1
|
Barbosa A, Azevedo NF, Goeres DM, Cerqueira L. Ecology of Legionella pneumophila biofilms: The link between transcriptional activity and the biphasic cycle. Biofilm 2024; 7:100196. [PMID: 38601816 PMCID: PMC11004079 DOI: 10.1016/j.bioflm.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
There has been considerable discussion regarding the environmental life cycle of Legionella pneumophila and its virulence potential in natural and man-made water systems. On the other hand, the bacterium's morphogenetic mechanisms within host cells (amoeba and macrophages) have been well documented and are linked to its ability to transition from a non-virulent, replicative state to an infectious, transmissive state. Although the morphogenetic mechanisms associated with the formation and detachment of the L. pneumophila biofilm have also been described, the capacity of the bacteria to multiply extracellularly is not generally accepted. However, several studies have shown genetic pathways within the biofilm that resemble intracellular mechanisms. Understanding the functionality of L. pneumophila cells within a biofilm is fundamental for assessing the ecology and evaluating how the biofilm architecture influences L. pneumophila survival and persistence in water systems. This manuscript provides an overview of the biphasic cycle of L. pneumophila and its implications in associated intracellular mechanisms in amoeba. It also examines the molecular pathways and gene regulation involved in L. pneumophila biofilm formation and dissemination. A holistic analysis of the transcriptional activities in L. pneumophila biofilms is provided, combining the information of intracellular mechanisms in a comprehensive outline. Furthermore, this review discusses the techniques that can be used to study the morphogenetic states of the bacteria within biofilms, at the single cell and population levels.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Darla M. Goeres
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Laura Cerqueira
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
2
|
Persistent contamination of a hospital hot water network by Legionellapneumophila. Int J Hyg Environ Health 2023; 250:114143. [PMID: 36907106 DOI: 10.1016/j.ijheh.2023.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES We assessed the contamination with Legionella pneumophila (Lp) of the hot water network (HWN) of a hospital, mapped the risk of contamination, and evaluated the relatedness of isolates. We further validated phenotypically the biological features that could account for the contamination of the network. METHODS We collected 360 water samples from October 2017 to September 2018 in 36 sampling points of a HWN of a building from a hospital in France. Lp were quantified and identified with culture-based methods and serotyping. Lp concentrations were correlated with water temperature, date and location of isolation. Lp isolates were genotyped by pulsed-field gel electrophoresis and compared to a collection of isolates retrieved in the same HWN two years later, or in other HWN from the same hospital. RESULTS 207/360 (57.5%) samples were positive with Lp. In the hot water production system, Lp concentration was negatively associated with water temperature. In the distribution system, the risk of recovering Lp decreased when temperature was >55 °C (p < 10-3), the proportion of samples with Lp increased with distance from the production network (p < 10-3), and the risk of finding high loads of Lp increased 7.96 times in summer (p = 0.001). All Lp isolates (n = 135) were of serotype 3, and 134 (99.3%) shared the same pulsotype which is found two years later (Lp G). In vitro competition experiments showed that a 3-day culture of Lp G on agar inhibited the growth of a different pulsotype of Lp (Lp O) contaminating another HWN of the same hospital (p = 0.050). We also found that only Lp G survived to a 24h-incubation in water at 55 °C (p = 0.014). CONCLUSION We report here a persistent contamination with Lp of a hospital HWN. Lp concentrations were correlated with water temperature, season, and distance from the production system. Such persistent contamination could be due to biotic parameters such as intra-Legionella inhibition and tolerance to high temperature, but also to the non-optimal configuration of the HWN that prevented the maintenance of high temperature and optimal water circulation.
Collapse
|
3
|
Scheithauer L, Karagöz MS, Mayer BE, Steinert M. Protein sociology of ProA, Mip and other secreted virulence factors at the Legionella pneumophila surface. Front Cell Infect Microbiol 2023; 13:1140688. [PMID: 36936764 PMCID: PMC10017501 DOI: 10.3389/fcimb.2023.1140688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The pathogenicity of L. pneumophila, the causative agent of Legionnaires' disease, depends on an arsenal of interacting proteins. Here we describe how surface-associated and secreted virulence factors of this pathogen interact with each other or target extra- and intracellular host proteins resulting in host cell manipulation and tissue colonization. Since progress of computational methods like AlphaFold, molecular dynamics simulation, and docking allows to predict, analyze and evaluate experimental proteomic and interactomic data, we describe how the combination of these approaches generated new insights into the multifaceted "protein sociology" of the zinc metalloprotease ProA and the peptidyl-prolyl cis/trans isomerase Mip (macrophage infectivity potentiator). Both virulence factors of L. pneumophila interact with numerous proteins including bacterial flagellin (FlaA) and host collagen, and play important roles in virulence regulation, host tissue degradation and immune evasion. The recent progress in protein-ligand analyses of virulence factors suggests that machine learning will also have a beneficial impact in early stages of drug discovery.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mustafa Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Steinert,
| |
Collapse
|
4
|
Hochstrasser R, Michaelis S, Brülisauer S, Sura T, Fan M, Maaß S, Becher D, Hilbi H. Migration of Acanthamoeba through Legionella biofilms is regulated by the bacterial Lqs-LvbR network, effector proteins and the flagellum. Environ Microbiol 2022; 24:3672-3692. [PMID: 35415862 PMCID: PMC9544456 DOI: 10.1111/1462-2920.16008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
The environmental bacterium Legionella pneumophila causes the pneumonia Legionnaires' disease. The opportunistic pathogen forms biofilms and employs the Icm/Dot type IV secretion system (T4SS) to replicate in amoebae and macrophages. A regulatory network comprising the Legionella quorum sensing (Lqs) system and the transcription factor LvbR controls bacterial motility, virulence and biofilm architecture. Here we show by comparative proteomics that in biofilms formed by the L. pneumophila ΔlqsR or ΔlvbR regulatory mutants the abundance of proteins encoded by a genomic ‘fitness island’, metabolic enzymes, effector proteins and flagellar components (e.g. FlaA) varies. ∆lqsR or ∆flaA mutants form ‘patchy’ biofilms like the parental strain JR32, while ∆lvbR forms a ‘mat‐like’ biofilm. Acanthamoeba castellanii amoebae migrated more slowly through biofilms of L. pneumophila lacking lqsR, lvbR, flaA, a functional Icm/Dot T4SS (∆icmT), or secreted effector proteins. Clusters of bacteria decorated amoebae in JR32, ∆lvbR or ∆icmT biofilms but not in ∆lqsR or ∆flaA biofilms. The amoeba‐adherent bacteria induced promoters implicated in motility (PflaA) or virulence (PsidC, PralF). Taken together, the Lqs‐LvbR network (quorum sensing), FlaA (motility) and the Icm/Dot T4SS (virulence) regulate migration of A. castellanii through L. pneumophila biofilms, and – apart from the T4SS – govern bacterial cluster formation on the amoebae.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Sabrina Brülisauer
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Thomas Sura
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Mingzhen Fan
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| |
Collapse
|
5
|
Budowa i znaczenie II systemu sekrecji białek w ekologii i patogenezie Legionella pneumophila. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pałeczki Legionella pneumophila pasożytują w komórkach odległych filogenetycznie gospodarzy, w środowisku wodnym w pierwotniakach, a w organizmie człowieka w makrofagach alweolarnych. Zdolność tych bakterii do wewnątrzkomórkowego namnażania się w komórkach fagocytujących, wyspecjalizowanych do niszczenia mikroorganizmów, ma podstawowe znaczenie dla rozwoju nietypowego zapalenia płuc zwanego chorobą legionistów. Umiejscowione na kilku różnych loci chromosomu bakteryjnego geny II systemu sekrecji L. pneumophila kodują co najmniej 25 białek, w tym enzymy o aktywności lipolitycznej, proteolitycznej, rybonukleazy oraz białka unikalne bakterii Legionella. W środowisku naturalnym T2SS L. pneumophila odgrywa decydującą rolę w ekologii tych drobnoustrojów determinując ich zdolność do przeżycia zarówno w postaci planktonicznej, jak i w strukturach biofilmu w słodkowodnych zbiornikach o niskiej temperaturze. Białka T2SS umożliwiają L. pneumophila zakażenie różnych gatunków pierwotniaków, a substraty tego systemu określają zakres pierwotniaczego gospodarza. Namnażanie się bakterii w różnorodnych pierwotniakach przyczynia się do ich rozsiewania oraz transmisji do antropogenicznych źródeł. Białka wydzielane za pomocą II systemu sekrecji determinują również zdolność L. pneumophila do zakażania mysich makrofagów alweolarnych i szpiku kostnego, ludzkich makrofagów linii U937 i THP-1 oraz komórek nabłonkowych pęcherzyków płucnych. Enzymy wydzielane za pomocą tego systemu, takie jak: proteazy, aminopeptydazy czy fosfolipazy umożliwiają pozyskanie substancji pokarmowych oraz powodują destrukcję tkanki płucnej myszy. W organizmie człowieka białka T2SS przyczyniają się do osłabienia wrodzonej odpowiedzi immunologicznej na zakażenie L. pneumophila przez hamowanie indukcji prozapalnych cytokin (IL-6, TNF-α, IL-1 oraz IL-8).
Collapse
|
6
|
Dharamshi JE, Tamarit D, Eme L, Stairs CW, Martijn J, Homa F, Jørgensen SL, Spang A, Ettema TJG. Marine Sediments Illuminate Chlamydiae Diversity and Evolution. Curr Biol 2020; 30:1032-1048.e7. [PMID: 32142706 DOI: 10.1016/j.cub.2020.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/22/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
The bacterial phylum Chlamydiae is so far composed of obligate symbionts of eukaryotic hosts. Well known for Chlamydiaceae, pathogens of humans and other animals, Chlamydiae also include so-called environmental lineages that primarily infect microbial eukaryotes. Environmental surveys indicate that Chlamydiae are found in a wider range of environments than anticipated previously. However, the vast majority of this chlamydial diversity has been underexplored, biasing our current understanding of their biology, ecological importance, and evolution. Here, we report that previously undetected and active chlamydial lineages dominate microbial communities in deep anoxic marine sediments taken from the Arctic Mid-Ocean Ridge. Reaching relative abundances of up to 43% of the bacterial community, and a maximum diversity of 163 different species-level taxonomic units, these Chlamydiae represent important community members. Using genome-resolved metagenomics, we reconstructed 24 draft chlamydial genomes, expanding by over a third the known genomic diversity in this phylum. Phylogenomic analyses revealed several novel clades across the phylum, including a previously unknown sister lineage of the Chlamydiaceae, providing new insights into the origin of pathogenicity in this family. We were unable to identify putative eukaryotic hosts for these marine sediment chlamydiae, despite identifying genomic features that may be indicative of host-association. The high abundance and genomic diversity of Chlamydiae in these anoxic marine sediments indicate that some members could play an important, and thus far overlooked, ecological role in such environments and may indicate alternate lifestyle strategies.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay 91400, France
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Felix Homa
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Steffen L Jørgensen
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, Bergen 5020, Norway
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg 1790 AB, the Netherlands
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands.
| |
Collapse
|
7
|
Abstract
The amoeba-resistant bacterium Legionella pneumophila infects humans through aerosols and thereby can cause a life-threatening pneumonia termed Legionnaires' disease. In the environment L. pneumophila forms and colonizes biofilms, which usually comprise complex multispecies communities. In these biofilms L. pneumophila persists and replicates intracellularly in protozoa, such as the amoeba Acanthamoeba castellanii. The interactions between sessile L. pneumophila in biofilms and their natural protozoan hosts are not understood on a molecular level. Here, we describe a method to visualize by confocal microscopy the formation and architecture of mono-species L. pneumophila biofilms. Furthermore, we describe and quantify the migration or "grazing" of A. castellanii in the biofilm. This allows investigating on a molecular and cellular level L. pneumophila biofilm formation and Legionella-amoeba interactions within biofilms.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Abdel-Nour M, Su H, Duncan C, Li S, Raju D, Shamoun F, Valton M, Ginevra C, Jarraud S, Guyard C, Kerman K, Terebiznik MR. Polymorphisms of a Collagen-Like Adhesin Contributes to Legionella pneumophila Adhesion, Biofilm Formation Capacity and Clinical Prevalence. Front Microbiol 2019; 10:604. [PMID: 31024468 PMCID: PMC6460258 DOI: 10.3389/fmicb.2019.00604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
Legionellosis is a severe respiratory illness caused by the inhalation of aerosolized water droplets contaminated with the opportunistic pathogen Legionella pneumophila. The ability of L. pneumophila to produce biofilms has been associated with its capacity to colonize and persist in human-made water reservoirs and distribution systems, which are the source of legionellosis outbreaks. Nevertheless, the factors that mediate L. pneumophila biofilm formation are largely unknown. In previous studies we reported that the adhesin Legionella collagen-like protein (Lcl), is required for auto-aggregation, attachment to multiple surfaces and the formation of biofilms. Lcl structure contains three distinguishable regions: An N-terminal region with a predicted signal sequence, a central region containing tandem collagen-like repeats (R-domain) and a C-terminal region (C-domain) with no significant homology to other known proteins. Lcl R-domain encodes tandem repeats of the collagenous tripeptide Gly-Xaa-Yaa (GXY), a motif that is key for the molecular organization of mammalian collagen and mediates the binding of collagenous proteins to different cellular and environmental ligands. Interestingly, Lcl is polymorphic in the number of GXY tandem repeats. In this study, we combined diverse biochemical, genetic, and cellular approaches to determine the role of Lcl domains and GXY repeats polymorphisms on the structural and functional properties of Lcl, as well as on bacterial attachment, aggregation and biofilm formation. Our results indicate that the R-domain is key for assembling Lcl collagenous triple-helices and has a more preponderate role over the C-domain in Lcl adhesin binding properties. We show that Lcl molecules oligomerize to form large supramolecular complexes to which both, R and C-domains are required. Furthermore, we found that the number of GXY tandem repeats encoded in Lcl R-domain correlates positively with the binding capabilities of Lcl and with the attachment and biofilm production capacity of L. pneumophila strains. Accordingly, the number of GXY tandem repeats in Lcl influences the clinical prevalence of L. pneumophila strains. Therefore, the number of Lcl tandem repeats could be considered as a potential predictor for virulence in L. pneumophila isolates.
Collapse
Affiliation(s)
- Mena Abdel-Nour
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,The Mount Sinai Hospital, Toronto, ON, Canada
| | - Han Su
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada
| | - Shaopei Li
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Deepa Raju
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Feras Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Marine Valton
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Polytech Clermont-Ferrand, Aubière, France
| | - Christophe Ginevra
- CIRI-International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,INSERM U1111, Lyon, France.,Centre International de Recherche en Infectiologie, Claude Bernard University Lyon 1, Lyon, France.,National Center for Legionella, Hospices Civils de Lyon, Lyon, France
| | - Sophie Jarraud
- CIRI-International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,INSERM U1111, Lyon, France.,Centre International de Recherche en Infectiologie, Claude Bernard University Lyon 1, Lyon, France.,National Center for Legionella, Hospices Civils de Lyon, Lyon, France
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,The Mount Sinai Hospital, Toronto, ON, Canada.,BIOASTER Microbiology Technology Institute, Lyon, France
| | - Kagan Kerman
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| |
Collapse
|
10
|
Hochstrasser R, Kessler A, Sahr T, Simon S, Schell U, Gomez-Valero L, Buchrieser C, Hilbi H. The pleiotropic Legionella transcription factor LvbR links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and virulence. Environ Microbiol 2019; 21:1035-1053. [PMID: 30623561 DOI: 10.1111/1462-2920.14523] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/05/2019] [Indexed: 11/29/2022]
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, colonizes amoebae and biofilms in the environment. The opportunistic pathogen employs the Lqs (Legionella quorum sensing) system and the signalling molecule LAI-1 (Legionella autoinducer-1) to regulate virulence, motility, natural competence and expression of a 133 kb genomic "fitness island", including a putative novel regulator. Here, we show that the regulator termed LvbR is an LqsS-regulated transcription factor that binds to the promoter of lpg1056/hnox1 (encoding an inhibitor of the diguanylate cyclase Lpg1057), and thus, regulates proteins involved in c-di-GMP metabolism. LvbR determines biofilm architecture, since L. pneumophila lacking lvbR accumulates less sessile biomass and forms homogeneous mat-like structures, while the parental strain develops more compact bacterial aggregates. Comparative transcriptomics of sessile and planktonic ΔlvbR or ΔlqsR mutant strains revealed concerted (virulence, fitness island, metabolism) and reciprocally (motility) regulated genes in biofilm and broth respectively. Moreover, ΔlvbR is hyper-competent for DNA uptake, defective for phagocyte infection, outcompeted by the parental strain in amoebae co-infections and impaired for cell migration inhibition. Taken together, our results indicate that L. pneumophila LvbR is a novel pleiotropic transcription factor, which links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and pathogen-host cell interactions.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Aline Kessler
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Tobias Sahr
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Sylvia Simon
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Ursula Schell
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Laura Gomez-Valero
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| |
Collapse
|
11
|
Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells. WATER 2018. [DOI: 10.3390/w10020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Hiller M, Lang C, Michel W, Flieger A. Secreted phospholipases of the lung pathogen Legionella pneumophila. Int J Med Microbiol 2017; 308:168-175. [PMID: 29108710 DOI: 10.1016/j.ijmm.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen and the main causative agent of Legionnaires' disease, a potentially fatal pneumonia. The bacteria infect both mammalian cells and environmental hosts, such as amoeba. Inside host cells, the bacteria withstand the multifaceted defenses of the phagocyte and replicate within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). For establishment and maintenance of the infection, L. pneumophila secretes many proteins including effector proteins by means of different secretion systems and outer membrane vesicles. Among these are a large variety of lipolytic enzymes which possess phospholipase/lysophospholipase and/or glycerophospholipid:cholesterol acyltransferase activities. Secreted lipolytic activities may contribute to bacterial virulence, for example via modification of eukaryotic membranes, such as the LCV. In this review, we describe the secretion systems of L. pneumophila, introduce the classification of phospholipases, and summarize the state of the art on secreted L. pneumophila phospholipases. We especially highlight those enzymes secreted via the type II secretion system Lsp, via the type IVB secretion system Dot/Icm, via outer membrane vesicles, and such where the mode of secretion has not yet been defined. We also give an overview on the complexity of their activities, activation mechanisms, localization, growth-phase dependent abundance, and their role in infection.
Collapse
Affiliation(s)
- Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany.
| |
Collapse
|
13
|
Jjemba PK, Johnson W, Bukhari Z, LeChevallier MW. Occurrence and Control of Legionella in Recycled Water Systems. Pathogens 2015; 4:470-502. [PMID: 26140674 PMCID: PMC4584268 DOI: 10.3390/pathogens4030470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/24/2015] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila is on the United States Environmental Protection Agency (USEPA) Candidate Contaminant list (CCL) as an important pathogen. It is commonly encountered in recycled water and is typically associated with amoeba, notably Naegleria fowleri (also on the CCL) and Acanthamoeba sp. No legionellosis outbreak has been linked to recycled water and it is important for the industry to proactively keep things that way. A review was conducted examine the occurrence of Legionella and its protozoa symbionts in recycled water with the aim of developing a risk management strategy. The review considered the intricate ecological relationships between Legionella and protozoa, methods for detecting both symbionts, and the efficacy of various disinfectants.
Collapse
Affiliation(s)
- Patrick K Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - Zia Bukhari
- American Water, 1025 Laurel Oak Road, Voorhees, NJ 08043, USA.
| | | |
Collapse
|
14
|
Abdel-Nour M, Duncan C, Low DE, Guyard C. Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci 2013; 14:21660-75. [PMID: 24185913 PMCID: PMC3856027 DOI: 10.3390/ijms141121660] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 10/14/2013] [Indexed: 11/28/2022] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.
Collapse
Affiliation(s)
- Mena Abdel-Nour
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
| | - Donald E. Low
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-416-880-1339; Fax: +1-416-235-6281
| |
Collapse
|
15
|
Pécastaings S, Roques C. Production of L. pneumophila monospecies biofilms in a low-nutrient-concentration medium. Methods Mol Biol 2013; 954:219-224. [PMID: 23150398 DOI: 10.1007/978-1-62703-161-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In aquatic environments such as water distribution systems, Legionella pneumophila persistence is -correlated to the presence of a biofilm. The method described here permits the formation of a monospecies L. pneumophila biofilm in microplates, enabling the screening of multiple parameters. The culture medium used has a low nutrient concentration compared to the classical Buffered Yeast Extract culture medium. Hence, bacterial growth occurs in the sessile phase, allowing the formation of three-dimensional structures.
Collapse
Affiliation(s)
- Sophie Pécastaings
- Faculté de Pharmacie, Laboratoire de Génie Chimique, BioSym Department, Université de Toulouse, Toulouse, France.
| | | |
Collapse
|
16
|
Stewart CR, Muthye V, Cianciotto NP. Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions. PLoS One 2012; 7:e50560. [PMID: 23185637 PMCID: PMC3503961 DOI: 10.1371/journal.pone.0050560] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the agent of Legionnaires' disease pneumonia, is transmitted to humans following the inhalation of contaminated water droplets. In aquatic systems, L. pneumophila survives much of time within multi-organismal biofilms. Therefore, we examined the ability of L. pneumophila (clinical isolate 130 b) to persist within biofilms formed by various types of aquatic bacteria, using a bioreactor with flow, steel surfaces, and low-nutrient conditions. L. pneumophila was able to intercalate into and persist within a biofilm formed by Klebsiella pneumoniae, Flavobacterium sp. or Pseudomonas fluorescens. The levels of L. pneumophila within these biofilms were as much as 4 × 10(4) CFU per cm(2) of steel coupon and lasted for at least 12 days. These data document that K. pneumoniae, Flavobacterium sp., and P. fluorescens can promote the presence of L. pneumophila in dynamic biofilms. In contrast to these results, L. pneumophila 130 b did not persist within a biofilm formed by Pseudomonas aeruginosa, confirming that some bacteria are permissive for Legionella colonization whereas others are antagonistic. In addition to colonizing certain mono-species biofilms, L. pneumophila 130 b persisted within a two-species biofilm formed by K. pneumoniae and Flavobacterium sp. Interestingly, the legionellae were also able to colonize a two-species biofilm formed by K. pneumoniae and P. aeruginosa, demonstrating that a species that is permissive for L. pneumophila can override the inhibitory effect(s) of a non-permissive species.
Collapse
Affiliation(s)
- Catherine R. Stewart
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Viraj Muthye
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| |
Collapse
|
17
|
Wingender J. Hygienically Relevant Microorganisms in Biofilms of Man-Made Water Systems. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-19940-0_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Shevchuk O, Jäger J, Steinert M. Virulence properties of the legionella pneumophila cell envelope. Front Microbiol 2011; 2:74. [PMID: 21747794 PMCID: PMC3129009 DOI: 10.3389/fmicb.2011.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/30/2011] [Indexed: 01/15/2023] Open
Abstract
The bacterial envelope plays a crucial role in the pathogenesis of infectious diseases. In this review, we summarize the current knowledge of the structure and molecular composition of the Legionella pneumophila cell envelope. We describe lipopolysaccharides biosynthesis and the biological activities of membrane and periplasmic proteins and discuss their decisive functions during the pathogen–host interaction. In addition to adherence, invasion, and intracellular survival of L. pneumophila, special emphasis is laid on iron acquisition, detoxification, key elicitors of the immune response and the diverse functions of outer membrane vesicles. The critical analysis of the literature reveals that the dynamics and phenotypic plasticity of the Legionella cell surface during the different metabolic stages require more attention in the future.
Collapse
Affiliation(s)
- Olga Shevchuk
- Institut für Mikrobiologie, Technische Universität Braunschweig Braunschweig, Germany
| | | | | |
Collapse
|
19
|
Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol 2009; 192:1030-44. [PMID: 20008069 DOI: 10.1128/jb.01272-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella longbeachae causes most cases of legionellosis in Australia and may be underreported worldwide due to the lack of L. longbeachae-specific diagnostic tests. L. longbeachae displays distinctive differences in intracellular trafficking, caspase 1 activation, and infection in mouse models compared to Legionella pneumophila, yet these two species have indistinguishable clinical presentations in humans. Unlike other legionellae, which inhabit freshwater systems, L. longbeachae is found predominantly in moist soil. In this study, we sequenced and annotated the genome of an L. longbeachae clinical isolate from Oregon, isolate D-4968, and compared it to the previously published genomes of L. pneumophila. The results revealed that the D-4968 genome is larger than the L. pneumophila genome and has a gene order that is different from that of the L. pneumophila genome. Genes encoding structural components of type II, type IV Lvh, and type IV Icm/Dot secretion systems are conserved. In contrast, only 42/140 homologs of genes encoding L. pneumophila Icm/Dot substrates have been found in the D-4968 genome. L. longbeachae encodes numerous proteins with eukaryotic motifs and eukaryote-like proteins unique to this species, including 16 ankyrin repeat-containing proteins and a novel U-box protein. We predict that these proteins are secreted by the L. longbeachae Icm/Dot secretion system. In contrast to the L. pneumophila genome, the L. longbeachae D-4968 genome does not contain flagellar biosynthesis genes, yet it contains a chemotaxis operon. The lack of a flagellum explains the failure of L. longbeachae to activate caspase 1 and trigger pyroptosis in murine macrophages. These unique features of L. longbeachae may reflect adaptation of this species to life in soil.
Collapse
|
20
|
Abstract
Legionella pneumophila, the aetiological agent of 90% of legionellosis cases, is a common inhabitant of natural and anthropogenic freshwater environments, where it resides in biofilms. Biofilms are defined as complex, natural assemblages of microorganisms that involve a multitude of trophic interactions. A thorough knowledge and understanding of Legionella ecology in relation to biofilm communities is of primary importance in the search for innovative and effective control strategies to prevent the occurrence of disease cases. This review provides a critical update on the state-of-the-art progress in understanding the mechanisms and factors affecting the biofilm life cycle of L. pneumophila. Particular emphasis is given to discussing the different strategies this human pathogen uses to grow and retain itself in biofilm communities. Biofilms develop not only at solid-water interfaces (substrate-associated biofilms), but also at the water-air interface (floating biofilms). Disturbance of the water surface can lead to liberation of aerosols derived from the floating biofilm into the atmosphere that allow transmission of biofilm-associated pathogens over considerable distances. Recent data concerning the occurrence and replication of L. pneumophila in floating biofilms are also elaborated and discussed.
Collapse
Affiliation(s)
- Priscilla Declerck
- Laboratory of Aquatic Ecology and Evolutionary Biology, Zoological Institute, Katholieke Universiteit Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.
| |
Collapse
|
21
|
Rossier O, Dao J, Cianciotto NP. A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. MICROBIOLOGY (READING, ENGLAND) 2009; 155:882-890. [PMID: 19246759 PMCID: PMC2662391 DOI: 10.1099/mic.0.023218-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type II protein secretion plays a role in a wide variety of functions that are important for the ecology and pathogenesis of Legionella pneumophila. Perhaps most dramatic is the critical role that this secretion pathway has in L. pneumophila intracellular infection of aquatic protozoa. Recently, we showed that virulent L. pneumophila strain 130b secretes RNase activity through its type II secretion system. We now report the cloning and mutational analysis of the gene (srnA) encoding that novel type of secreted activity. The SrnA protein was defined as being a member of the T2 family of secreted RNases. Supernatants from mutants inactivated for srnA completely lacked RNase activity, indicating that SrnA is the major secreted RNase of L. pneumophila. Although srnA mutants grew normally in bacteriological media and human U937 cell macrophages, they were impaired in their ability to grow within Hartmannella vermiformis amoebae. This finding represents the second identification of a L. pneumophila type II effector being necessary for optimal intracellular infection of amoebae, with the first being the ProA zinc metalloprotease. Newly constructed srnA proA double mutants displayed an even larger infection defect that appeared to be the additive result of losing both SrnA and ProA. Overall, these data represent the first demonstration of a secreted RNase promoting an intracellular infection event, and support our long-standing hypothesis that the infection defects of L. pneumophila type II secretion mutants are due to the loss of multiple secreted effectors.
Collapse
Affiliation(s)
- Ombeline Rossier
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Jenny Dao
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Abstract
Twitching motility is a form of bacterial translocation over solid or semi-solid surfaces mediated by the extension, tethering, and subsequent retraction of type IV pili. These pili are also known to be involved in virulence, biofilm formation, formation of fruiting bodies, horizontal gene transfer, and protein secretion. We have characterized the presence of twitching motility on agar plates in Legionella pneumophila, the etiological agent of Legionnaires' disease. By examining twitching motility zones, we have demonstrated that twitching motility was dependent on agar thickness/concentration, the chemical composition of the media, the presence of charcoal and cysteine, proximity to other bacteria, and temperature. A knockout mutant of the pilus subunit, pilE, exhibited a total loss of twitching motility at 37 degrees C, but not at 27 degrees C, suggesting either the existence of a compensating pilus subunit or of another twitching motility system in this organism.
Collapse
Affiliation(s)
- David A Coil
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
23
|
Importance of type II secretion for survival of Legionella pneumophila in tap water and in amoebae at low temperatures. Appl Environ Microbiol 2008; 74:5583-8. [PMID: 18621869 DOI: 10.1128/aem.00067-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila type II secretion mutants showed reduced survival in both tap water at 4 to 17 degrees C and aquatic amoebae at 22 to 25 degrees C. Wild-type supernatants stimulated the growth of these mutants, indicating that secreted factors promote low-temperature survival. There was a correlation between low-temperature survival and secretion function when 12 additional Legionella species were examined.
Collapse
|
24
|
Oberdorfer K, Müssigbrodt G, Wendt C. Genetic diversity of Legionella pneumophila in hospital water systems. Int J Hyg Environ Health 2008; 211:172-8. [PMID: 17652025 DOI: 10.1016/j.ijheh.2007.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 03/07/2007] [Accepted: 04/16/2007] [Indexed: 11/25/2022]
Abstract
It has been shown that different patients who had acquired legionellosis in a hospital setting were infected with the same strain even years apart. However, there are no longitudinal data describing the molecular epidemiology of Legionella pneumophila strains that contaminate a water system. This raised the question if there are any shifts of L. pneumophila strains over time, or after carrying out control measures. Using genotyping on a large collection of isolates, we investigated in a retrospective study the distribution of L. pneumophila serogroups and PFGE types in six different hospitals of the University of Heidelberg between 1991 and 2001. A total of 2012 water samples were drawn for routine testing and for evaluation of control measures, 747 samples were positive for L. pneumophila. Serogroups were determined by latex agglutination or by direct fluorescence assay; and 515 L. pneumophila isolates from water systems and six from patients underwent PFGE typing after SfiI-restriction. We identified seven serogroups and 19 genotypes among the water isolates. Each hospital had one to four predominating PFGE types that were stable over the investigation period. The oldest buildings in hospitals 4 and 5 (built 1876 and 1907) had more types than the newest one (built 1986). In all hospitals PFGE types were identified that could be found only sporadically. Although each hospital had its own warm water supply, we identified types that could be found in more than one hospital. However, there was no overlap of types in buildings that were fed from different wells. Infrequently occurring nosocomial legionellosis (n=3) were only caused by predominant strains. Contamination of water supplies seemed to be dominated by stable genotypes, even after various control measures. Additional genotypes could be isolated sporadically, however, their pathogenetic relevance seemed to be questionable.
Collapse
Affiliation(s)
- Klaus Oberdorfer
- Institute of Hygiene, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
25
|
De Buck E, Anné J, Lammertyn E. The role of protein secretion systems in the virulence of the intracellular pathogen Legionella pneumophila. MICROBIOLOGY-SGM 2008; 153:3948-3953. [PMID: 18048909 DOI: 10.1099/mic.0.2007/012039-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is a Gram-negative facultative intracellular pathogen, which multiplies in protozoa in its natural environment and can cause Legionnaires' disease in man, following infection of alveolar macrophages. In each of the different stages of infection of host cells, virulence proteins need to be delivered to their specific place of action and therefore must cross two barriers: the inner and the outer membrane. To date, several specialized secretion machineries for transport of proteins across the inner and outer membrane have been identified in L. pneumophila. Most of these secretion pathways have been shown to affect the virulence of this pathogen. An overview will be given of all the secretion pathways and the proteins transported by these secretion systems identified so far, with special attention paid to those that play a role in the pathogenicity of L. pneumophila.
Collapse
Affiliation(s)
- Emmy De Buck
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|