1
|
Paredes-Barrada M, Mathissen A, van der Molen RA, Jiménez-Huesa PJ, Polano ME, Donati S, Abele M, Ludwig C, van Kranenburg R, Claassens NJ. Awakening of the RuMP cycle for partial methylotrophy in the thermophile Parageobacillus thermoglucosidasius. Metab Eng 2025; 91:145-157. [PMID: 40245979 DOI: 10.1016/j.ymben.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Given sustainability and scalability concerns of using sugar feedstocks for microbial bioproduction of bulk chemicals, widening the feedstock range for microbial cell factories is of high interest. Methanol is a one-carbon alcohol that stands out as an alternative feedstock for the bioproduction of chemicals, as it is electron-rich, water-miscible and can be produced from several renewable resources. Bioconversion of methanol into products under thermophilic conditions (>50 °C) could be highly advantageous for industrial biotechnology. Although progress is being made with natural, thermophilic methylotrophic microorganisms, they are not yet optimal for bioproduction and establishing alternative thermophilic methylotrophic bioproduction platforms can widen possibilities. Hence, we set out to implement methanol assimilation in the emerging thermophilic model organism Parageobacillus thermoglucosidasius. We engineered P. thermoglucosidasius to be strictly dependent for its growth on methanol assimilation via the core of the highly efficient ribulose monophosphate (RuMP) cycle, while co-assimilating ribose. Surprisingly, this did not require heterologous expression of RuMP enzymes. Instead, by laboratory evolution we awakened latent, native enzyme activities to form the core of the RuMP cycle. We obtained fast methylotrophic growth in which ∼17 % of biomass was strictly obtained from methanol. This work lays the foundation for developing a versatile thermophilic bioproduction platform based on renewable methanol.
Collapse
Affiliation(s)
- Miguel Paredes-Barrada
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Annemieke Mathissen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Roland A van der Molen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Pablo J Jiménez-Huesa
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Machiel Eduardo Polano
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Stefano Donati
- Novo Nordisk Foundation Center for Biosustainability, Søltofts Plads, 220, 212F, 2800, Kgs. Lyngby, Denmark
| | - Miriam Abele
- Technical University of Munich, Germany; TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Gregor-Mendel-Strasse 4, 85354, Freising, Germany
| | - Christina Ludwig
- Technical University of Munich, Germany; TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Gregor-Mendel-Strasse 4, 85354, Freising, Germany
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Jia M, Shao L, Jiang J, Jiang W, Xin F, Zhang W, Jiang Y, Jiang M. Mitigating toxic formaldehyde to promote efficient utilization of C1 resources. Crit Rev Biotechnol 2024:1-13. [PMID: 39647989 DOI: 10.1080/07388551.2024.2430476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/10/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism. Thus, it is important to balance the intensity of the assimilation and dissimilation pathways of formaldehyde, which can avoid formaldehyde toxicity and improve the full utilization of C1 resources. This review details the source of endogenous formaldehyde and its toxicity mechanism, explaining the harm of excessive accumulation of formaldehyde to metabolism. Importantly, the self-detoxification and various feasible strategies to mitigate formaldehyde toxicity are discussed and proposed. These strategies are meant to help appropriately handle formaldehyde toxicity and accelerate the effective use of C1 resources.
Collapse
Affiliation(s)
- Mengshi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Lei Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
3
|
Klein VJ, Troøyen SH, Fernandes Brito L, Courtade G, Brautaset T, Irla M. Identification and characterization of a novel formaldehyde dehydrogenase in Bacillus subtilis. Appl Environ Microbiol 2024; 90:e0218123. [PMID: 39470218 DOI: 10.1128/aem.02181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/17/2024] [Indexed: 10/30/2024] Open
Abstract
Formaldehyde is a known toxic compound, and functional formaldehyde detoxification is crucial for the survival of all living cells. Such detoxification systems are of particular importance for methylotrophic microorganisms that rely on formaldehyde as a central metabolite in their one-carbon metabolism. Understanding formaldehyde dissimilation pathways in non-methylotrophic industrial microorganisms is necessary for ongoing research aiming at engineering methylotrophy into their metabolism (synthetic methylotrophy). There is a variety of formaldehyde dissimilation pathways across microorganisms, often based on the activity of formaldehyde dehydrogenases. In this study, we investigated the role of the yycR gene of Bacillus subtilis putatively encoding a novel, uncharacterized zinc-type alcohol dehydrogenase-like protein. We showed that the B. subtilis ΔyycR mutant displayed a reduced formaldehyde tolerance level and confirmed the enzymatic activity of recombinantly produced and purified YycR as formaldehyde dehydrogenase in vitro. Biochemical analyses demonstrated that YycR activity is optimal at 40°C, with the highest measured activity at pH 9.5, formaldehyde is the preferred substrate, and the kinetic constants are Km of 0.19 ± 0.05 mM and Vmax of 2.24 ± 0.05 nmol min-1. Altogether, we showed that YycR is a novel formaldehyde dehydrogenase with a role in formaldehyde detoxification in B. subtilis, providing valuable insights for future research on synthetic methylotrophy in this organism. IMPORTANCE Formaldehyde is a key metabolite in methanol assimilation for many methylotrophic microorganisms, and at the same time, it is toxic to all living cells, which means its intracellular concentrations must be tightly controlled. An in-depth understanding of methanol detoxification systems in industrially relevant microorganisms is a prerequisite for the introduction of methanol utilization pathways into their metabolism (synthetic methylotrophy). Bacillus subtilis, an industrial workhorse conventionally used for the production of enzymes, is known to possess two formaldehyde detoxification pathways. Here, we identify a novel formaldehyde dehydrogenase in this bacterium as a path towards creating innovative prospect strategies for strain engineering towards synthetic methylotrophy.
Collapse
Affiliation(s)
- Vivien Jessica Klein
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Susanne Hansen Troøyen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana Fernandes Brito
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Gaston Courtade
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Junker N, Sariyar Akbulut B, Wendisch VF. Utilization of orange peel waste for sustainable amino acid production by Corynebacterium glutamicum. Front Bioeng Biotechnol 2024; 12:1419444. [PMID: 39050686 PMCID: PMC11266056 DOI: 10.3389/fbioe.2024.1419444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Oranges are the most processed fruit in the world-it is therefore apparent that the industrial production of orange juice generates large quantities of orange peel as a by-product. Unfortunately, the management of the orange peel waste leads to economic and environmental problems. Meanwhile, the use of sustainable raw materials for the production of bulk chemicals, such as amino acids, is becoming increasingly attractive. To address both issues, this study focused on the use of orange peel waste as a raw material for media preparation for the production of amino acids by engineered Corynebacterium glutamicum. C. glutamicum grew on pure orange peel hydrolysate (OPH) and growth was enhanced by the addition of a nitrogen source and a pH buffer. Inhibitory effects by the combination of high concentrations of OPH, (NH4)2SO4, and MOPS buffer in the wild-type strain (WT), were overcome in the tyrosine-producing engineered C. glutamicum strain AROM3. Genetic modifications that we identified to allow for improved growth rates under these conditions included the deletions of the vanillin dehydrogenase gene vdh, the ʟ-lactate dehydrogenase gene ldhA and the 19 genes comprising cluster cg2663-cg2686. A growth inhibiting compound present in high concentrations in the OPH is 5-(hydroxymethyl)furfural (HMF). We identified vdh as being primarily responsible for the oxidation of HMF to its acid 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), as the formation of HMFCA was reduced by 97% upon deletion of vdh in C. glutamicum WT. In addition, we showed that growth limitations could be overcome by adjusting the media preparation, using a combination of cheap ammonia water and KOH for pH neutralization after acidic hydrolysis. Overall, we developed a sustainable medium based on orange peel waste for the cultivation of C. glutamicum and demonstrated the successful production of the exemplary amino acids ʟ-arginine, ʟ-lysine, ʟ-serine, ʟ-valine and ʟ-tyrosine.
Collapse
Affiliation(s)
- Nora Junker
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Wani SR, Jain V. Deciphering the molecular mechanism and regulation of formaldehyde detoxification in Mycobacterium smegmatis. Appl Environ Microbiol 2024; 90:e0203923. [PMID: 38259108 PMCID: PMC10880627 DOI: 10.1128/aem.02039-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The build-up of formaldehyde, a highly reactive molecule is cytotoxic and must be eliminated for the organism's survival. Formaldehyde detoxification system is found in nearly all organisms including both pathogenic and non-pathogenic mycobacteria. MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis (Msm), is an indispensable part of this system and forms a bicistronic operon with its downstream uncharacterized gene, fmh. We here show that Fmh, a putative metallo-beta-lactamase, is essential in tolerating higher amounts of formaldehyde when co-overexpressed with mscR in vivo. Our NMR studies indicate that MscR, along with Fmh, enhances formate production through a mycothiol (MSH)-dependent pathway, emphasizing the importance of Fmh in detoxifying formaldehyde. Although another aldehyde dehydrogenase, MSMEG_1543, induces upon formaldehyde addition, it is not involved in its detoxification. We also show that the expression of the mscR operon is constitutive and remains unchanged upon formaldehyde addition, as displayed by the promoter activity of PmscR and by the transcript and protein levels of MscR. Furthermore, we establish the role of a thiol-responsive sigma factor SigH in formaldehyde detoxification. We show that SigH, and not SigE, is crucial for formaldehyde detoxification, even though it does not directly regulate mscR operon expression. In addition, sensitivity to formaldehyde in sigH-knockout could be alleviated by overexpression of mscR. Taken together, our data demonstrate the importance of MSH-dependent pathways in detoxifying formaldehyde in a mycobacterial system. An absence of such MSH-dependent proteins in eukaryotes and its complete conservation in M. tuberculosis, the causative agent of tuberculosis, further unravel new drug targets for this pathogen.IMPORTANCEExtensive research has been done on formaldehyde detoxification in different bacteria. However, our current understanding of the mechanisms underlying this process in mycobacteria remains exceedingly little. We previously showed that MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis, plays a pivotal role in this detoxification pathway. Here, we present a potential S-formyl-mycothiol hydrolase named Fmh, thought to be a metallo-beta-lactamase, which functions along with mycothiol (MSH) and MscR to enhance formate production within this detoxification pathway. Co-expression of Fmh with MscR significantly enhances the efficiency of formaldehyde detoxification in M. smegmatis. Our experiments establish that Fmh catalyzes the final step of this detoxification pathway. Although an alternative sigma factor SigH was found to be involved in formaldehyde detoxification, it did not directly regulate the expression of mscR. Since formaldehyde detoxification is essential for bacterial survival, we envisage this process to be a potential drug target for M. tuberculosis eradication.
Collapse
Affiliation(s)
- Saloni Rajesh Wani
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
6
|
Afordoanyi DM, Akosah YA, Shnakhova L, Saparmyradov K, Diabankana RGC, Validov S. Biotechnological Key Genes of the Rhodococcus erythropolis MGMM8 Genome: Genes for Bioremediation, Antibiotics, Plant Protection, and Growth Stimulation. Microorganisms 2023; 12:88. [PMID: 38257915 PMCID: PMC10819586 DOI: 10.3390/microorganisms12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Anthropogenic pollution, including residues from the green revolution initially aimed at addressing food security and healthcare, has paradoxically exacerbated environmental challenges. The transition towards comprehensive green biotechnology and bioremediation, achieved with lower financial investment, hinges on microbial biotechnology, with the Rhodococcus genus emerging as a promising contender. The significance of fully annotating genome sequences lies in comprehending strain constituents, devising experimental protocols, and strategically deploying these strains to address pertinent issues using pivotal genes. This study revolves around Rhodococcus erythropolis MGMM8, an associate of winter wheat plants in the rhizosphere. Through the annotation of its chromosomal genome and subsequent comparison with other strains, its potential applications were explored. Using the antiSMASH server, 19 gene clusters were predicted, encompassing genes responsible for antibiotics and siderophores. Antibiotic resistance evaluation via the Comprehensive Antibiotic Resistance Database (CARD) identified five genes (vanW, vanY, RbpA, iri, and folC) that were parallel to strain CCM2595. Leveraging the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) for biodegradation, heavy metal resistance, and remediation genes, the presence of chlorimuron-ethyl, formaldehyde, benzene-desulfurization degradation genes, and heavy metal-related genes (ACR3, arsC, corA, DsbA, modA, and recG) in MGMM8 was confirmed. Furthermore, quorum-quenching signal genes, critical for curbing biofilm formation and virulence elicited by quorum-sensing in pathogens, were also discerned within MGMM8's genome. In light of these predictions, the novel isolate MGMM8 warrants phenotypic assessment to gauge its potential in biocontrol and bioremediation. This evaluation extends to isolating active compounds for potential antimicrobial activities against pathogenic microorganisms. The comprehensive genome annotation process has facilitated the genetic characterization of MGMM8 and has solidified its potential as a biotechnological strain to address global anthropogenic predicaments.
Collapse
Affiliation(s)
- Daniel Mawuena Afordoanyi
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia (R.G.C.D.)
- Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia
| | - Yaw Abayie Akosah
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Lidiya Shnakhova
- Dermatology Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Keremli Saparmyradov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia (R.G.C.D.)
| | - Roderic Gilles Claret Diabankana
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia (R.G.C.D.)
| | - Shamil Validov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia (R.G.C.D.)
| |
Collapse
|
7
|
Lee JA, Stolyar S, Marx CJ. Aerobic Methoxydotrophy: Growth on Methoxylated Aromatic Compounds by Methylobacteriaceae. Front Microbiol 2022; 13:849573. [PMID: 35359736 PMCID: PMC8963497 DOI: 10.3389/fmicb.2022.849573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
Pink-pigmented facultative methylotrophs have long been studied for their ability to grow on reduced single-carbon (C1) compounds. The C1 groups that support methylotrophic growth may come from a variety of sources. Here, we describe a group of Methylobacterium strains that can engage in methoxydotrophy: they can metabolize the methoxy groups from several aromatic compounds that are commonly the product of lignin depolymerization. Furthermore, these organisms can utilize the full aromatic ring as a growth substrate, a phenotype that has rarely been described in Methylobacterium. We demonstrated growth on p-hydroxybenzoate, protocatechuate, vanillate, and ferulate in laboratory culture conditions. We also used comparative genomics to explore the evolutionary history of this trait, finding that the capacity for aromatic catabolism is likely ancestral to two clades of Methylobacterium, but has also been acquired horizontally by closely related organisms. In addition, we surveyed the published metagenome data to find that the most abundant group of aromatic-degrading Methylobacterium in the environment is likely the group related to Methylobacterium nodulans, and they are especially common in soil and root environments. The demethoxylation of lignin-derived aromatic monomers in aerobic environments releases formaldehyde, a metabolite that is a potent cellular toxin but that is also a growth substrate for methylotrophs. We found that, whereas some known lignin-degrading organisms excrete formaldehyde as a byproduct during growth on vanillate, Methylobacterium do not. This observation is especially relevant to our understanding of the ecology and the bioengineering of lignin degradation.
Collapse
Affiliation(s)
- Jessica A. Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, United States
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - Sergey Stolyar
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, United States
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
8
|
Klein VJ, Irla M, Gil López M, Brautaset T, Fernandes Brito L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 2022; 10:microorganisms10020220. [PMID: 35208673 PMCID: PMC8879981 DOI: 10.3390/microorganisms10020220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Formaldehyde metabolism is prevalent in all organisms, where the accumulation of formaldehyde can be prevented through the activity of dissimilation pathways. Furthermore, formaldehyde assimilatory pathways play a fundamental role in many methylotrophs, which are microorganisms able to build biomass and obtain energy from single- and multicarbon compounds with no carbon–carbon bonds. Here, we describe how formaldehyde is formed in the environment, the mechanisms of its toxicity to the cells, and the cell’s strategies to circumvent it. While their importance is unquestionable for cell survival in formaldehyde rich environments, we present examples of how the modification of native formaldehyde dissimilation pathways in nonmethylotrophic bacteria can be applied to redirect carbon flux toward heterologous, synthetic formaldehyde assimilation pathways introduced into their metabolism. Attempts to engineer methylotrophy into nonmethylotrophic hosts have gained interest in the past decade, with only limited successes leading to the creation of autonomous synthetic methylotrophy. Here, we discuss how native formaldehyde assimilation pathways can additionally be employed as a premise to achieving synthetic methylotrophy. Lastly, we discuss how emerging knowledge on regulation of formaldehyde metabolism can contribute to creating synthetic regulatory circuits applied in metabolic engineering strategies.
Collapse
|
9
|
Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway. Int J Mol Sci 2020; 21:ijms21103617. [PMID: 32443885 PMCID: PMC7279501 DOI: 10.3390/ijms21103617] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered Corynebacterium glutamicum for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from Bacillus methanolicus and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from Bacillus subtilis enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of C. glutamicum to unleash the full potential of methanol as a carbon source in biotechnological processes.
Collapse
|
10
|
Henson WR, Campbell T, DeLorenzo DM, Gao Y, Berla B, Kim SJ, Foston M, Moon TS, Dantas G. Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus. Metab Eng 2018; 49:69-83. [DOI: 10.1016/j.ymben.2018.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022]
|
11
|
Methylotrophy in Mycobacteria: Dissection of the Methanol Metabolism Pathway in Mycobacterium smegmatis. J Bacteriol 2018; 200:JB.00288-18. [PMID: 29891642 DOI: 10.1128/jb.00288-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023] Open
Abstract
The mycobacteria comprise both pathogenic and nonpathogenic bacteria. Although several features related to pathogenicity in various mycobacterial species, such as Mycobacterium tuberculosis, have been studied in great detail, methylotrophy, i.e., the ability of an organism to utilize single-carbon (C1) compounds as the sole source of carbon and energy, has remained largely unexplored in mycobacteria. Reports are available that suggest that mycobacteria, including M. tuberculosis and M. smegmatis, are capable of utilizing alternative C1 compounds to meet their carbon and energy requirements. However, physiological pathways that are functional in mycobacteria to utilize such carbon compounds are only poorly understood. Here we report the identification and characterization of the gene products required for establishing methylotrophy in M. smegmatis We present N,N-dimethyl-p-nitrosoaniline (NDMA)-dependent methanol oxidase (Mno) as the key enzyme that is essential for the growth of M. smegmatis on methanol. We show that Mno has both methanol and formaldehyde dehydrogenase activities in vitro Further, M. smegmatis is able to utilize methanol even in the absence of the major formaldehyde dehydrogenase MscR, which suggests that Mno is sufficient to dissimilate methanol and the resulting formaldehyde in vivo Finally, we show that M. smegmatis devoid of phosphoenolpyruvate carboxykinase, which has been shown to fix CO2 in M. tuberculosis, does not grow on methanol, suggesting that the final step of methanol utilization requires CO2 fixation for biomass generation. Our work here thus forms the first comprehensive report that explores methylotrophy in a mycobacterial species.IMPORTANCE Methylotrophy, the ability to utilize single-carbon (C1) compounds as the sole carbon and energy sources, is only poorly understood in mycobacteria. Both pathogenic and nonpathogenic mycobacteria, including Mycobacterium tuberculosis, are capable of utilizing C1 compounds to meet their carbon and energy requirements, although the precise pathways are not well studied. Here we present a comprehensive study of methylotrophy in Mycobacterium smegmatis With several genetic knockouts, we have dissected the entire methanol metabolism pathway in M. smegmatis We show that while methanol dissimilation in M. smegmatis differs from that in other mycobacterial species, the concluding step of CO2 fixation is similar to that in M. tuberculosis It is therefore both interesting and important to examine mycobacterial physiology in the presence of alternative carbon sources.
Collapse
|
12
|
Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol 2017; 257:211-221. [DOI: 10.1016/j.jbiotec.2016.11.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/17/2023]
|
13
|
Zhang W, Zhang T, Wu S, Wu M, Xin F, Dong W, Ma J, Zhang M, Jiang M. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Adv 2017. [DOI: 10.1039/c6ra27038g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Methanol represents an attractive non-food raw material in biotechnological processes from an economic and process point of view. It is vital to elucidate methanol metabolic pathways, which will help to genetically construct non-native methylotrophs.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Sihua Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Mingke Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| |
Collapse
|
14
|
Jorge JMP, Leggewie C, Wendisch VF. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids 2016; 48:2519-2531. [PMID: 27289384 DOI: 10.1007/s00726-016-2272-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Gamma-aminobutyric acid (GABA), a non-protein amino acid widespread in nature, is a component of pharmaceuticals, foods, and the biodegradable plastic polyamide 4. Corynebacterium glutamicum shows great potential for the production of GABA from glucose. GABA added to the growth medium hardly affected growth of C. glutamicum, since a half-inhibitory concentration of 1.1 M GABA was determined. As alternative to GABA production by glutamate decarboxylation, a new route for the production of GABA via putrescine was established in C. glutamicum. A putrescine-producing recombinant C. glutamicum strain was converted into a GABA producing strain by heterologous expression of putrescine transaminase (PatA) and gamma-aminobutyraldehyde dehydrogenase (PatD) genes from Escherichia coli. The resultant strain produced 5.3 ± 0.1 g L-1 of GABA. GABA production was improved further by adjusting the concentration of nitrogen in the culture medium, by avoiding the formation of the by-product N-acetylputrescine and by deletion of the genes for GABA catabolism and GABA re-uptake. GABA accumulation by this strain was increased by 51 % to 8.0 ± 0.3 g L-1, and the volumetric productivity was increased to 0.31 g L-1 h-1; the highest volumetric productivity reported so far for fermentative production of GABA from glucose in shake flasks was achieved.
Collapse
Affiliation(s)
- João M P Jorge
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | | | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
15
|
Chen NH, Djoko KY, Veyrier FJ, McEwan AG. Formaldehyde Stress Responses in Bacterial Pathogens. Front Microbiol 2016; 7:257. [PMID: 26973631 PMCID: PMC4776306 DOI: 10.3389/fmicb.2016.00257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/16/2016] [Indexed: 12/18/2022] Open
Abstract
Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.
Collapse
Affiliation(s)
- Nathan H Chen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| | - Frédéric J Veyrier
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval QC, Canada
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| |
Collapse
|
16
|
FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:2685-92. [PMID: 26541332 DOI: 10.1007/s00253-015-7115-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Lignocellulosic hydrolysates contain compounds that inhibit microbial growth and fermentation, thereby decreasing the productivity of biofuel and biochemical production. In particular, the heterocyclic aldehyde furfural is one of the most toxic compounds found in these hydrolysates. We previously demonstrated that Corynebacterium glutamicum converts furfural into the less toxic compounds furfuryl alcohol and 2-furoic acid. To date, however, the genes involved in these oxidation and reduction reactions have not been identified in the C. glutamicum genome. Here, we show that Cgl0331 (designated FudC) is mainly responsible for the reduction of furfural into furfuryl alcohol in C. glutamicum. Deletion of the gene encoding FudC markedly diminished the in vivo reduction of furfural to furfuryl alcohol. Purified His-tagged FudC protein from Escherichia coli was also shown to convert furfural into furfuryl alcohol in an in vitro reaction utilizing NADPH, but not NADH, as a cofactor. Kinetic measurements demonstrated that FudC has a high affinity for furfural but has a narrow substrate range for other aldehydes compared to the protein responsible for furfural reduction in E. coli.
Collapse
|
17
|
Leßmeier L, Wendisch VF. Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol 2015; 15:216. [PMID: 26474849 PMCID: PMC4609165 DOI: 10.1186/s12866-015-0558-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022] Open
Abstract
Background Methanol is present in most ecosystems and may also occur in industrial applications, e.g. as an impurity of carbon sources such as technical glycerol. Methanol often inhibits growth of bacteria, thus, methanol tolerance may limit fermentative production processes. Results The methanol tolerance of the amino acid producing soil bacterium Corynebacterium glutamicum was improved by experimental evolution in the presence of methanol. The resulting strain Tol1 exhibited significantly increased growth rates in the presence of up to 1 M methanol. However, neither transcriptional changes nor increased enzyme activities of the linear methanol oxidation pathway were observed, which was in accordance with the finding that tolerance to the downstream metabolites formaldehyde and formate was not improved. Genome sequence analysis of strain Tol1 revealed two point mutations potentially relevant to enhanced methanol tolerance: one leading to the amino acid exchange A165T of O-acetylhomoserine sulfhydrolase MetY and the other leading to shortened CoA transferase Cat (Q342*). Introduction of either mutation into the genome of C. glutamicum wild type increased methanol tolerance and introduction of both mutations into C. glutamicum was sufficient to achieve methanol tolerance almost indistinguishable from that of strain Tol1. Conclusion The methanol tolerance of C. glutamicum can be increased by two point mutations leading to amino acid exchange of O-acetylhomoserine sulfhydrolase MetY and shortened CoA transferase Cat. Introduction of these mutations into producer strains may be helpful when using carbon sources containing methanol as component or impurity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0558-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lennart Leßmeier
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, 33615, Germany.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, 33615, Germany.
| |
Collapse
|
18
|
Tereshina EV, Laskavy VN, Ivanenko SI. Four components of the conjugated redox system in organisms: Carbon, nitrogen, sulfur, oxygen. BIOCHEMISTRY (MOSCOW) 2015; 80:1186-200. [DOI: 10.1134/s0006297915090096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 2015; 99:10163-76. [PMID: 26276544 DOI: 10.1007/s00253-015-6906-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.
Collapse
|
20
|
Siebert D, Wendisch VF. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:91. [PMID: 26110019 PMCID: PMC4478622 DOI: 10.1186/s13068-015-0269-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/05/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Production of the versatile bulk chemical 1,2-propanediol and the potential biofuel 1-propanol is still dependent on petroleum, but some approaches to establish bio-based production from renewable feed stocks and to avoid toxic intermediates have been described. The biotechnological workhorse Corynebacterium glutamicum has also been shown to be able to overproduce 1,2-propanediol by metabolic engineering. Additionally, C. glutamicum has previously been engineered for production of the biofuels ethanol and isobutanol but not for 1-propanol. RESULTS In this study, the improved production of 1,2-propanediol by C. glutamicum is presented. The product yield of a C. glutamicum strain expressing the heterologous genes gldA and mgsA from Escherichia coli that encode methylglyoxal synthase gene and glycerol dehydrogenase, respectively, was improved by additional expression of alcohol dehydrogenase gene yqhD from E. coli leading to a yield of 0.131 mol/mol glucose. Deletion of the endogenous genes hdpA and ldh encoding dihydroxyacetone phosphate phosphatase and lactate dehydrogenase, respectively, prevented formation of glycerol and lactate as by-products and improved the yield to 0.343 mol/mol glucose. To construct a 1-propanol producer, the operon ppdABC from Klebsiella oxytoca encoding diol dehydratase was expressed in the improved 1,2-propanediol producing strain ending up with 12 mM 1-propanol and up to 60 mM unconverted 1,2-propanediol. Thus, B12-dependent diol dehydratase activity may be limiting 1-propanol production. CONCLUSIONS Production of 1,2-propanediol by C. glutamicum was improved by metabolic engineering targeting endogenous enzymes. Furthermore, to the best of our knowledge, production of 1-propanol by recombinant C. glutamicum was demonstrated for the first time.
Collapse
Affiliation(s)
- Daniel Siebert
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
21
|
Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 2015; 6:187. [PMID: 25852656 PMCID: PMC4360819 DOI: 10.3389/fmicb.2015.00187] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Martina Rossius
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| |
Collapse
|
22
|
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 2015; 81:2215-25. [PMID: 25595770 DOI: 10.1128/aem.03110-14] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [(13)C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate.
Collapse
|
23
|
Peters-Wendisch P, Götker S, Heider S, Komati Reddy G, Nguyen A, Stansen K, Wendisch V. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. J Biotechnol 2014; 192 Pt B:346-54. [DOI: 10.1016/j.jbiotec.2014.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/21/2013] [Accepted: 01/03/2014] [Indexed: 11/17/2022]
|
24
|
Wendisch VF. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 2014; 30:51-8. [PMID: 24922334 DOI: 10.1016/j.copbio.2014.05.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids.
Collapse
Affiliation(s)
- Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Germany.
| |
Collapse
|