1
|
Shprung T, Wani NA, Wilmes M, Mangoni ML, Bitler A, Shimoni E, Sahl HG, Shai Y. Opposing Effects of PhoPQ and PmrAB on the Properties of Salmonella enterica serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides. Biochemistry 2021; 60:2943-2955. [PMID: 34547893 PMCID: PMC8638962 DOI: 10.1021/acs.biochem.1c00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The increasing number of resistant
bacteria is a major threat worldwide,
leading to the search for new antibiotic agents. One of the leading
strategies is the use of antimicrobial peptides (AMPs), cationic and
hydrophobic innate immune defense peptides. A major target of AMPs
is the bacterial membrane. Notably, accumulating data suggest that
AMPs can activate the two-component systems (TCSs) of Gram-negative
bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible
for remodeling of the bacterial cell surface. To better understand
this mechanism, we utilized bacteria deficient either in one system
alone or in both and biophysical tools including fluorescence spectroscopy,
single-cell atomic force microscopy, electron microscopy, and mass
spectrometry (MoskowitzS. M.;Antimicrob. Agents Chemother.2012, 56, 1019−103022106224; ChengH. Y.;J. Biomed. Sci.2010, 17, 6020653976). Our data suggested that the two systems have opposing
effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs
by making the surface less rigid, more polarized, and permeable with
a slightly more negatively charged cell wall. In addition, the periplasmic
space is thinner. In contrast, the knockout of PmrAB did not affect
its susceptibility, while it made the bacterial outer layer very rigid,
less polarized, and less permeable than the other two mutants, with
a negatively charged cell wall similar to the WT. Overall, the data
suggest that the coexistence of systems with opposing effects on the
biophysical properties of the bacteria contribute to their membrane
flexibility, which, on the one hand, is important to accommodate changing
environments and, on the other hand, may inhibit the development of
meaningful resistance to AMPs.
Collapse
Affiliation(s)
- Tal Shprung
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Wilmes
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences A. Rossi Fanelli, Faculty of Pharmacy and Medicine, Sapienza University of Rome, CU27, 00185 Roma, Italy
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Yin K, Peng Y, Ahmed MAH, Ma J, Xu R, Zhang Y, Ma Y, Wang Q. PepA binds to and negatively regulates esrB to control virulence in the fish pathogen Edwardsiella piscicida. Microbiol Res 2019; 232:126349. [PMID: 31816594 DOI: 10.1016/j.micres.2019.126349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023]
Abstract
As an important marine fish pathogen, Edwardsiella piscicida infects a broad range of fish species and causes substantial economic losses. The EsrA-EsrB two-component system is essential for the expression of type III and type VI secretion systems (T3/T6SSs), the key virulence determinants in the bacterium. In this study, a pull-down assay with the esrB promoter as bait was performed to identify the upstream regulators of esrB. As a result, PepA, a leucyl aminopeptidase, was identified as a repressor of EsrB and T3/T6SS expression. PepA bound to the esrB promoter region and negatively regulated the production of T3/T6SS proteins in early stages. Moreover, PepA was found to affect the in vivo colonization of E. piscicida in turbot livers through the regulation of EsrB expression. Collectively, our results enhance the understanding of the virulence regulatory network and in vivo colonization mechanism of E. piscicida. One sentence summary: PepA regulates EsrB expression in Edwardsiella piscicida.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Moamer A H Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rongjing Xu
- Yantai Tianyuan Aquatic Co. Ltd., Yantai, Shandong, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
4
|
Guan Y, Yin K, Zhou M, Yang M, Zhang Y, Liu X, Wang Q. EsrB negatively regulates expression of the glutamine sythetase GlnA in the fish pathogen Edwardsiella piscicida. FEMS Microbiol Lett 2019; 365:4810546. [PMID: 29346648 DOI: 10.1093/femsle/fny007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/13/2018] [Indexed: 12/13/2022] Open
Abstract
Edwardsiella piscicida is a gram-negative bacterial pathogen invading a wide range of fish species. Response regulator EsrB is essential for the activation of type III and type VI secretion systems (T3/T6SS). In this study, proteomes of the wild-type E. piscicida EIB202 and ΔesrB mutant strains were compared to identify the regulon components of EsrB cultured in DMEM allowing T3/T6SS expression. As a result, 19 proteins showed different expression, which were identified to be associated with T3/T6SS, related to amino acid transport and metabolism, and energy production. Particularly, GlnA, a glutamine synthetase essential for ammonia assimilation and glutamine biosynthesis from glutamate, was found to be regulated negatively by EsrB. Moreover, GlnA affected bacterial growth in vitro and bacterial colonization in vivo. Collectively, our results indicated that EsrB plays important roles in regulating the expression of metabolic pathways and virulence genes, including glutamine biosynthesis in E. piscicida during infection.
Collapse
Affiliation(s)
- Yunpeng Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Minjun Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
5
|
Liu Y, Zhao L, Yang M, Yin K, Zhou X, Leung KY, Liu Q, Zhang Y, Wang Q. Transcriptomic dissection of the horizontally acquired response regulator EsrB reveals its global regulatory roles in the physiological adaptation and activation of T3SS and the cognate effector repertoire in Edwardsiella piscicida during infection toward turbot. Virulence 2017; 8:1355-1377. [PMID: 28441105 DOI: 10.1080/21505594.2017.1323157] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Edwardsiella piscicida is the leading pathogen threatening worldwide aquaculture industries. The 2-component system (TCS) EsrA-EsrB is essential for the pathogenesis of this bacterium. However, little is known about the regulon and regulatory mechanism of EsrA-EsrB or about the factors that mediate the interaction of TCS with bacterial hosts. Here, our RNA-seq analysis indicated that EsrB strongly induces type III and type VI secretion systems (T3/T6SS) expression and that it modulates the expression of both physiology- and virulence-associated genes in E. piscicida grown in DMEM. EsrB binds directly to a highly conserved 18-bp DNA motif to regulate the expression of T3SS and other genes. EsrB/DMEM-activated genes include 3 known and 6 novel T3SS-dependent effectors. All these effector genes are highly induced by EsrB during the late stage of in vivo infection in fish. Furthermore, although in vivo colonization by the bacterium relies on EsrB and T3/T6SS expression, it does not require the expression of individual effectors other than EseJ. The mutant lacking these 9 effectors showed significant defects in in vivo colonization and virulence toward turbot, and, more importantly, a high level of protection against challenges by wild-type E. piscicida, suggesting that it may represent a promising live attenuated vaccine. Taken together, our data demonstrate that EsrB plays a global regulatory role in controlling physiologic responses and the expression of T3SS and its cognate effector genes. Our findings will facilitate further work on the mechanism of molecular pathogenesis of this bacterium during infection.
Collapse
Affiliation(s)
- Yang Liu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China
| | - Luyao Zhao
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China
| | - Minjun Yang
- b Shanghai-MOST Key Laboratory of Health and Disease Genomics , Chinese National Human Genome Center at Shanghai , Shanghai , China
| | - Kaiyu Yin
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China
| | - Xiaohui Zhou
- c Department of Pathobiology and Veterinary Science , University of Connecticut , Storrs , CT , USA
| | - Ka Yin Leung
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,d Department of Biology , Faculty of Natural and Applied Sciences, Trinity Western University , Langley , BC , Canada
| | - Qin Liu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,e Shanghai Engineering Research Center of Maricultured Animal Vaccines , Shanghai , China.,f Shanghai Collaborative Innovation Center for Biomanufacturing Technology , Shanghai , China
| | - Yuanxing Zhang
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,e Shanghai Engineering Research Center of Maricultured Animal Vaccines , Shanghai , China.,f Shanghai Collaborative Innovation Center for Biomanufacturing Technology , Shanghai , China
| | - Qiyao Wang
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,e Shanghai Engineering Research Center of Maricultured Animal Vaccines , Shanghai , China.,f Shanghai Collaborative Innovation Center for Biomanufacturing Technology , Shanghai , China
| |
Collapse
|
6
|
Yin K, Wang Q, Xiao J, Zhang Y. Comparative proteomic analysis unravels a role for EsrB in the regulation of reactive oxygen species stress responses in Edwardsiella piscicida. FEMS Microbiol Lett 2016; 364:fnw269. [PMID: 27915248 DOI: 10.1093/femsle/fnw269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/04/2016] [Accepted: 11/22/2016] [Indexed: 11/14/2022] Open
Abstract
As a leading pathogen, Edwardsiella piscicida can cause hemorrhagic septicemia in fish and gastro-intestinal infections in humans. The two-component regulatory system EsrA-EsrB plays essential roles in pathogenesis through the type III and type VI secretion systems, and hemolysin production in E. piscicida It is unclear whether other virulence- or stress response-associated genes are regulated by EsrA-EsrB. In this study, the proteomes of wild-type E. piscicida EIB202 and esrB mutant strains were compared to reveal EsrB regulon components after growth in Luria-Bertani broth (LB). Overall, the expression levels of nine genes exhibited significant changes, and five of them required the presence of EsrB, while others exhibited higher levels in the esrB mutant. The diverse functions of these proteins were identified, including amino acid metabolism, oxidative stress defense and energy production. Interestingly, superoxidase dismutase and thiol peroxidase were the most significantly down-regulated by EsrB. Furthermore, other reported reactive oxygen species (ROS) resistance-related genes were also down-regulated by EsrB as revealed by quantitative real-time. Compared with the wild-type and the complement strain esrB+, ΔesrB displayed a significantly enhanced ROS resistance. These results demonstrated that EsrB plays important roles in the ROS resistance pathway in E. piscicida grown in LB conditions.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| |
Collapse
|
7
|
Guijarro JA, Cascales D, García-Torrico AI, García-Domínguez M, Méndez J. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front Microbiol 2015. [PMID: 26217329 PMCID: PMC4496569 DOI: 10.3389/fmicb.2015.00700] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Virulence gene expression in pathogenic bacteria is modulated by environmental parameters. A key factor in this expression is temperature. Its effect on virulence gene expression in bacteria infecting warm-blooded hosts is well documented. Transcription of virulence genes in these bacteria is induced upon a shift from low environmental to a higher host temperature (37°C). Interestingly, host temperatures usually correspond to the optimum for growth of these pathogenic bacteria. On the contrary, in ectothermic hosts such as fish, molluscs, and amphibians, infection processes generally occur at a temperature lower than that for the optimal growth of the bacteria. Therefore, regulation of virulence gene expression in response to temperature shift has to be modulated in a different way to that which is found in bacteria infecting warm-blooded hosts. The current understanding of virulence gene expression and its regulation in response to temperature in fish-pathogenic bacteria is limited, but constant extension of our knowledge base is essential to enable a rational approach to the problem of the bacterial fish diseases affecting the aquaculture industry. This is an interesting issue and progress needs to be made in order to diminish the economic losses caused by these diseases. The intention of this review is, for the first time, to compile the scattered results existing in the field in order to lay the groundwork for future research. This article is an overview of those relevant virulence genes that are expressed at temperatures lower than that for optimal bacterial growth in different fish-pathogenic bacteria as well as the principal mechanisms that could be involved in their regulation.
Collapse
Affiliation(s)
- José A. Guijarro
- *Correspondence: José A. Guijarro, Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, C/Julían Clavería 6, 33006 Oviedo, Spain,
| | | | | | | | | |
Collapse
|
8
|
Edwardsiella tarda Sip1: A serum-induced zinc metalloprotease that is essential to serum resistance and host infection. Vet Microbiol 2015; 177:332-40. [DOI: 10.1016/j.vetmic.2015.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022]
|
9
|
Complete Genome Sequence of Channel Catfish Gastrointestinal Septicemia Isolate Edwardsiella tarda C07-087. GENOME ANNOUNCEMENTS 2013; 1:1/6/e00959-13. [PMID: 24265493 PMCID: PMC3837174 DOI: 10.1128/genomea.00959-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Edwardsiella tarda is a Gram-negative facultative anaerobe causing disease in animals and humans. Here, we announce the complete genome sequence of the channel catfish isolate E. tarda strain C07-87, which was isolated from an outbreak of gastrointestinal septicemia on a commercial catfish farm.
Collapse
|