC Genomics 2014; 15:130. [PMID: 24524855 PMCID: PMC4046655 DOI: 10.1186/1471-2164-15-130] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/06/2014] [Indexed: 11/30/2022] Open
Abstract
Background Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, maintains morphological heterogeneity throughout growth, with small cells dividing by binary fission and large cells dividing by budding from one or both cell poles. This morphological heterogeneity is lost if the quorum sensing (QS) system is silenced, concurrent with a decreased expression of the CtrA phosphorelay, a regulatory system conserved in Alphaproteobacteria and the master regulator of the Caulobacter crescentus cell cycle. It consists of the sensor histidine kinase CckA, the phosphotransferase ChpT and the transcriptional regulator CtrA. Here we tested if the QS induced differentiation of D. shibae is mediated by the CtrA phosphorelay. Results Mutants for ctrA, chpT and cckA showed almost homogeneous cell morphology and divided by binary fission. For ctrA and chpT, expression in trans on a plasmid caused the fraction of cells containing more than two chromosome equivalents to increase above wild-type level, indicating that gene copy number directly controls chromosome number. Transcriptome analysis revealed that CtrA is a master regulator for flagellar biosynthesis and has a great influence on the transition to stationary phase. Interestingly, the expression of the autoinducer synthase genes luxI2 and luxI3 was strongly reduced in all three mutants, resulting in loss of biosynthesis of acylated homoserine-lactones with C14 side-chain, but could be restored by expressing these genes in trans. Several phylogenetic clusters of Alphaproteobacteria revealed a CtrA binding site in the promoters of QS genes, including Roseobacters and Rhizobia. Conclusions The CtrA phosphorelay induces differentiation of a marine Roseobacter strain that is strikingly different from that of C. crescentus. Instead of a tightly regulated cell cycle and a switch between two morphotypes, the morphology and cell division of Dinoroseobacter shibae are highly heterogeneous. We discovered for the first time that the CtrA phosphorelay controls the biosynthesis of signaling molecules. Thus cell-cell communication and differentiation are interlinked in this organism. This may be a common strategy, since we found a similar genetic set-up in other species in the ecologically relevant group of Alphaproteobacteria. D. shibae will be a valuable model organism to study bacterial differentiation into pleomorphic cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-130) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Zan J, Heindl JE, Liu Y, Fuqua C, Hill RT. The CckA-ChpT-CtrA phosphorelay system is regulated by quorum sensing and controls flagellar motility in the marine sponge symbiont Ruegeria sp. KLH11. PLoS One 2013; 8:e66346. [PMID: 23825536 PMCID: PMC3692519 DOI: 10.1371/journal.pone.0066346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023] Open
Abstract
Bacteria respond to their environment via signal transduction pathways, often two-component type systems that function through phosphotransfer to control expression of specific genes. Phosphorelays are derived from two-component systems but are comprised of additional components. The essential cckA-chpT-ctrA phosphorelay in Caulobacter crescentus has been well studied and is important in orchestrating the cell cycle, polar development and flagellar biogenesis. Although cckA, chpT and ctrA homologues are widespread among the Alphaproteobacteria, relatively few is known about their function in the large and ecologically significant Roseobacter clade of the Rhodobacterales. In this study the cckA-chpT-ctrA system of the marine sponge symbiont Ruegeria sp. KLH11 was investigated. Our results reveal that the cckA, chpT and ctrA genes positively control flagellar biosynthesis. In contrast to C. crescentus, the cckA, chpT and ctrA genes in Ruegeria sp. KLH11 are non-essential and do not affect bacterial growth. Gene fusion and transcript analyses provide evidence for ctrA autoregulation and the control of motility-related genes. In KLH11, flagellar motility is controlled by the SsaRI system and acylhomoserine lactone (AHL) quorum sensing. SsaR and long chain AHLs are required for cckA, chpT and ctrA gene expression, providing a regulatory link between flagellar locomotion and population density in KLH11.
Collapse
Affiliation(s)
- Jindong Zan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Jason E. Heindl
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Yue Liu
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|