1
|
Xu Z, Lisha X, Yi L, Yunjun M, Luocheng C, Anqi Z, Kuibo Y, Xiaolu X, Shaozhen L, Xuecheng S, Yifu Z. Highly stable and antifungal properties on the oilseed rape of Cu 3(MoO 4) 2(OH) 2 nanoflakes prepared by simple aqueous precipitation. Sci Rep 2024; 14:5235. [PMID: 38433219 PMCID: PMC10909880 DOI: 10.1038/s41598-024-53612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
In the last few decades, nanoparticles have been a prominent topic in various fields, particularly in agriculture, due to their unique physicochemical properties. Herein, molybdenum copper lindgrenite Cu3(MoO4)2(OH)2 (CM) nanoflakes (NFs) are synthesized by a one-step reaction involving α-MoO3 and CuCO3⋅Cu(OH)2⋅xH2O solution at low temperature for large scale industrial production and developed as an effective antifungal agent for the oilseed rape. This synthetic method demonstrates great potential for industrial applications. Infrared spectroscopy and X-ray diffraction (XRD) results reveal that CM samples exhibit a pure monoclinic structure. TG and DSC results show the thermal stable properties. It can undergo a phase transition form copper molybdate (Cu3Mo2O9) at about 300 °C. Then Cu3Mo2O9 nanoparticles decompose into at CuO and MoO3 at 791 °C. The morphology of CM powder is mainly composed of uniformly distributed parallelogram-shaped nanoflakes with an average thickness of about 30 nm. Moreover, the binding energy of CM NFs is measured to be 2.8 eV. To assess the antifungal properties of these materials, both laboratory and outdoor experiments are conducted. In the pour plate test, the minimum inhibitory concentration (MIC) of CM NFs against Sclerotinia sclerotiorum (S. sclerotiorum) is determined to be 100 ppm, and the zone of inhibiting S. sclerotiorum is 14 mm. When the concentration is above 100 nm, the change rate of the hyphae circle slows down a little and begins to decrease until to 200 ppm. According to the aforementioned findings, the antifungal effects of a nano CM NFs solution are assessed at different concentrations (0 ppm (clear water), 40 ppm, and 80 ppm) on the growth of oilseed rape in an outdoor setting. The results indicate that the application of CM NFs led to significant inhibition of S. sclerotiorum. Specifically, when the nano CM solution was sprayed once at the initial flowering stage at a concentration of 80 ppm, S. sclerotiorum growth was inhibited by approximately 34%. Similarly, when the solution was sprayed once at the initial flowering stage and once at the rape pod stage, using a concentration of 40 ppm, a similar level of inhibition was achieved. These outcomes show that CM NFs possess the ability to bind with more metal ions due to their larger specific surface area. Additionally, their semiconductor physical properties enable the generation of reactive oxygen species (ROS). Therefore, CM NFs hold great potential for widespread application in antifungal products.
Collapse
Affiliation(s)
- Zhao Xu
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Xu Lisha
- School of Physics, Hubei University, Wuhan, 430062, China
| | - Liu Yi
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Mei Yunjun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chen Luocheng
- Hubei Sino-Australian Nano Material Technology Co., Ltd., Guangshui, 432700, China
| | - Zheng Anqi
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Yin Kuibo
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xiao Xiaolu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Li Shaozhen
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China.
| | - Sun Xuecheng
- Micro-Elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhang Yifu
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Butaitė E, Kramer J, Kümmerli R. Local adaptation, geographical distance and phylogenetic relatedness: Assessing the drivers of siderophore-mediated social interactions in natural bacterial communities. J Evol Biol 2021; 34:1266-1278. [PMID: 34101930 PMCID: PMC8453950 DOI: 10.1111/jeb.13883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
In heterogenous, spatially structured habitats, individuals within populations can become adapted to the prevailing conditions in their local environment. Such local adaptation has been reported for animals and plants, and for pathogens adapting to hosts. There is increasing interest in applying the concept of local adaptation to microbial populations, especially in the context of microbe-microbe interactions. Here, we tested whether cooperation and cheating on cooperation can spur patterns of local adaptation in soil and pond communities of Pseudomonas bacteria, collected across a geographical scale of 0.5 to 50 m. We focussed on the production of pyoverdines, a group of secreted iron-scavenging siderophores that often differ among pseudomonads in their chemical structure and the receptor required for their uptake. A combination of supernatant-feeding and competition assays between isolates from four distance categories revealed tremendous variation in the extent to which pyoverdine non- and low-producers can benefit from pyoverdines secreted by producers. However, this variation was not explained by geographical distance, but primarily depended on the phylogenetic relatedness between interacting isolates. A notable exception occurred in local pond communities, where the effect of phylogenetic relatedness was eroded in supernatant assays, probably due to the horizontal transfer of receptor genes. While the latter result could be a signature of local adaptation, our results overall indicate that common ancestry and not geographical distance is the main predictor of siderophore-mediated social interactions among pseudomonads.
Collapse
Affiliation(s)
- Elena Butaitė
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Vuillemin A, Kerrigan Z, D'Hondt S, Orsi WD. Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay. FEMS Microbiol Ecol 2020; 96:fiaa223. [PMID: 33150943 PMCID: PMC7688785 DOI: 10.1093/femsec/fiaa223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
Chloroflexi are widespread in subsurface environments, and recent studies indicate that they represent a major fraction of the communities in subseafloor sediment. Here, we compare the abundance, diversity, metabolic potential and gene expression of Chloroflexi from three abyssal sediment cores from the western North Atlantic Gyre (water depth >5400 m) covering up to 15 million years of sediment deposition, where Chloroflexi were found to represent major components of the community at all sites. Chloroflexi communities die off in oxic red clay over 10-15 million years, and gene expression was below detection. In contrast, Chloroflexi abundance and gene expression at the anoxic abyssal clay site increase below the seafloor and peak in 2-3 million-year-old sediment, indicating a comparably higher activity. Metatranscriptomes from the anoxic site reveal increased expression of Chloroflexi genes involved in cell wall biogenesis, protein turnover, inorganic ion transport, defense mechanisms and prophages. Phylogenetic analysis shows that these Chloroflexi are closely related to homoacetogenic subseafloor clades and actively transcribe genes involved in sugar fermentations, gluconeogenesis and Wood-Ljungdahl pathway in the subseafloor. Concomitant expression of cell division genes indicates that these putative homoacetogenic Chloroflexi are actively growing in these million-year-old anoxic abyssal sediments.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
| | - Zak Kerrigan
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
| |
Collapse
|
4
|
Oueslati M, Mulet M, Zouaoui M, Chandeysson C, Lalucat J, Hajlaoui MR, Berge O, García-Valdés E, Sadfi-Zouaoui N. Diversity of pathogenic Pseudomonas isolated from citrus in Tunisia. AMB Express 2020; 10:198. [PMID: 33130970 PMCID: PMC7604283 DOI: 10.1186/s13568-020-01134-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 11/12/2022] Open
Abstract
The damages observed in Tunisian citrus orchards have prompted studies on the Pseudomonas spp. responsible for blast and black pit. Prospective orchards between 2015 and 2017 showed that the diseases rapidly spread geographically and to new cultivars. A screening of Pseudomonas spp. isolated from symptomatic trees revealed their wide diversity according to phylogenetic analysis of their housekeeping rpoD and cts genes. The majority of strains were affiliated to Pseudomonas syringae pv. syringae (Phylogroup PG02b), previously described in Tunisia. However, they exhibited various BOX-PCR fingerprints and were not clonal. This work demonstrated, for the first time in Tunisia, the involvement of Pseudomonas cerasi (PG02a) and Pseudomonas congelans (PG02c). The latter did not show significant pathogenicity on citrus, but was pathogenic on cantaloupe and active for ice nucleation that could play a role in the disease. A comparative phylogenetic study of citrus pathogens from Iran, Montenegro and Tunisia revealed that P. syringae (PG02b) strains are closely related but again not clonal. Interestingly P. cerasi (PG02a) was isolated in two countries and seems to outspread. However, its role in the diseases is not fully understood and it should be monitored in future studies. The diversity of pathogenic Pseudomonas spp. and the extension of the diseases highlight that they have become complex and synergistic. It opens questions about which factors favor diseases and how to fight against them efficiently and with sustainable means.
Collapse
|
5
|
Mulet M, Montaner M, Román D, Gomila M, Kittinger C, Zarfel G, Lalucat J, García-Valdés E. Pseudomonas Species Diversity Along the Danube River Assessed by rpoD Gene Sequence and MALDI-TOF MS Analyses of Cultivated Strains. Front Microbiol 2020; 11:2114. [PMID: 32983072 PMCID: PMC7492575 DOI: 10.3389/fmicb.2020.02114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022] Open
Abstract
A collection of 611 Pseudomonas isolated from 14 sampling sites along the Danube River were identified previously by MALDI-TOF MS with the VITEK MS system and were grouped in 53 clusters by their main protein profiles. The strains were identified in the present study at the phylospecies level by rpoD gene sequencing. Partial sequences of the rpoD gene of 190 isolates representatives of all clusters were analyzed. Strains in the same MALDI-TOF cluster were grouped in the same phylospecies when they shared a minimum 95% similarity in their rpoD sequences. The sequenced strains were assigned to 34 known species (108 strains) and to 32 possible new species (82 strains). The 611 strains were identified at the phylospecies level combining both methods. Most strains were assigned to phylospecies in the Pseudomonas putida phylogenetic group of species. Special attention was given to 14 multidrug resistant strains that could not be assigned to any known Pseudomonas species and were considered environmental reservoir of antibiotic resistance genes. Coverage indices and rarefaction curves demonstrated that at least 50% of the Pseudomonas species in the Danube River able to grow in the isolation conditions have been identified at the species level. Main objectives were the confirmation of the correlation between the protein profile clusters detected by MALDI-TOF MS and the phylogeny of Pseudomonas strains based on the rpoD gene sequence, the assessment of the higher species discriminative power of the rpoD gene sequence, as well as the estimation of the high diversity of Pseudomonas ssp. along the Danube river. This study highlights the Pseudomonas species diversity in freshwater ecosystems and the usefulness of the combination of MALDI-TOF mass spectrometry for the dereplication of large sets of strains and the rpoD gene sequences for rapid and accurate identifications at the species level.
Collapse
Affiliation(s)
- Magdalena Mulet
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - María Montaner
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Daniela Román
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Clemens Kittinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Gernot Zarfel
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Palma de Mallorca, Spain
| |
Collapse
|
6
|
Qessaoui R, Bouharroud R, Furze JN, El Aalaoui M, Akroud H, Amarraque A, Vaerenbergh JV, Tahzima R, Mayad EH, Chebli B. Applications of New Rhizobacteria Pseudomonas Isolates in Agroecology via Fundamental Processes Complementing Plant Growth. Sci Rep 2019; 9:12832. [PMID: 31492898 PMCID: PMC6731270 DOI: 10.1038/s41598-019-49216-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/08/2019] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas isolates have frequently been isolated from the rhizosphere of plants, and several of them have been reported as plant growth-promoting rhizobacteria. In the present work, tomato (Solanum lycopersicum) seeds were germinated in greenhouse conditions, and the seedling height, length of plants, collar diameter and number of leaves were measured from plants grown in soil inoculated by bacterial isolates. Pseudomonas isolates were isolated from the rhizosphere. We used the Newman-Keuls test to ascertain pairwise differences. Isolates were identified as a new Pseudomonas species by rpoD gene sequencing. The results showed that isolates of Pseudomonas sp. (Q6B) increased seed germination (P = 0.01); Pseudomonas sp. (Q6B, Q14B, Q7B, Q1B and Q13B) also promoted seedling height (P = 0.01). All five isolates promoted plant length and enlarged the collar diameter (P = 0.01). Pseudomonas sp. (Q1B) also increased leaf number (P = 0.01). The investigation found that Pseudomonas isolates were able to solubilize phosphate, produce siderophores, ammonia, and indole-3-acetic acid and colonize the roots of tomato plants. This study shows that these five novel Pseudomonas sp. isolates can be effective new plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- R Qessaoui
- Research Unit of Integrated Crop Production, Centre Regional de la Recherche Agronomique d'Agadir, Agadir, Morocco.,Biotechnology and Environmental Engineering Team, Laboratory of Mechanic Process Energy and Environment, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco
| | - R Bouharroud
- Research Unit of Integrated Crop Production, Centre Regional de la Recherche Agronomique d'Agadir, Agadir, Morocco.
| | - J N Furze
- Laboratory of Biotechnologies and Valorization of Natural Resources Faculty of Sciences - Agadir, Ibn Zohr University, Agadir, Morocco
| | - M El Aalaoui
- Research Unit of Integrated Crop Production, Centre Regional de la Recherche Agronomique d'Agadir, Agadir, Morocco
| | - H Akroud
- Research Unit of Integrated Crop Production, Centre Regional de la Recherche Agronomique d'Agadir, Agadir, Morocco
| | - A Amarraque
- Research Unit of Integrated Crop Production, Centre Regional de la Recherche Agronomique d'Agadir, Agadir, Morocco
| | - J Van Vaerenbergh
- Plant Science Unit - Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - R Tahzima
- Plant Science Unit - Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - E H Mayad
- Biotechnology and Environmental Engineering Team, Laboratory of Mechanic Process Energy and Environment, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco.,Laboratory of Biotechnologies and Valorization of Natural Resources Faculty of Sciences - Agadir, Ibn Zohr University, Agadir, Morocco
| | - B Chebli
- Biotechnology and Environmental Engineering Team, Laboratory of Mechanic Process Energy and Environment, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
7
|
Genomic and pathogenic properties of Pseudomonas syringae pv. syringae strains isolated from apricot in East Azerbaijan province, Iran. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Oueslati M, Mulet M, Gomila M, Berge O, Hajlaoui MR, Lalucat J, Sadfi-Zouaoui N, García-Valdés E. New species of pathogenic Pseudomonas isolated from citrus in Tunisia: Proposal of Pseudomonas kairouanensis sp. nov. and Pseudomonas nabeulensis sp. nov. Syst Appl Microbiol 2019; 42:348-359. [PMID: 30910423 DOI: 10.1016/j.syapm.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022]
Abstract
A collection of Pseudomonas strains was isolated in different regions of Tunisia in the period 2016-2017 from the fruits and leaves of Citrus sinensis cv. 'Valencia Late' and Citrus limon cv. 'Eureka' plants with symptoms of blast and black pit disease. A phylogenetic analysis of the housekeeping gene rpoD was used for strain identification at the species level. The results demonstrated the affiliation of these strains with the genus Pseudomonas and revealed the presence of 11 strains representing two putative new species in two monophyletic branches. These strains were analyzed morphologically and genotypically by multilocus sequence analyses of the rpoD, gyrB and 16S rRNA (rrs) gene sequences, and their phenotypic characteristics by API 20NE and Biolog GEN III. Plant pathogenic properties were confirmed on fruits and detached leaves of C. limon cv. 'Eureka'. Fatty acids and WC MALDI-TOF MS major protein profiles were determined. The genomes of both representatives were sequenced. The average nucleotide index and genome-to-genome distance from KC12T and E10BT are below the cut-off established for a described species. These results support the conclusion that the strains KC12T, KC17, KC20, KC22, KC24A, KC25 and KC26 represent a novel species of Pseudomonas, for which the name of Pseudomonas kairouanensis is proposed. The type strain is KC12T (=CECT9766 and CFBP 8662). The strains E10BT, E10AB, E10CB1 and Iy3BA represent another novel species of Pseudomonas for which the name of Pseudomonas nabeulensis is proposed; the type strain is E10BT (=CECT9765 and CFBP 8661).
Collapse
Affiliation(s)
- Maroua Oueslati
- Laboratoire de Mycologie, Pathologies et Biomarqueurs, Département de Biologie, Université de Tunis ElManar, 2092 Tunis, Tunisia
| | - Magdalena Mulet
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Odile Berge
- INRA, UR 407, Unité de Recherche de Pathologie Végétale, Centre de Recherche Provence-Alpes-Côte d'Azur, Avignon, France
| | - Mohamed Rabeh Hajlaoui
- Laboratoire de Biotechnologie Appliquée à l'Agriculture, INRA Tunisia, Université de Carthage, 2094 Ariana, Tunisia
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - Najla Sadfi-Zouaoui
- Laboratoire de Mycologie, Pathologies et Biomarqueurs, Département de Biologie, Université de Tunis ElManar, 2092 Tunis, Tunisia
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
9
|
Chu TN, Tran BTH, Van Bui L, Hoang MTT. Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res Notes 2019; 12:11. [PMID: 30635071 PMCID: PMC6330407 DOI: 10.1186/s13104-019-4046-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/04/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Plant growth-promoting rhizobacteria (PGPR) may contribute to sustainable crop production by improving plant growth and/or plant tolerance to abiotic stresses. Soil salinity, which limits the productivity of crop plants, is one of the major concerns of modern agriculture, especially in countries heavily affected by climate change as Vietnam. Currently, only a few reports have studied local PGPR isolated in Vietnam, particular Pseudomonas. Therefore, our study aimed to isolate and identify a region-specific Pseudomonas strain and evaluate the effects of this strain on germination, growth promotion and gene expression of Arabidopsis thaliana under salt stress. RESULTS The Pseudomonas named PS01 was isolated from maize rhizosphere collected in Ben Tre province, Vietnam. This strain was identified as a member of the Pseudomonas putida subclade. Pseudomonas PS01 could improve the germination rate of Arabidopsis seeds in 150 mM NaCl. A. thaliana plants inoculated with Pseudomonas PS01 survived under salt stress conditions up to 225 mM NaCl, while all non-inoculated plants were dead above 200 mM NaCl. The transcriptional levels of genes related to stress tolerance showed that only LOX2 was up-regulated, while APX2 and GLYI7 were down-regulated in inoculated plants in comparison to the non-inoculated controls. In turn, RD29A and RD29B did not show any significant changes in their expression profiles.
Collapse
Affiliation(s)
- Thanh Nguyen Chu
- Department of Plant Biotechnology and Biotransformation, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Bao Thi Hoai Tran
- Department of Plant Biotechnology and Biotransformation, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Van Bui
- Department of Plant Biotechnology and Biotransformation, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Thi Thanh Hoang
- Department of Plant Biotechnology and Biotransformation, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Liu C, Guo YM, Cao JZ, Zhang DF, Chang OQ, Li K, Wang F, Shi CB, Jiang L, Wang Q, Lin L. Detection and quantification of Aeromonas schubertii in Channa maculata by TaqMan MGB probe fluorescence real-time quantitative PCR. JOURNAL OF FISH DISEASES 2019; 42:109-117. [PMID: 30474192 DOI: 10.1111/jfd.12911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Abstract
Aeromonas schubertii is a major epidemiological agent that threatens cultured snakeheads (Channidae) and has caused great economic losses in fish-farming industries in China in recent years. In present study, a specific TaqMan minor groove binder (MGB) probe fluorescence real-time quantitative PCR (qPCR) assay was developed to rapidly detect and quantify A. schubertii. A pair of qPCR primers and a TaqMan MGB probe were selected from the rpoD gene, which were shown to be specific for A. schubertii. A high correlation coefficient (R2 = 0.9998) in a standard curve with a 103% efficiency was obtained. Moreover, the qPCR method's detection limit was as low as 18 copies/μl, which was 100 times more sensitive than that of conventional PCR. The detection results for the A. schubertii in pond water and fish tissue were consistent with those of the viable counts. Bacterial load changes detected by qPCR in different tissues of snakeheads infected with A. schubertii showed that the gills and intestines may be the entry for A. schubertii, and the spleen and kidney are major sites for A. schubertii replication. The established method in present study should be a useful tool for the early surveillance and quantitation of A. schubertii.
Collapse
Affiliation(s)
- Chun Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Yanming M Guo
- College of Medical Science and Technology, Heze University, Heze, Shandong, China
| | - Jizhen Z Cao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - De-Feng Zhang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ou-Qin Chang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Kaibin Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Fang Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Cun-Bin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Li Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
11
|
Butaitė E, Kramer J, Wyder S, Kümmerli R. Environmental determinants of pyoverdine production, exploitation and competition in natural Pseudomonas communities. Environ Microbiol 2018; 20:3629-3642. [PMID: 30003663 DOI: 10.1111/1462-2920.14355] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022]
Abstract
Many bacteria rely on the secretion of siderophores to scavenge iron from the environment. Laboratory studies revealed that abiotic and biotic factors together determine how much siderophores bacteria make, and whether siderophores can be exploited by non-producing cheaters or be deployed by producers to inhibit competitors. Here, we explore whether these insights apply to natural communities, by comparing the production of the siderophore pyoverdine among 930 Pseudomonas strains from 48 soil and pond communities. We found that pH, iron content, carbon concentration and community diversity determine pyoverdine production levels, and the extent to which strains are either stimulated or inhibited by heterologous (non-self) pyoverdines. While pyoverdine non-producers occurred in both habitats, their prevalence was higher in soils. Environmental and genetic analyses suggest that non-producers can evolve as cheaters, exploiting heterologous pyoverdine, but also due to pyoverdine disuse in environments with increased iron availability. Overall, we found that environmental factors explained between-strain variation in pyoverdine production much better in soils than in ponds, presumably because high strain mixing in ponds impedes local adaption. Our study sheds light on the complexity of natural bacterial communities, and provides first insights into the multivariate nature of siderophore-based iron acquisition and competition among environmental pseudomonads.
Collapse
Affiliation(s)
- Elena Butaitė
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Stefan Wyder
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
El-Sayed ASA, Akbar A, Iqrar I, Ali R, Norman D, Brennan M, Ali GS. A glucanolytic Pseudomonas sp. associated with Smilax bona-nox L. displays strong activity against Phytophthora parasitica. Microbiol Res 2017; 207:140-152. [PMID: 29458848 DOI: 10.1016/j.micres.2017.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 02/04/2023]
Abstract
Biological control is an eco-friendly strategy for mitigating and controlling plant diseases with negligible effects on human health and environment. Biocontrol agents are mostly isolated from field crops, and microbiomes associated with wild native plants is underexplored. The main objective of this study was to characterize the bacterial isolates associated with Smilax bona-nox L, a successful wild plant with invasive growth habits. Forty morphologically distinct bacterial isolates were recovered from S. bona-nox. Based on 16S rRNA gene sequencing, these isolates belonged to 12 different genera namely Burkholderia, Pseudomonas, Xenophilus, Stenotrophomonas, Pantoea, Enterobactriaceae, Kosakonia, Microbacterium, Curtobacterium, Caulobacter, Lysinibacillus and Bacillus. Among them, Pseudomonas sp. EA6 and Pseudomonas sp. EA14 displayed the highest potential for inhibition of Phytophthora. Based on sequence analysis of rpoD gene, these isolates revealed a 97% identity with a Pseudomonas fluorescence strain. Bioactivity-driven assays for finding bioactive compounds revealed that crude proteins of Pseudomonas sp. EA6 inhibited mycelial growth of P. parasitica, whereas crude proteins of Pseudomonas sp. EA14 displayed negligible activity. Fractionation and enzymatic analyses revealed that the bioactivity of Pseudomonas sp. EA6 was mostly due to glucanolytic enzymes. Comparison of chromatographic profile and bioactivity assays indicated that the secreted glucanolytic enzymes consisted of β-1,3 and β-1,4 glucanases, which acted together in hydrolyzing Phytophthora cell walls. Since the biological activity of the crude glucanolytic extract was >60-fold higher than the purified β-1,3 glucanase, the glucanolytic enzyme system of Pseudomonas sp. EA6 likely acts synergistically in cell wall hydrolysis of P. parasitica.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA; Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Asma Akbar
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Irum Iqrar
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Robina Ali
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - David Norman
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Mary Brennan
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA
| | - Gul Shad Ali
- Mid-Florida Research and Education Center, Department of Plant pathology, University of Florida/Institute of Food and Agricultural Sciences, Apopka, FL, USA.
| |
Collapse
|
13
|
Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun 2017; 8:414. [PMID: 28871205 PMCID: PMC5583256 DOI: 10.1038/s41467-017-00509-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/29/2017] [Indexed: 11/17/2022] Open
Abstract
All social organisms experience dilemmas between cooperators performing group-beneficial actions and cheats selfishly exploiting these actions. Although bacteria have become model organisms to study social dilemmas in laboratory systems, we know little about their relevance in natural communities. Here, we show that social interactions mediated by a single shareable compound necessary for growth (the iron-scavenging pyoverdine) have important consequences for competitive dynamics in soil and pond communities of Pseudomonas bacteria. We find that pyoverdine non- and low-producers co-occur in many natural communities. While non-producers have genes coding for multiple pyoverdine receptors and are able to exploit compatible heterologous pyoverdines from other community members, producers differ in the pyoverdine types they secrete, offering protection against exploitation from non-producers with incompatible receptors. Our findings indicate that there is both selection for cheating and cheating resistance, which could drive antagonistic co-evolution and diversification in natural bacterial communities. Lab strains of Pseudomonas are model systems for the evolution of cooperation over public goods (iron-scavenging siderophores). Here, Butaitė et al. add ecological and evolutionary insight into this system by showing that cheating and resistance to cheating both shape competition for iron in natural Pseudomonas communities.
Collapse
|
14
|
Pseudomonas putida and Pseudomonas fluorescens Species Group Recovery from Human Homes Varies Seasonally and by Environment. PLoS One 2015; 10:e0127704. [PMID: 26023929 PMCID: PMC4449118 DOI: 10.1371/journal.pone.0127704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/17/2015] [Indexed: 02/03/2023] Open
Abstract
By shedding light on variation in time as well as in space, long-term biogeographic studies can help us define organisms' distribution patterns and understand their underlying drivers. Here we examine distributions of Pseudomonas in and around 15 human homes, focusing on the P. putida and P. fluorescens species groups. We describe recovery from 10,941 samples collected during up to 8 visits per home, occurring on average 2.6 times per year. We collected a mean of 141 samples per visit, from sites in most rooms of the house, from the surrounding yards, and from human and pet occupants. We recovered Pseudomonas in 9.7% of samples, with the majority of isolates being from the P. putida and P. fluorescens species groups (approximately 62% and 23% of Pseudomonas samples recovered respectively). Although representatives of both groups were recovered from every season, every house, and every type of environment sampled, recovery was highly variable across houses and samplings. Whereas recovery of P. putida group was higher in summer and fall than in winter and spring, P. fluorescens group isolates were most often recovered in spring. P. putida group recovery from soils was substantially higher than its recovery from all other environment types, while higher P. fluorescens group recovery from soils than from other sites was much less pronounced. Both species groups were recovered from skin and upper respiratory tract samples from healthy humans and pets, although this occurred infrequently. This study indicates that even species that are able to survive under a broad range of conditions can be rare and variable in their distributions in space and in time. For such groups, determining patterns and causes of stochastic and seasonal variability may be more important for understanding the processes driving their biogeography than the identity of the types of environments in which they can be found.
Collapse
|