1
|
Li SA, Meng XY, Zhang YJ, Chen CL, Jiao YX, Zhu YQ, Liu PP, Sun W. Progress in pH-Sensitive sensors: essential tools for organelle pH detection, spotlighting mitochondrion and diverse applications. Front Pharmacol 2024; 14:1339518. [PMID: 38269286 PMCID: PMC10806205 DOI: 10.3389/fphar.2023.1339518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
pH-sensitive fluorescent proteins have revolutionized the field of cellular imaging and physiology, offering insight into the dynamic pH changes that underlie fundamental cellular processes. This comprehensive review explores the diverse applications and recent advances in the use of pH-sensitive fluorescent proteins. These remarkable tools enable researchers to visualize and monitor pH variations within subcellular compartments, especially mitochondria, shedding light on organelle-specific pH regulation. They play pivotal roles in visualizing exocytosis and endocytosis events in synaptic transmission, monitoring cell death and apoptosis, and understanding drug effects and disease progression. Recent advancements have led to improved photostability, pH specificity, and subcellular targeting, enhancing their utility. Techniques for multiplexed imaging, three-dimensional visualization, and super-resolution microscopy are expanding the horizon of pH-sensitive protein applications. The future holds promise for their integration into optogenetics and drug discovery. With their ever-evolving capabilities, pH-sensitive fluorescent proteins remain indispensable tools for unravelling cellular dynamics and driving breakthroughs in biological research. This review serves as a comprehensive resource for researchers seeking to harness the potential of pH-sensitive fluorescent proteins.
Collapse
Affiliation(s)
- Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Jie Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Li Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Xue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Qing Zhu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Sun
- Department of Burn and Repair Reconstruction, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Antunes M, Sá-Correia I. The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts. FEMS Yeast Res 2024; 24:foae016. [PMID: 38658183 PMCID: PMC11092280 DOI: 10.1093/femsyr/foae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| |
Collapse
|
3
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate a variety of cellular processes in eukaryotes. In fungal pathogens, conserved MAPK pathways control key virulence functions such as infection-related development, invasive hyphal growth, or cell wall remodeling. Recent findings suggest that ambient pH acts as a key regulator of MAPK-mediated pathogenicity, but the underlying molecular events are unknown. Here, we found that in the fungal pathogen Fusarium oxysporum, pH controls another infection-related process, hyphal chemotropism. Using the ratiometric pH sensor pHluorin we show that fluctuations in cytosolic pH (pHc) induce rapid reprogramming of the three conserved MAPKs in F. oxysporum, and that this response is conserved in the fungal model organism Saccharomyces cerevisiae. Screening of a subset of S. cerevisiae mutants identified the sphingolipid-regulated AGC kinase Ypk1/2 as a key upstream component of pHc-modulated MAPK responses. We further show that acidification of the cytosol in F. oxysporum leads to an increase of the long-chain base (LCB) sphingolipid dihydrosphingosine (dhSph) and that exogenous addition of dhSph activates Mpk1 phosphorylation and chemotropic growth. Our results reveal a pivotal role of pHc in the regulation of MAPK signaling and suggest new ways to target fungal growth and pathogenicity. IMPORTANCE Fungal phytopathogens cause devastating losses in global agriculture. All plant-infecting fungi use conserved MAPK signaling pathways to successfully locate, enter, and colonize their hosts. In addition, many pathogens also manipulate the pH of the host tissue to increase their virulence. Here, we establish a functional link between cytosolic pH (pHc) and MAPK signaling in the control of pathogenicity in the vascular wilt fungal pathogen Fusarium oxysporum. We demonstrate that fluctuations in pHc cause rapid reprogramming of MAPK phosphorylation, which directly impacts key processes required for infection, such as hyphal chemotropism and invasive growth. Targeting pHc homeostasis and MAPK signaling can thus open new ways to combat fungal infection.
Collapse
|
4
|
In Vivo Monitoring of Cytosolic pH Using the Ratiometric pH Sensor pHluorin. Methods Mol Biol 2022; 2391:99-107. [PMID: 34686980 DOI: 10.1007/978-1-0716-1795-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytosolic pH (pHcyt) is a key factor controlling cell fate. The genetically encoded pH-sensor pHluorin has proven highly valuable for studies on pHcyt in many living organisms. pHluorin displays a bimodal excitation spectrum with peaks at 395 nm and 475 nm, which is dependent on pH. Here we describe two different protocols for determining pHcyt in the soil-borne fungal pathogen Fusarium oxysporum, based either on population or single-cell analysis.
Collapse
|
5
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
6
|
Hassan Y, Chew SY, Than LTL. Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J Fungi (Basel) 2021; 7:jof7080667. [PMID: 34436206 PMCID: PMC8398317 DOI: 10.3390/jof7080667] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Candida glabrata is a yeast of increasing medical relevance, particularly in critically ill patients. It is the second most isolated Candida species associated with invasive candidiasis (IC) behind C. albicans. The attributed higher incidence is primarily due to an increase in the acquired immunodeficiency syndrome (AIDS) population, cancer, and diabetic patients. The elderly population and the frequent use of indwelling medical devices are also predisposing factors. This work aimed to review various virulence factors that facilitate the survival of pathogenic C. glabrata in IC. The available published research articles related to the pathogenicity of C. glabrata were retrieved and reviewed from four credible databases, mainly Google Scholar, ScienceDirect, PubMed, and Scopus. The articles highlighted many virulence factors associated with pathogenicity in C. glabrata, including adherence to susceptible host surfaces, evading host defences, replicative ageing, and producing hydrolytic enzymes (e.g., phospholipases, proteases, and haemolysins). The factors facilitate infection initiation. Other virulent factors include iron regulation and genetic mutations. Accordingly, biofilm production, tolerance to high-stress environments, resistance to neutrophil killings, and development of resistance to antifungal drugs, notably to fluconazole and other azole derivatives, were reported. The review provided evident pathogenic mechanisms and antifungal resistance associated with C. glabrata in ensuring its sustenance and survival.
Collapse
Affiliation(s)
- Yahaya Hassan
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano 700241, Nigeria;
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-2373
| |
Collapse
|
7
|
Aghili SR, Abastabar M, Soleimani A, Haghani I, Azizi S. High prevalence of asymptomatic nosocomial candiduria due to Candida glabrata among hospitalized patients with heart failure: a matter of some concern? Curr Med Mycol 2021; 6:1-8. [PMID: 34195453 PMCID: PMC8226045 DOI: 10.18502/cmm.6.4.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background and Purpose: Heart failure is a leading cause of hospitalization, and asymptomatic candiduria is common in hospitalized patients with low morbidity.
However, in most patients, it is resolved spontaneously on the removal of the catheter. Despite the publication of guidelines,
there are still controversies over the diagnosis and management of candiduria.
However, in hospitalized patients with heart failure, the decision to treat candiduria is especially important since
the nosocomial infections are associated with an increase in morbidity, mortality, length of hospital stay, and healthcare costs.
Some species of Candida, such as Candida glabrata, are increasingly resistant to the first-line and second-line antifungal medications.
The present study aimed to investigate the incidence of asymptomatic Candida urinary tract infection due to C.
glabrata and antifungal susceptibility of Candida isolates in hospitalized patients with heart failure. Materials and Methods: In total, 305 hospitalized patients with heart failure were studied to identify asymptomatic nosocomial candiduria during 2016-17
in one private hospital in the north of Iran.
The Sabouraud’s dextrose agar culture plates with a colony count of >104 colony-forming
unit/ml of urine sample were considered as Candida urinary tract infection.
Candida species were identified based on the morphology of CHROMagar Candida (manufactured by CHROMagar, France) and
PCR-RFLP method with MspI restriction enzyme.
Antifungal susceptibility testing of the isolates was performed using five mediations, including itraconazole, voriconazole,
fluconazole, amphotericin B, and caspofungin by broth
microdilution method according to CLSI M27-S4. Results: In this study, the rate of asymptomatic Candida urinary tract infection was 18.8%, which was more common in people above 51
years old and females (70%).
In addition to the urinary and intravascular catheter, the occurrence of candiduria in hospitalized patients had significant relationships
with a history of
surgical intervention, diastolic heart failure, and use of systemic antibiotics (P>0.05). Among Candida spp., non-albicans Candida
species was the most common
infectious agent (59.7%). Moreover, C. glabrata (n=27, 40.3%) (alone or with other species) and Candida albicans (n=27, 40.3%) were the most
common agents isolated in
Candida urinary tract infection. Based on the results of the in vitro susceptibility test, the C. glabrata isolates were 15%, 59%, 70%, 74%,
and 85% susceptible to
caspofungin, amphotericin B, itraconazole, voriconazole, and fluconazole, respectively. Conclusion: According to the findings, there was a high prevalence of asymptomatic Candida urinary tract infection in hospitalized patients with heart failure.
Besides, it was suggested that there was a shift towards non-albicans Candida, especially C. glabrata, in these patients.
Therefore, asymptomatic candiduria in hospitalized patients with heart failure should be considered significant.
Furthermore, the identification of Candida species along with antifungal susceptibility is essential and helps the clinicians to
select the appropriate antifungal agent for better management of such cases.
Collapse
Affiliation(s)
- Seyed Reza Aghili
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ameneh Soleimani
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soheil Azizi
- Department of Laboratory Medicine, Faculty of Allied Medical Sciences, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
8
|
Lucena RM, Dolz-Edo L, Brul S, de Morais MA, Smits G. Extreme Low Cytosolic pH Is a Signal for Cell Survival in Acid Stressed Yeast. Genes (Basel) 2020; 11:genes11060656. [PMID: 32560106 PMCID: PMC7349538 DOI: 10.3390/genes11060656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Yeast biomass is recycled in the process of bioethanol production using treatment with dilute sulphuric acid to control the bacterial population. This treatment can lead to loss of cell viability, with consequences on the fermentation yield. Thus, the aim of this study was to define the functional cellular responses to inorganic acid stress. Saccharomyces cerevisiae strains with mutation in several signalling pathways, as well as cells expressing pH-sensitive GFP derivative ratiometric pHluorin, were tested for cell survival and cytosolic pH (pHc) variation during exposure to low external pH (pHex). Mutants in calcium signalling and proton extrusion were transiently sensitive to low pHex, while the CWI slt2Δ mutant lost viability. Rescue of this mutant was observed when cells were exposed to extreme low pHex or glucose starvation and was dependent on the induced reduction of pHc. Therefore, a lowered pHc leads to a complete growth arrest, which protects the cells from lethal stress and keeps cells alive. Cytosolic pH is thus a signal that directs the growth stress-tolerance trade-off in yeast. A regulatory model was proposed to explain this mechanism, indicating the impairment of glucan synthesis as the primary cause of low pHex sensitivity.
Collapse
Affiliation(s)
- Rodrigo Mendonça Lucena
- Department of Genetics, Biosciences Centre, Federal University of Pernambuco, Recife 50670-901, Brazil;
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands; (L.D.-E.); (S.B.)
| | - Laura Dolz-Edo
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands; (L.D.-E.); (S.B.)
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands; (L.D.-E.); (S.B.)
| | - Marcos Antonio de Morais
- Department of Genetics, Biosciences Centre, Federal University of Pernambuco, Recife 50670-901, Brazil;
- Correspondence: (G.S.); (M.A.d.M.J.)
| | - Gertien Smits
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands; (L.D.-E.); (S.B.)
- Correspondence: (G.S.); (M.A.d.M.J.)
| |
Collapse
|
9
|
Antypenko L, Sadykova Z, Shabelnyk K, Meyer F, Kovalenko S, Meyer V, Garbe LA, Steffens K. Synthesis and mode of action studies of novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines to combat pathogenic fungi. Arch Pharm (Weinheim) 2019; 352:e1900092. [PMID: 31463959 DOI: 10.1002/ardp.201900092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 11/09/2022]
Abstract
Due to their high specificity and efficacy, triazoles have become versatile antifungals to treat fungal infections in human healthcare and to control phytopathogenic fungi in agriculture. However, azole resistance is an emerging problem affecting human health as well as food security. Here we describe the synthesis of 10 novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines. Their structure was ascertained by liquid chromatography-mass spectrometry, 1 H and 13 C NMR, and elemental analysis data. Applying an in vitro growth assay, these triazoles show moderate to significant antifungal activity against the opportunistic pathogen Aspergillus niger, 12 fungi (Fusarium oxysporum, Fusarium fujikuroi, Colletotrichum higginsianum, Gaeumannomyces graminis, Colletotrichum coccodes, Claviceps purpurea, Alternaria alternata, Mucor indicus, Fusarium graminearum, Verticillium lecanii, Botrytis cinerea, Penicillium digitatum) and three oomycetes (Phytophtora infestans GL-1, P. infestans 4/91; R+ and 4/91; R-) in the concentration range from 1 to 50 µg/ml (0.003-2.1 μM). Frontier molecular orbital energies were determined to predict their genotoxic potential. Molecular docking calculations taking into account six common fungal enzymes point to 14α-demethylase (CYP51) and N-myristoyltransferase as the most probable fungal targets. With respect to effectiveness, structure-activity calculations revealed the strong enhancing impact of adamantyl residues. The shown nonmutagenicity in the Salmonella reverse-mutagenicity assay and no violations of drug-likeness parameters suggest the good bioavailability and attractive ecotoxicological profile of the studied triazoles.
Collapse
Affiliation(s)
- Lyudmyla Antypenko
- Department of Food and Bioproduct Technology, Neubrandenburg University, Neubrandenburg, Germany
| | - Zhanar Sadykova
- Department of Food and Bioproduct Technology, Neubrandenburg University, Neubrandenburg, Germany
| | - Kostiantyn Shabelnyk
- Departments of Pharmaceutical Chemistry, Organic and Bioorganic Chemistry, Zaporizhzhya State Medical University, Zaporizhzhya, Ukraine
| | - Fatuma Meyer
- Department of Food and Bioproduct Technology, Neubrandenburg University, Neubrandenburg, Germany
| | - Sergiy Kovalenko
- Departments of Pharmaceutical Chemistry, Organic and Bioorganic Chemistry, Zaporizhzhya State Medical University, Zaporizhzhya, Ukraine
| | - Vera Meyer
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Leif-Alexander Garbe
- Department of Food and Bioproduct Technology, Neubrandenburg University, Neubrandenburg, Germany
| | - Karl Steffens
- Department of Food and Bioproduct Technology, Neubrandenburg University, Neubrandenburg, Germany
| |
Collapse
|
10
|
Bizzarri M, Cassanelli S, Dušková M, Sychrová H, Solieri L. A set of plasmids carrying antibiotic resistance markers and Cre recombinase for genetic engineering of nonconventional yeast Zygosaccharomyces rouxii. Yeast 2019; 36:711-722. [PMID: 31414502 DOI: 10.1002/yea.3438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 01/23/2023] Open
Abstract
The so-called nonconventional yeasts are becoming increasingly attractive in food and industrial biotechnology. Among them, Zygosaccharomyces rouxii is known to be halotolerant, osmotolerant, petite negative, and poorly Crabtree positive. These traits and the high fermentative vigour make this species very appealing for industrial and food applications. Nevertheless, the biotechnological exploitation of Z. rouxii has been biased by the low availability of genetic engineering tools and the recalcitrance of this yeast towards the most conventional transformation procedures. Centromeric and episomal Z. rouxii plasmids have been successfully constructed with prototrophic markers, which limited their usage to auxotrophic strains, mainly derived from the Z. rouxii haploid type strain Centraalbureau voor Schimmelcultures (CBS) 732T . By contrast, the majority of industrially promising Z. rouxii yeasts are prototrophic and allodiploid/aneuploid strains. In order to expand the genetic tools for manipulating these strains, we developed two centromeric and two episomal vectors harbouring KanMXR and ClonNATR as dominant drug resistance markers, respectively. We also constructed the plasmid pGRCRE that allows the Cre recombinase-mediated marker recycling during multiple gene deletions. As proof of concept, pGRCRE was successfully used to rescue the kanMX-loxP module in Z. rouxii ATCC 42981 G418-resistant mutants previously constructed by replacing the MATαP expression locus with the loxP-kanMX-loxP cassette.
Collapse
Affiliation(s)
- Melissa Bizzarri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Michala Dušková
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
11
|
Effects of intrinsic microbial stress factors on viability and physiological condition of yeasts isolated from spontaneously fermented cereal doughs. Int J Food Microbiol 2019; 304:75-88. [PMID: 31174038 DOI: 10.1016/j.ijfoodmicro.2019.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/24/2022]
Abstract
Fermented cereal doughs constitute a predominant part of West African diets. The environment of fermented doughs can be hostile for microbial survival due to high levels of microbial metabolites such as weak carboxylic organic acids and ethanol. In order to get a better understanding of the intrinsic factors affecting the microbial successions of yeasts during dough fermentation, survival and physiological responses of the yeasts associated with West African fermented cereal doughs were investigated at exposure to relevant concentrations of microbial inhibitory compounds. Three strains each of the predominant species, i.e. Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia kudriavzevii as well as the opportunistic pathogen Candida glabrata were studied. The strains were exposed to individual stress factors of cereal doughs, i.e. (i) pH 3.4, (ii) 3% (v/v) ethanol (EtOHpH3.4), (iii) 285 mM lactic acid (LApH3.4) and (iv) 150 mM acetic acid (AApH3.4) as well as to combinations of these stress factors, i.e. (v) (LA + AA)pH 3.4 and (vi) (LA + AA+EtOH)pH 3.4. Growth and single cell viability were studied by flow cytometry using combined SYTO 13 and propidium iodide (PI) staining. Intracellular pH (pHi), plasma membrane integrity and micro-colony development of stressed cells were studied by fluorescence microscopy using PI and carboxyfluorescein diacetate succinimidyl ester (CFDA-se). Viability of the yeast strains was not affected by pH 3.4 and 3% (v/v) ethanol (EtOHpH3.4). 285 mM lactic acid (LApH3.4) reduced the specific growth rate (μmax) from 0.27-0.41 h-1 to 0.11-0.26 h-1 and the viability from 100% to 2.6-41.7% at 72 h of exposure in most yeast strains, except for two strains of C. glabrata. 150 mM acetic acid (AApH3.4) as well as the combinations (LA + AA)pH 3.4 and (LA + AA+EtOH)pH 3.4 reduced μmax to 0.0 h-1 and induced significant cell death for all the yeast strains. Exposed to (LA + AA+EtOH)pH 3.4, the most resistant yeast strains belonged to S. cerevisiae followed by P. kudriavzevii, whereas C. glabrata and K. marxianus were more sensitive. Strain variations were observed within all four species. When transferred to non-stress conditions, i.e. MYGP, pH 5.6, after exposure to (LA + AA+EtOH)pH 3.4 for 6 h, 45% of the single cells of the most resistant S. cerevisiae strain kept their plasma membrane integrity, recovered their pHi to near physiological range (pHi = 6.1-7.4) and resumed proliferation after 3-24 h of lag phase. The results obtained are valuable in order to change processing conditions of the dough to favor the survival of preferable yeast species, i.e. S. cerevisiae and K. marxianus and inhibit opportunistic pathogen yeast species as C. glabrata.
Collapse
|
12
|
Denecker T, Durand W, Maupetit J, Hébert C, Camadro JM, Poulain P, Lelandais G. Pixel: a content management platform for quantitative omics data. PeerJ 2019; 7:e6623. [PMID: 30944779 PMCID: PMC6441322 DOI: 10.7717/peerj.6623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In biology, high-throughput experimental technologies, also referred as "omics" technologies, are increasingly used in research laboratories. Several thousands of gene expression measurements can be obtained in a single experiment. Researchers are routinely facing the challenge to annotate, store, explore and mine all the biological information they have at their disposal. We present here the Pixel web application (Pixel Web App), an original content management platform to help people involved in a multi-omics biological project. METHODS The Pixel Web App is built with open source technologies and hosted on the collaborative development platform GitHub (https://github.com/Candihub/pixel). It is written in Python using the Django framework and stores all the data in a PostgreSQL database. It is developed in the open and licensed under the BSD 3-clause license. The Pixel Web App is also heavily tested with both unit and functional tests, a strong code coverage and continuous integration provided by CircleCI. To ease the development and the deployment of the Pixel Web App, Docker and Docker Compose are used to bundle the application as well as its dependencies. RESULTS The Pixel Web App offers researchers an intuitive way to annotate, store, explore and mine their multi-omics results. It can be installed on a personal computer or on a server to fit the needs of many users. In addition, anyone can enhance the application to better suit their needs, either by contributing directly on GitHub (encouraged) or by extending Pixel on their own. The Pixel Web App does not provide any computational programs to analyze the data. Still, it helps to rapidly explore and mine existing results and holds a strategic position in the management of research data.
Collapse
Affiliation(s)
- Thomas Denecker
- CEA, CNRS, Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | | | | | | - Pierre Poulain
- CNRS, Univ. Paris Diderot, Institut Jacques Monod (IJM), Paris, France
| | - Gaëlle Lelandais
- CEA, CNRS, Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
13
|
Reifenrath M, Boles E. A superfolder variant of pH-sensitive pHluorin for in vivo pH measurements in the endoplasmic reticulum. Sci Rep 2018; 8:11985. [PMID: 30097598 PMCID: PMC6086885 DOI: 10.1038/s41598-018-30367-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022] Open
Abstract
Many cellular processes are regulated via pH, and maintaining the pH of different organelles is crucial for cell survival. A pH-sensitive GFP variant, the so-called pHluorin, has proven to be a valuable tool to study the pH of the cytosol, mitochondria and other organelles in vivo. We found that the fluorescence intensity of Endoplasmic Reticulum (ER)-targeted pHluorin in the yeast Saccharomyces cerevisiae was very low and barely showed pH sensitivity, probably due to misfolding in the oxidative environment of the ER. We therefore developed a superfolder variant of pHluorin which enabled us to monitor pH changes in the ER and the cytosol of S. cerevisiae in vivo. The superfolder pHluorin variant is likely to be functional in cells of different organisms as well as in additional compartments that originate from the secretory pathway like the Golgi apparatus and pre-vacuolar compartments, and therefore has a broad range of possible future applications.
Collapse
Affiliation(s)
- Mara Reifenrath
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
|
15
|
In Vivo Indicators of Cytoplasmic, Vacuolar, and Extracellular pH Using pHluorin2 in Candida albicans. mSphere 2017; 2:mSphere00276-17. [PMID: 28685162 PMCID: PMC5497024 DOI: 10.1128/msphere.00276-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays. Environmental or chemically induced stresses often trigger physiological responses that regulate intracellular pH. As such, the capacity to detect pH changes in real time and within live cells is of fundamental importance to essentially all aspects of biology. In this respect, pHluorin, a pH-sensitive variant of green fluorescent protein, has provided an invaluable tool to detect such responses. Here, we report the adaptation of pHluorin2 (PHL2), a substantially brighter variant of pHluorin, for use with the human fungal pathogen Candida albicans. As well as a cytoplasmic PHL2 indicator, we describe a version that specifically localizes within the fungal vacuole, an acidified subcellular compartment with important functions in nutrient storage and pH homeostasis. In addition, by means of a glycophosphatidylinositol-anchored PHL2-fusion protein, we generated a cell surface pH sensor. We demonstrated the utility of these tools in several applications, including accurate intracellular and extracellular pH measurements in individual cells via flow cytometry and in cell populations via a convenient plate reader-based protocol. The PHL2 tools can also be used for endpoint as well as time course experiments and to conduct chemical screens to identify drugs that alter normal pH homeostasis. These tools enable observation of the highly dynamic intracellular pH shifts that occur throughout the fungal growth cycle, as well as in response to various chemical treatments. IMPORTANCECandida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays.
Collapse
|
16
|
The Effect of Fermented Lingonberry Juice on Candida glabrata Intracellular Protein Expression. Int J Dent 2017; 2017:6185395. [PMID: 28465686 PMCID: PMC5390647 DOI: 10.1155/2017/6185395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lingonberries have a long traditional use in treating fungal infections on mucosal membranes, but very little is known about the exact antifungal mechanisms. We tested the effects of fermented lingonberry juice on Candida glabrata intracellular protein expression. A Candida glabrata clinical strain was grown in the presence of fermented lingonberry juice (FLJ). Also the effect of lowered pH was tested. Intracellular protein expression levels were analyzed by the 2D-DIGE method. Six proteins detected with ≥1.5-fold lowered expression levels from FLJ treated cells were further characterized with LC-MS/MS. Heat shock protein 9/12 and redoxin were identified with peptide coverage/scores of 68/129 and 21/26, respectively. Heat shock protein 9/12 had an oxidized methionine at position 56. We found no differences in protein expression levels at pH 3.5 compared to pH 7.6. These results demonstrate that FLJ exerts an intracellular stress response in Candida glabrata, plausibly impairing its ability to express proteins related to oxidative stress or maintaining cell wall integrity.
Collapse
|
17
|
Cunha DV, Salazar SB, Lopes MM, Mira NP. Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates. Front Microbiol 2017; 8:259. [PMID: 28293217 PMCID: PMC5329028 DOI: 10.3389/fmicb.2017.00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
During colonization of the vaginal tract Candida glabrata cells are challenged with the presence of acetic acid at a low pH, specially when dysbiosis occurs. To avoid exclusion from this niche C. glabrata cells are expected to evolve efficient adaptive responses to cope with this stress; however, these responses remain largely uncharacterized, especially in vaginal strains. In this work a cohort of 18 vaginal strains and 2 laboratory strains (CBS138 and KUE100) were phenotyped for their tolerance against inhibitory concentrations of acetic acid at pH 4. Despite some heterogeneity has been observed among the vaginal strains tested, in general these strains were considerably more tolerant to acetic acid than the laboratory strains. To tackle the mechanistic insights behind this differential level of tolerance observed, a set of vaginal strains differently tolerant to acetic acid (VG281∼VG49 < VG99 < VG216) and the highly susceptible laboratory strain KUE100 were selected for further studies. When suddenly challenged with acetic acid the more tolerant vaginal strains exhibited a higher activity of the plasma membrane proton pump CgPma1 and a reduced internal accumulation of the acid, these being two essential features to maximize tolerance. Based on the higher level of resistance exhibited by the vaginal strains against the action of a β-1,3-glucanase, it is hypothesized that the reduced internal accumulation of acetic acid inside these strains may originate from them having a different cell wall structure resulting in a reduced porosity to undissociated acetic acid molecules. Both the vaginal and the two laboratory strains were found to consume acetic acid in the presence of glucose indicating that metabolization of the acid is used by C. glabrata species as a detoxification mechanism. The results gathered in this study advance the current knowledge on the mechanisms underlying the increased competitiveness of C. glabrata in the vaginal tract, a knowledge that can be used to guide more suitable strategies to treat infections caused by this pathogenic yeast.
Collapse
Affiliation(s)
- Diana V Cunha
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal
| | - Sara B Salazar
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal
| | - Maria M Lopes
- Faculdade de Farmácia da Universidade de Lisboa, Departamento de Microbiologia e Imunologia Lisboa, Portugal
| | - Nuno P Mira
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal
| |
Collapse
|
18
|
The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata. G3-GENES GENOMES GENETICS 2017; 7:1-18. [PMID: 27815348 PMCID: PMC5217100 DOI: 10.1534/g3.116.034660] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To thrive in the acidic vaginal tract, Candida glabrata has to cope with high concentrations of acetic acid. The mechanisms underlying C. glabrata tolerance to acetic acid at low pH remain largely uncharacterized. In this work, the essential role of the CgHaa1 transcription factor (encoded by ORF CAGL0L09339g) in the response and tolerance of C. glabrata to acetic acid is demonstrated. Transcriptomic analysis showed that CgHaa1 regulates, directly or indirectly, the expression of about 75% of the genes activated under acetic acid stress. CgHaa1-activated targets are involved in multiple physiological functions including membrane transport, metabolism of carbohydrates and amino acids, regulation of the activity of the plasma membrane H+-ATPase, and adhesion. Under acetic acid stress, CgHaa1 increased the activity and the expression of the CgPma1 proton pump and contributed to increased colonization of vaginal epithelial cells by C. glabrata. CgHAA1, and two identified CgHaa1-activated targets, CgTPO3 and CgHSP30, are herein demonstrated to be determinants of C. glabrata tolerance to acetic acid. The protective effect of CgTpo3 and of CgHaa1 was linked to a role of these proteins in reducing the accumulation of acetic acid inside C. glabrata cells. In response to acetic acid stress, marked differences were found in the regulons controlled by CgHaa1 and by its S. cerevisiae ScHaa1 ortholog, demonstrating a clear divergent evolution of the two regulatory networks. The results gathered in this study significantly advance the understanding of the molecular mechanisms underlying the success of C. glabrata as a vaginal colonizer.
Collapse
|
19
|
Potassium Uptake Mediated by Trk1 Is Crucial for Candida glabrata Growth and Fitness. PLoS One 2016; 11:e0153374. [PMID: 27058598 PMCID: PMC4825953 DOI: 10.1371/journal.pone.0153374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/29/2016] [Indexed: 12/20/2022] Open
Abstract
The maintenance of potassium homeostasis is crucial for all types of cells, including Candida glabrata. Three types of plasma-membrane systems mediating potassium influx with different transport mechanisms have been described in yeasts: the Trk1 uniporter, the Hak cation-proton symporter and the Acu ATPase. The C. glabrata genome contains only one gene encoding putative system for potassium uptake, the Trk1 uniporter. Therefore, its importance in maintaining adequate levels of intracellular potassium appears to be critical for C. glabrata cells. In this study, we first confirmed the potassium-uptake activity of the identified gene’s product by heterologous expression in a suitable S. cerevisiae mutant, further we generated a corresponding deletion mutant in C. glabrata and analysed its phenotype in detail. The obtained results show a pleiotropic effect on the cell physiology when CgTRK1 is deleted, affecting not only the ability of trk1Δ to grow at low potassium concentrations, but also the tolerance to toxic alkali-metal cations and cationic drugs, as well as the membrane potential and intracellular pH. Taken together, our results find the sole potassium uptake system in C. glabrata cells to be a promising target in the search for its specific inhibitors and in developing new antifungal drugs.
Collapse
|
20
|
Linde J, Duggan S, Weber M, Horn F, Sieber P, Hellwig D, Riege K, Marz M, Martin R, Guthke R, Kurzai O. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Res 2015; 43:1392-406. [PMID: 25586221 PMCID: PMC4330350 DOI: 10.1093/nar/gku1357] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host–pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.
Collapse
Affiliation(s)
- Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Seána Duggan
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Michael Weber
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Fabian Horn
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Patricia Sieber
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany Department of Bioinformatics, Faculty of Biology and Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Daniela Hellwig
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Konstantin Riege
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Manja Marz
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany National Reference Center for Invasive Mycoses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| |
Collapse
|
21
|
Valkonen M, Penttilä M, Benčina M. Intracellular pH responses in the industrially important fungus Trichoderma reesei. Fungal Genet Biol 2014; 70:86-93. [PMID: 25046860 DOI: 10.1016/j.fgb.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/14/2022]
Abstract
Preserving an optimal intracellular pH is critical for cell fitness and productivity. The pH homeostasis of the industrially important filamentous fungus Trichoderma reesei (Hypocrea jecorina) is largely unexplored. We analyzed the impact of growth conditions on regulation of intracellular pH of the strain Rut-C30 and the strain M106 derived from the Rut-C30 that accumulates L-galactonic acid-from provided galacturonic acid-as a consequence of L-galactonate dehydratase deletion. For live-cell measurements of intracellular pH, we used the genetically encoded ratiometric pH-sensitive fluorescent protein RaVC. Glucose and lactose, used as carbon sources, had specific effects on intracellular pH of T. reesei. The growth in lactose-containing medium extensively acidified cytosol, while intracellular pH of hyphae cultured in a medium with glucose remained at a higher level. The strain M106 maintained higher intracellular pH in the presence of D-galacturonic acid than its parental strain Rut-C30. Acidic external pH caused significant acidification of cytosol. Altogether, the pH homeostasis of T. reesei Rut-C30 strain is sensitive to extracellular pH and the degree of acidification depends on carbon source.
Collapse
Affiliation(s)
- Mari Valkonen
- VTT Technical Research Centre of Finland, Espoo, Finland.
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Mojca Benčina
- Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Hayek SR, Lee SA, Parra KJ. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy. Front Pharmacol 2014; 5:4. [PMID: 24478704 PMCID: PMC3902353 DOI: 10.3389/fphar.2014.00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
Vacuolar proton-translocating ATPase (V-ATPase) is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.
Collapse
Affiliation(s)
- Summer R Hayek
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | - Samuel A Lee
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA ; Section of Infectious Diseases, New Mexico Veterans Healthcare System Albuquerque, NM, USA
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| |
Collapse
|
23
|
Benčina M. Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. SENSORS 2013; 13:16736-58. [PMID: 24316570 PMCID: PMC3892890 DOI: 10.3390/s131216736] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022]
Abstract
Fluorescent proteins have been extensively used for engineering genetically encoded sensors that can monitor levels of ions, enzyme activities, redox potential, and metabolites. Certain fluorescent proteins possess specific pH-dependent spectroscopic features, and thus can be used as indicators of intracellular pH. Moreover, concatenated pH-sensitive proteins with target proteins pin the pH sensors to a definite location within the cell, compartment, or tissue. This study provides an overview of the continually expanding family of pH-sensitive fluorescent proteins that have become essential tools for studies of pH homeostasis and cell physiology. We describe and discuss the design of intensity-based and ratiometric pH sensors, their spectral properties and pH-dependency, as well as their performance. Finally, we illustrate some examples of the applications of pH sensors targeted at different subcellular compartments.
Collapse
Affiliation(s)
- Mojca Benčina
- Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Jandric Z, Gregori C, Klopf E, Radolf M, Schüller C. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway. Front Microbiol 2013; 4:350. [PMID: 24324463 PMCID: PMC3840799 DOI: 10.3389/fmicb.2013.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 11/04/2013] [Indexed: 12/27/2022] Open
Abstract
Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in C. glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologs CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG) pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species and it required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway.
Collapse
Affiliation(s)
- Zeljkica Jandric
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna, Austria
| | | | | | | | | |
Collapse
|
25
|
Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics. Biochem J 2013; 454:227-37. [PMID: 23763276 DOI: 10.1042/bj20130587] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, synthesis of T6P (trehalose 6-phosphate) is essential for growth on most fermentable carbon sources. In the present study, the metabolic response to glucose was analysed in mutants with different capacities to accumulate T6P. A mutant carrying a deletion in the T6P synthase encoding gene, TPS1, which had no measurable T6P, exhibited impaired ethanol production, showed diminished plasma membrane H⁺-ATPase activation, and became rapidly depleted of nearly all adenine nucleotides which were irreversibly converted into inosine. Deletion of the AMP deaminase encoding gene, AMD1, in the tps1 strain prevented inosine formation, but did not rescue energy balance or growth on glucose. Neither the 90%-reduced T6P content observed in a tps1 mutant expressing the Tps1 protein from Yarrowia lipolytica, nor the hyperaccumulation of T6P in the tps2 mutant had significant effects on fermentation rates, growth on fermentable carbon sources or plasma membrane H⁺-ATPase activation. However, intracellular metabolite dynamics and pH homoeostasis were strongly affected by changes in T6P concentrations. Hyperaccumulation of T6P in the tps2 mutant caused an increase in cytosolic pH and strongly reduced growth rates on non-fermentable carbon sources, emphasizing the crucial role of the trehalose pathway in the regulation of respiratory and fermentative metabolism.
Collapse
|