1
|
Li H, Quan S, He W. A genetically encoded fluorescent biosensor for sensitive detection of cellular c-di-GMP levels in Escherichia coli. Front Chem 2025; 12:1528626. [PMID: 39867593 PMCID: PMC11757272 DOI: 10.3389/fchem.2024.1528626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Cyclic di-guanosine monophosphate (c-di-GMP) acts as a second messenger regulating bacterial behaviors including cell cycling, biofilm formation, adhesion, and virulence. Monitoring c-di-GMP levels is crucial for understanding these processes and designing inhibitors to combat biofilm-related antibiotic resistance. Here, we developed a genetically encoded biosensor, cdiGEBS, based on the transcriptional activity of the c-di-GMP-responsive transcription factor MrkH. Notably, cdiGEBS can detect both low and high cellular c-di-GMP levels, with a high fluorescence dynamic change of 23-fold. Moreover, it can detect subtle changes in c-di-GMP concentrations due to variations in the expression of c-di-GMP synthesis or degradation enzymes and can distinguish different synthesis activities among WspR mutants. These capabilities allow us to apply cdiGEBS for identifying new diguanylate cyclases and evaluating chemicals that modulate c-di-GMP levels, highlighting its potential as a high-throughput tool for screening inhibitors of c-di-GMP synthesis enzymes. Overall, cdiGEBS enhances the study of c-di-GMP-regulated functions and holds the potential for screening antimicrobials targeting c-di-GMP or its synthesis enzymes.
Collapse
Affiliation(s)
- He Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Shu Quan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Wei He
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Jacquiod S, Olsen NMC, Blouin M, Røder HL, Burmølle M. Genotypic variations and interspecific interactions modify gene expression and biofilm formation of Xanthomonas retroflexus. Environ Microbiol 2023; 25:3225-3238. [PMID: 37740256 DOI: 10.1111/1462-2920.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023]
Abstract
Multispecies biofilms are important models for studying the evolution of microbial interactions. Co-cultivation of Xanthomonas retroflexus (XR) and Paenibacillus amylolyticus (PA) systemically leads to the appearance of an XR wrinkled mutant (XRW), increasing biofilm production. The nature of this new interaction and the role of each partner remain unclear. We tested the involvement of secreted molecular cues in this interaction by exposing XR and XRW to PA or its supernatant and analysing the response using RNA-seq, colony-forming unit (CFU) estimates, biofilm quantification, and microscopy. Compared to wild type, the mutations in XRW altered its gene expression and increased its CFU number. These changes matched the reported effects for one of the mutated genes: a response regulator part of a two-component system involved in environmental sensing. When XRW was co-cultured with PA or its supernatant, the mutations effects on XRW gene expression were masked, except for genes involved in sedentary lifestyle, being consistent with the higher biofilm production. It appears that the higher biofilm production was the result of the interaction between the genetic context (mutations) and the biotic environment (PA signals). Regulatory genes involved in environmental sensing need to be considered to shed further light on microbial interactions.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Nanna Mee Coops Olsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Blouin
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Identification of Cyclic-di-GMP-Modulating Protein Residues by Bidirectionally Evolving a Social Behavior in Pseudomonas fluorescens. mSystems 2022; 7:e0073722. [PMID: 36190139 PMCID: PMC9600634 DOI: 10.1128/msystems.00737-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modulation of the intracellular cyclic di-GMP (c-di-GMP) pool is central to the formation of structured bacterial communities. Genome annotations predict the presence of dozens of conserved c-di-GMP catalytic enzymes in many bacterial species, but the functionality and regulatory control of the vast majority remain underexplored. Here, we begin to fill this gap by utilizing an experimental evolution system in Pseudomonas fluorescens Pf0-1, which repeatedly produces a unique social behavior through bidirectional transitions between two distinct phenotypes converging on c-di-GMP modulation. Parallel evolution of 33 lineages captured 147 unique mutations among 191 evolved isolates in genes that are empirically demonstrated, bioinformatically predicted, or previously unknown to impact the intracellular pool of c-di-GMP. Quantitative chemistry confirmed that each mutation causing the phenotypic shift either amplifies or reduces c-di-GMP production. We identify missense or in-frame deletion mutations in numerous diguanylate cyclase genes that largely fall outside the conserved catalytic domain. We also describe a novel relationship between a regulatory component of branched-chain amino acid biosynthesis and c-di-GMP production, and predict functions of several other unexpected proteins that clearly impact c-di-GMP production. Sequential mutations that continuously disrupt or recover c-di-GMP production across discrete functional elements suggest a complex and underappreciated interconnectivity within the c-di-GMP regulome of P. fluorescens. IMPORTANCE Microbial communities comprise densely packed cells where competition for space and resources is fierce. Aging colonies of Pseudomonas fluorescens are known to repeatedly produce mutants with two distinct phenotypes that physically work together to spread away from the overcrowded population. We demonstrate that the mutants with one phenotype produce high levels of cyclic di-GMP (c-di-GMP) and those with the second phenotype produce low levels. C-di-GMP is an intracellular signaling molecule which regulates many bacterial traits that cause tremendous clinical and environmental problems. Here, we analyze 147 experimentally selected mutations, which manifest either of the two phenotypes, to identify key residues in diverse proteins that force or shut down c-di-GMP production. Our data indicate that the intracellular pool of c-di-GMP is modulated through the catalytic activities of many independent c-di-GMP enzymes, which appear to be in tune with several proteins with no known links to c-di-GMP modulation.
Collapse
|
4
|
Alviz-Gazitua P, González A, Lee MR, Aranda CP. Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:431-447. [PMID: 35486299 DOI: 10.1007/s10126-022-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.
Collapse
Affiliation(s)
- P Alviz-Gazitua
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - A González
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - M R Lee
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km 6, P. Box 5480000, Puerto Montt, Chile
| | - C P Aranda
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile.
| |
Collapse
|
5
|
Krishna PS, Woodcock SD, Pfeilmeier S, Bornemann S, Zipfel C, Malone JG. Pseudomonas syringae addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2206-2221. [PMID: 34905021 PMCID: PMC8982409 DOI: 10.1093/jxb/erab550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Prior to infection, phytopathogenic bacteria face a challenging environment on the plant surface, where they are exposed to nutrient starvation and abiotic stresses. Pathways enabling surface adhesion, stress tolerance, and epiphytic survival are important for successful plant pathogenesis. Understanding the roles and regulation of these pathways is therefore crucial to fully understand bacterial plant infections. The phytopathogen Pseudomonas syringae pv. tomato (Pst) encodes multiple polysaccharides that are implicated in biofilm formation, stress survival, and virulence in other microbes. To examine how these polysaccharides impact Pst epiphytic survival and pathogenesis, we analysed mutants in multiple polysaccharide loci to determine their intersecting contributions to epiphytic survival and infection. In parallel, we used qRT-PCR to analyse the regulation of each pathway. Pst polysaccharides are tightly coordinated by multiple environmental signals. Nutrient availability, temperature, and surface association strongly affect the expression of different polysaccharides under the control of the signalling protein genes ladS and cbrB and the second messenger cyclic-di-GMP. Furthermore, functionally redundant, combinatorial phenotypes were observed for several polysaccharides. Exopolysaccharides play a role in mediating leaf adhesion, while α-glucan and alginate together confer desiccation tolerance. Our results suggest that polysaccharides play important roles in overcoming environmental challenges to Pst during plant infection.
Collapse
Affiliation(s)
- Pilla Sankara Krishna
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stuart Daniel Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sebastian Pfeilmeier
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stephen Bornemann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jacob George Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
6
|
Nie H, Xiao Y, Song M, Wu N, Peng Q, Duan W, Chen W, Huang Q. Wsp system oppositely modulates antibacterial activity and biofilm formation via FleQ-FleN complex in Pseudomonas putida. Environ Microbiol 2022; 24:1543-1559. [PMID: 35178858 DOI: 10.1111/1462-2920.15905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
Type VI secretion systems (T6SS) are specific antibacterial weapons employed by diverse bacteria to protect themselves from competitors. Pseudomonas putida KT2440 possesses a functional T6SS (K1-T6SS) and exhibits antibacterial activity towards a broad range of bacteria. Here we found that the Wsp signal transduction system regulated K1-T6SS expression via synthesizing the second messenger cyclic di-GMP (c-di-GMP), thus mediating antibacterial activity in P. putida. High-level c-di-GMP produced by Wsp system repressed the transcription of K1-T6SS genes in structural operon and vgrG1 operon. Transcriptional regulator FleQ and ATPase FleN functioned as repressors in the Wsp system-modulated K1-T6SS transcription. However, FleQ and FleN functioned as activators in biofilm formation, and Wsp system promoted biofilm formation largely in a FleQ/FleN-dependent manner. Furthermore, FleQ-FleN complex bound directly to the promoter of K1-T6SS structural operon in vitro, and c-di-GMP promoted the binding. Besides, P. putida biofilm cells showed higher c-di-GMP levels and lower antibacterial activity than planktonic cells. Overall, our findings reveal a mechanism by which Wsp system oppositely modulates antibacterial activity and biofilm formation via FleQ-FleN, and demonstrate the relationship between plankton/biofilm lifestyles and antibacterial activity in P. putida.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nianqi Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
8
|
Mukherjee A, Dechow-Seligmann G, Gallie J. Evolutionary flexibility in routes to mat formation by Pseudomonas. Mol Microbiol 2021; 117:394-410. [PMID: 34856020 DOI: 10.1111/mmi.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Many bacteria form mats at the air-liquid interface of static microcosms. These structures typically involve the secretion of exopolysaccharides, the production of which is often controlled by the secondary messenger c-di-GMP. Mechanisms of mat formation have been particularly well characterized in Pseudomonas fluorescens SBW25; stimuli or mutations that increase c-di-GMP production by diguanylate cyclases (WspR, AwsR, and MwsR) result in the secretion of cellulose and mat formation. Here, we characterize and compare mat formation in two close relatives of SBW25: Pseudomonas simiae PICF7 and P. fluorescens A506. We find that PICF7-the strain more closely related to SBW25-can form mats through mutations affecting the activity of the same three diguanylate cyclases as SBW25. However, instead of cellulose, these mutations activate production of the exopolysaccharide Pel. We also provide evidence for at least two further-as yet uncharacterized-routes to mat formation by PICF7. P. fluorescens A506, while retaining the same mutational routes to mat formation as SBW25 and PICF7, preferentially forms mats by a semi-heritable mechanism that culminates in Psl and Pga over-production. Our results demonstrate a high level of evolutionary flexibility in the molecular and structural routes to mat formation, even among close relatives.
Collapse
Affiliation(s)
- Anuradha Mukherjee
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Gunda Dechow-Seligmann
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
9
|
Evolutionary Divergence of the Wsp Signal Transduction Systems in Beta- and Gammaproteobacteria. Appl Environ Microbiol 2021; 87:e0130621. [PMID: 34495711 PMCID: PMC8552884 DOI: 10.1128/aem.01306-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria rapidly adapt to their environment by integrating external stimuli through diverse signal transduction systems. Pseudomonas aeruginosa, for example, senses surface contact through the Wsp signal transduction system to trigger the production of cyclic di-GMP. Diverse mutations in wsp genes that manifest enhanced biofilm formation are frequently reported in clinical isolates of P. aeruginosa and in biofilm studies of Pseudomonas spp. and Burkholderia cenocepacia. In contrast to the convergent phenotypes associated with comparable wsp mutations, we demonstrate that the Wsp system in B. cenocepacia does not impact intracellular cyclic di-GMP levels, unlike that in Pseudomonas spp. Our current mechanistic understanding of the Wsp system is based entirely on the study of four Pseudomonas spp., and its phylogenetic distribution remains unknown. Here, we present a broad phylogenetic analysis to show that the Wsp system originated in the betaproteobacteria and then horizontally transferred to Pseudomonas spp., the sole member of the gammaproteobacteria. Alignment of 794 independent Wsp systems with reported mutations from the literature identified key amino acid residues that fall within and outside annotated functional domains. Specific residues that are highly conserved but uniquely modified in B. cenocepacia likely define mechanistic differences among Wsp systems. We also find the greatest sequence variation in the extracellular sensory domain of WspA, indicating potential adaptations to diverse external stimuli beyond surface contact sensing. This study emphasizes the need to better understand the breadth of functional diversity of the Wsp system as a major regulator of bacterial adaptation beyond B. cenocepacia and select Pseudomonas spp. IMPORTANCE The Wsp signal transduction system serves as an important model system for studying how bacteria adapt to living in densely structured communities known as biofilms. Biofilms frequently cause chronic infections and environmental fouling, and they are very difficult to eradicate. In Pseudomonas aeruginosa, the Wsp system senses contact with a surface, which in turn activates specific genes that promote biofilm formation. We demonstrate that the Wsp system in Burkholderia cenocepacia regulates biofilm formation uniquely from that in Pseudomonas species. Furthermore, a broad phylogenetic analysis reveals the presence of the Wsp system in diverse bacterial species, and sequence analyses of 794 independent systems suggest that the core signaling components function similarly but with key differences that may alter what or how they sense. This study shows that Wsp systems are highly conserved and more broadly distributed than previously thought, and their unique differences likely reflect adaptations to distinct environments.
Collapse
|
10
|
Sierra Cacho D, Zamorano Sánchez DS, Xiqui-Vázquez ML, Viruega Góngora VI, Ramírez-Mata A, Baca BE. CdgC, a Cyclic-di-GMP Diguanylate Cyclase of Azospirillum baldaniorum Is Involved in Internalization to Wheat Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:748393. [PMID: 34745182 PMCID: PMC8564387 DOI: 10.3389/fpls.2021.748393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Azospirillum baldaniorum is a plant growth-promoting rhizobacterium (PGPR) capable of fixing nitrogen, the synthesis of several phytohormones including indole-acetic acid, and induction of plant defenses against phytopathogens. To establish a successful and prolonged bacteria-plant interaction, A. baldaniorum can form biofilms, bacterial communities embedded in a self-made matrix formed by extracellular polymeric substances which provide favorable conditions for survival. A key modulator of biofilm formation is the second messenger bis-(3'-5')-cyclic-dimeric-GMP (c-di-GMP), which is synthesized by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases. In this study, we analyzed the contribution of a previously uncharacterized diguanylate cyclase designated CdgC, to biofilm formation and bacterial-plant interaction dynamics. We showed that CdgC is capable of altering c-di-GMP levels in a heterologous host, strongly supporting its function as a DGC. The deletion of cdgC resulted in alterations in the three-dimensional structure of biofilms in a nitrogen-source dependent manner. CdgC was required for optimal colonization of wheat roots. Since we also observed that CdgC played an important role in exopolysaccharide production, we propose that this signaling protein activates a physiological response that results in the strong attachment of bacteria to the roots, ultimately contributing to an optimal bacterium-plant interaction. Our results demonstrate that the ubiquitous second messenger c-di-GMP is a key factor in promoting plant colonization by the PGPR A. baldaniorum by allowing proficient internalization in wheat roots. Understanding the molecular basis of PGPR-plant interactions will enable the design of better biotechnological strategies of agro-industrial interest.
Collapse
Affiliation(s)
- Daniel Sierra Cacho
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - David S. Zamorano Sánchez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Maria Luisa Xiqui-Vázquez
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - Víctor Iván Viruega Góngora
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - Beatriz E. Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| |
Collapse
|
11
|
Nair HAS, Subramoni S, Poh WH, Hasnuddin NTB, Tay M, Givskov M, Tolker-Nielsen T, Kjelleberg S, McDougald D, Rice SA. Carbon starvation of Pseudomonas aeruginosa biofilms selects for dispersal insensitive mutants. BMC Microbiol 2021; 21:255. [PMID: 34551714 PMCID: PMC8459498 DOI: 10.1186/s12866-021-02318-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilms disperse in response to specific environmental cues, such as reduced oxygen concentration, changes in nutrient concentration and exposure to nitric oxide. Interestingly, biofilms do not completely disperse under these conditions, which is generally attributed to physiological heterogeneity of the biofilm. However, our results suggest that genetic heterogeneity also plays an important role in the non-dispersing population of P. aeruginosa in biofilms after nutrient starvation. RESULTS In this study, 12.2% of the biofilm failed to disperse after 4 d of continuous starvation-induced dispersal. Cells were recovered from the dispersal phase as well as the remaining biofilm. For 96 h starved biofilms, rugose small colony variants (RSCV) were found to be present in the biofilm, but were not observed in the dispersal effluent. In contrast, wild type and small colony variants (SCV) were found in high numbers in the dispersal phase. Genome sequencing of these variants showed that most had single nucleotide mutations in genes associated with biofilm formation, e.g. in wspF, pilT, fha1 and aguR. Complementation of those mutations restored starvation-induced dispersal from the biofilms. Because c-di-GMP is linked to biofilm formation and dispersal, we introduced a c-di-GMP reporter into the wild-type P. aeruginosa and monitored green fluorescent protein (GFP) expression before and after starvation-induced dispersal. Post dispersal, the microcolonies were smaller and significantly brighter in GFP intensity, suggesting the relative concentration of c-di-GMP per cell within the microcolonies was also increased. Furthermore, only the RSCV showed increased c-di-GMP, while wild type and SCV were no different from the parental strain. CONCLUSIONS This suggests that while starvation can induce dispersal from the biofilm, it also results in strong selection for mutants that overproduce c-di-GMP and that fail to disperse in response to the dispersal cue, starvation.
Collapse
Affiliation(s)
- Harikrishnan A S Nair
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,Interdisciplinary Graduate School, Singapore, Singapore.,Present address: Eppendorf AG, Barkhausenweg 1, 22339, Hamburg, Germany
| | - Sujatha Subramoni
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Wee Han Poh
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | | | - Martin Tay
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,Present address: Public Utilities Board, Government of Singapore, Singapore, Singapore
| | - Michael Givskov
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Staffan Kjelleberg
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Diane McDougald
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore. .,The Ithree Institute, University of Technology Sydney, Sydney, Australia.
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,The Ithree Institute, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
12
|
Banerjee P, Sahoo PK, Sheenu, Adhikary A, Ruhal R, Jain D. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Aspects Med 2021; 81:101001. [PMID: 34311995 DOI: 10.1016/j.mam.2021.101001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and is the primary cause of nosocomial infections. Biofilm formation by this organism results in chronic and hard to eradicate infections. The intracellular signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a secondary messenger in bacterial cells crucial for motile to sessile transition. The signalling pathway components encompass two classes of enzymes with antagonistic activities, the diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that regulate the cellular levels of c-di-GMP at distinct stages of biofilm initiation, maturation and dispersion. This review summarizes the structural analysis and functional studies of the DGCs and PDEs involved in biofilm regulation in P. aeruginosa. In addition, we also describe the effector proteins that sense the perturbations in c-di-GMP levels to elicit a functional output. Finally, we discuss possible mechanisms that allow the dynamic levels of c-di-GMP to regulate cognate cellular response. Uncovering the details of the regulation of the c-di-GMP signalling pathway is vital for understanding the behaviour of the pathogen and characterization of novel targets for anti-biofilm interventions.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Anirban Adhikary
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
13
|
Bible AN, Chang M, Morrell-Falvey JL. Identification of a diguanylate cyclase expressed in the presence of plants and its application for discovering candidate gene products involved in plant colonization by Pantoea sp. YR343. PLoS One 2021; 16:e0248607. [PMID: 34288916 PMCID: PMC8294551 DOI: 10.1371/journal.pone.0248607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
Microbial colonization of plant roots is a highly complex process that requires the coordination and regulation of many gene networks, yet the identities and functions of many of these gene products have yet to be discovered. Pantoea sp. YR343, a gamma-proteobacterium isolated from the rhizosphere of Populus deltoides, forms robust biofilms along the root surfaces of Populus and possesses plant growth-promoting characteristics. In this work, we identified three diguanylate cyclases in the plant-associated microbe Pantoea sp. YR343 that are expressed in the presence of plant roots. One of these diguanylate cyclases, DGC2884, localizes to discrete sites in the cells and its overexpression results in reduced motility and increased EPS production and biofilm formation. We performed a genetic screen by expressing this diguanylate cyclase from an inducible promoter in order to identify candidate gene products that may be involved in root colonization by Pantoea sp. YR343. Further, we demonstrate the importance of other domains in DGC2884 to its activity, which in combination with the genes identified by transposon mutagenesis, may yield insights into the mechanisms of plant association as well as the activity and regulation of homologous enzymes in medically and agriculturally relevant microbes.
Collapse
Affiliation(s)
- Amber N. Bible
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | - Mang Chang
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, United States of America
| | - Jennifer L. Morrell-Falvey
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
14
|
Yan W, Wei Y, Fan S, Yu C, Tian F, Wang Q, Yang F, Chen H. Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae. Microorganisms 2021; 9:microorganisms9030495. [PMID: 33652966 PMCID: PMC7996900 DOI: 10.3390/microorganisms9030495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a secondary messenger present in bacteria. The GGDEF-domain proteins can participate in the synthesis of c-di-GMP as diguanylate cyclase (DGC) or bind with c-di-GMP to function as a c-di-GMP receptor. In the genome of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, there are 11 genes that encode single GGDEF domain proteins. The GGDEF domain protein, PXO_02019 (here GdpX6 [GGDEF-domain protein of Xoo6]) was characterized in the present study. Firstly, the DGC and c-di-GMP binding activity of GdpX6 was confirmed in vitro. Mutation of the crucial residues D403 residue of the I site in GGDEF motif and E411 residue of A site in GGDEF motif of GdpX6 abolished c-di-GMP binding activity and DGC activity of GdpX6, respectively. Additionally, deletion of gdpX6 significantly increased the virulence, swimming motility, and decreased sliding motility and biofilm formation. In contrast, overexpression of GdpX6 in wild-type PXO99A strain decreased the virulence and swimming motility, and increased sliding motility and biofilm formation. Mutation of the E411 residue but not D403 residue of the GGDEF domain in GdpX6 abolished its biological functions, indicating the DGC activity to be imperative for its biological functions. Furthermore, GdpX6 exhibited multiple subcellular localization in bacterial cells, and D403 or E411 did not contribute to the localization of GdpX6. Thus, we concluded that GdpX6 exhibits DGC activity to control the virulence, swimming and sliding motility, and biofilm formation in Xoo.
Collapse
Affiliation(s)
- Weiwei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
- The MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Yiming Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Shandong Academy of Sciences, Jinan 250014, China;
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Qi Wang
- The MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
- Correspondence: ; Tel.: +86-010-62896063
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| |
Collapse
|
15
|
Identification of Three New GGDEF and EAL Domain-Containing Proteins Participating in the Scr Surface Colonization Regulatory Network in Vibrio parahaemolyticus. J Bacteriol 2021; 203:JB.00409-20. [PMID: 33199284 DOI: 10.1128/jb.00409-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus rapidly colonizes surfaces using swarming motility. Surface contact induces the surface-sensing regulon, including lateral flagellar genes, spurring dramatic shifts in physiology and behavior. The bacterium can also adopt a sessile, surface-associated lifestyle and form robust biofilms. These alternate colonization strategies are influenced reciprocally by the second messenger c-di-GMP. Although V. parahaemolyticus possesses 43 predicted proteins with the c-di-GMP-forming GGDEF domain, none have been previously been identified as contributors to surface colonization. We sought to explore this knowledge gap by using a suppressor transposon screen to restore the swarming motility of a nonswarming, high-c-di-GMP strain. Two diguanylate cyclases, ScrJ and ScrL, each containing tetratricopeptide repeat-coupled GGDEF domains, were demonstrated to contribute additively to swarming gene repression. Both proteins required an intact catalytic motif to regulate. Another suppressor mapped in lafV, the last gene in a lateral flagellar operon. Containing a degenerate phosphodiesterase (EAL) domain, LafV repressed transcription of multiple genes in the surface sensing regulon; its repressive activity required LafK, the primary swarming regulator. Mutation of the signature EAL motif had little effect on LafV's repressive activity, suggesting that LafV belongs to the subclass of EAL-type proteins that are regulatory but not enzymatic. Consistent with these activities and their predicted effects on c-di-GMP, scrJ and scrL but not lafV, mutants affected the transcription of the c-di-GMP-responsive biofilm reporter cpsA::lacZ Our results expand the knowledge of the V. parahaemolyticus GGDEF/EAL repertoire and its roles in this surface colonization regulatory network.IMPORTANCE A key survival decision, in the environment or the host, is whether to emigrate or aggregate. In bacteria, c-di-GMP signaling almost universally influences solutions to this dilemma. In V. parahaemolyticus, c-di-GMP reciprocally regulates swarming and sticking (i.e., biofilm formation) programs of surface colonization. Key c-di-GMP-degrading phosphodiesterases responsive to quorum and nutritional signals have been previously identified. c-di-GMP binding transcription factors programming biofilm development have been studied. Here, we further develop the blueprint of the c-di-GMP network by identifying new participants involved in dictating the complex decision of whether to swarm or stay. These include diguanylate cyclases with tetratricopeptide domains and a degenerate EAL protein that, analogously to the negative flagellar regulator RflP/YdiV of enteric bacteria, serves to regulate swarming.
Collapse
|
16
|
Pseudomonas aeruginosa as a Model To Study Chemosensory Pathway Signaling. Microbiol Mol Biol Rev 2021; 85:85/1/e00151-20. [PMID: 33441490 DOI: 10.1128/mmbr.00151-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria have evolved a variety of signal transduction mechanisms that generate different outputs in response to external stimuli. Chemosensory pathways are widespread in bacteria and are among the most complex signaling mechanisms, requiring the participation of at least six proteins. These pathways mediate flagellar chemotaxis, in addition to controlling alternative functions such as second messenger levels or twitching motility. The human pathogen Pseudomonas aeruginosa has four different chemosensory pathways that carry out different functions and are stimulated by signal binding to 26 chemoreceptors. Recent research employing a diverse range of experimental approaches has advanced enormously our knowledge on these four pathways, establishing P. aeruginosa as a primary model organism in this field. In the first part of this article, we review data on the function and physiological relevance of chemosensory pathways as well as their involvement in virulence, whereas the different transcriptional and posttranscriptional regulatory mechanisms that govern pathway function are summarized in the second part. The information presented will be of help to advance the understanding of pathway function in other organisms.
Collapse
|
17
|
Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors. Methods Mol Biol 2021; 2323:121-140. [PMID: 34086278 DOI: 10.1007/978-1-0716-1499-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The development of fluorescent biosensors is motivated by the desire to monitor cellular metabolite levels in real time. Most genetically encodable fluorescent biosensors are based on receptor proteins fused to fluorescent protein domains. More recently, small molecule-binding riboswitches have been adapted for use as fluorescent biosensors through fusion to the in vitro selected Spinach aptamer, which binds a profluorescent, cell-permeable small molecule mimic of the GFP chromophore, DFHBI. Here we describe methods to prepare and analyze riboswitch-Spinach tRNA fusions for ligand-dependent activation of fluorescence in vivo. Example procedures describe the use of the Vc2-Spinach tRNA biosensor to monitor perturbations in cellular levels of cyclic di-GMP using either fluorescence microscopy or flow cytometry. In this updated chapter, we have added procedures on using biosensors in flow cytometry to detect exogenously added compounds. The relative ease of cloning and imaging of these biosensors, as well as their modular nature, should make this method appealing to other researchers interested in utilizing riboswitch-based biosensors for metabolite sensing.
Collapse
|
18
|
Nie H, Xiao Y, He J, Liu H, Nie L, Chen W, Huang Q. Phenotypic-genotypic analysis of GGDEF/EAL/HD-GYP domain-encoding genes in Pseudomonas putida. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:38-48. [PMID: 31691501 DOI: 10.1111/1758-2229.12808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Cyclic diguanylate (c-di-GMP) is a broadly conserved bacterial signalling molecule that modulates diverse cellular processes, such as biofilm formation, colony morphology and swimming motility. The intracellular level of c-di-GMP is controlled by diguanylate cyclases (DGCs) with GGDEF domain and phosphodiesterases (PDEs) with either EAL or HD-GYP domain. Pseudomonas putida KT2440 has a large group of genes on its genome encoding proteins with GGDEF/EAL/HD-GYP domains. However, phenotypic-genotypic correlation and c-di-GMP metabolism of these genes were largely unknown. Herein, by systematically constructing deletion mutants/overexpression strains of the 42 predicted c-di-GMP metabolism-related genes and analysing the phenotypes, we preliminarily revealed the role of each gene in biofilm formation, colony morphology and swimming motility. Subsequent results from protein sequence alignments and cellular c-di-GMP assessment indicated that 25 out of the 42 genes were likely to encode DGCs, nine genes were predicted to encode PDEs, four genes encoded bifunctional enzymes and the other four genes encoded enzymatically inactive proteins. This study offers a basic understanding of the roles of these 42 genes and can serve as a toolkit for investigators to further elucidate the functions of these GGDEF and EAL/HD-GYP domain-containing proteins.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzhi He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organisms can respond to varying light conditions using a wide range of sensory photoreceptors. These photoreceptors can be standalone proteins or represent a module in multidomain proteins, where one or more modules sense light as an input signal which is converted into an output response via structural rearrangements in these receptors. The output signals are utilized downstream by effector proteins or multiprotein clusters to modulate their activity, which could further affect specific interactions, gene regulation or enzymatic catalysis. The blue-light using flavin (BLUF) photosensory module is an autonomous unit that is naturally distributed among functionally distinct proteins. In this study, we identified 34 BLUF photoreceptors of prokaryotic and eukaryotic origin from available bioinformatics sequence databases. Interestingly, our analysis shows diverse BLUF-effector arrangements with a functional association that was previously unknown or thought to be rare among the BLUF class of sensory proteins, such as endonucleases, tet repressor family (tetR), regulators of G-protein signaling, GAL4 transcription family and several other previously unidentified effectors, such as RhoGEF, Phosphatidyl-Ethanolamine Binding protein (PBP), ankyrin and leucine-rich repeats. Interaction studies and the indexing of BLUF domains further show the diversity of BLUF-effector combinations. These diverse modular architectures highlight how the organism’s behaviour, cellular processes, and distinct cellular outputs are regulated by integrating BLUF sensing modules in combination with a plethora of diverse signatures. Our analysis highlights the modular diversity of BLUF containing proteins and opens the possibility of creating a rational design of novel functional chimeras using a BLUF architecture with relevant cellular effectors. Thus, the BLUF domain could be a potential candidate for the development of powerful novel optogenetic tools for its application in modulating diverse cell signaling.
Collapse
|
20
|
Guła G, Dorotkiewicz-Jach A, Korzekwa K, Valvano MA, Drulis-Kawa Z. Complex Signaling Networks Controlling Dynamic Molecular Changes in Pseudomonas aeruginosa Biofilm. Curr Med Chem 2019; 26:1979-1993. [PMID: 30207213 DOI: 10.2174/0929867325666180912110151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
The environment exerts strong influence on microbes. Adaptation of microbes to changing conditions is a dynamic process regulated by complex networks. Pseudomonas aeruginosa is a life-threating, versatile opportunistic and multi drug resistant pathogen that provides a model to investigate adaptation mechanisms to environmental changes. The ability of P. aeruginosa to form biofilms and to modify virulence in response to environmental changes is coordinated by various mechanisms including two-component systems (TCS), and secondary messengers involved in quorum sensing (QS) and c-di-GMP networks (diguanylate cyclase systems, DGC). In this review, we focus on the role of c-di-GMP during biofilm formation. We describe TCS and QS signal cascades regulated by c-di-GMP in response to changes in the external environment. We present a complex signaling network dynamically changing during the transition of P. aeruginosa from the free-living to sessile mode of growth.
Collapse
Affiliation(s)
- Grzegorz Guła
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Agata Dorotkiewicz-Jach
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Kamila Korzekwa
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Miguel A Valvano
- Wellcome- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
21
|
Hallberg ZF, Chan CH, Wright TA, Kranzusch PJ, Doxzen KW, Park JJ, Bond DR, Hammond MC. Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. eLife 2019; 8:43959. [PMID: 30964001 PMCID: PMC6456294 DOI: 10.7554/elife.43959] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
A newfound signaling pathway employs a GGDEF enzyme with unique activity compared to the majority of homologs associated with bacterial cyclic di-GMP signaling. This system provides a rare opportunity to study how signaling proteins natively gain distinct function. Using genetic knockouts, riboswitch reporters, and RNA-Seq, we show that GacA, the Hypr GGDEF in Geobacter sulfurreducens, specifically regulates cyclic GMP-AMP (3′,3′-cGAMP) levels in vivo to stimulate gene expression associated with metal reduction separate from electricity production. To reconcile these in vivo findings with prior in vitro results that showed GacA was promiscuous, we developed a full kinetic model combining experimental data and mathematical modeling to reveal mechanisms that contribute to in vivo specificity. A 1.4 Å-resolution crystal structure of the Geobacter Hypr GGDEF domain was determined to understand the molecular basis for those mechanisms, including key cross-dimer interactions. Together these results demonstrate that specific signaling can result from a promiscuous enzyme. Microscopic organisms known as bacteria are found in virtually every environment on the planet. One reason bacteria are so successful is that they are able to form communities known as biofilms on surfaces in animals and other living things, as well as on rocks and other features in the environment. These biofilms protect the bacteria from fluctuations in the environment and toxins. For over 30 years, a class of enzymes called the GGDEF enzymes were thought to make a single signal known as cyclic di-GMP that regulates the formation of biofilms. However, in 2016, a team of researchers reported that some GGDEF enzymes, including one from a bacterium called Geobacter sulfurreducens, were also able to produce two other signals known as cGAMP and cyclic di-AMP. The experiments involved making the enzymes and testing their activity outside the cell. Therefore, it remained unclear whether these enzymes (dubbed ‘Hypr’ GGDEF enzymes) actually produce all three signals inside cells and play a role in forming bacterial biofilms. G. sulfurreducens is unusual because it is able to grow on metallic minerals or electrodes to generate electrical energy. As part of a community of microorganisms, they help break down pollutants in contaminated areas and can generate electricity from wastewater. Now, Hallberg, Chan et al. – including many of the researchers involved in the 2016 work – combined several experimental and mathematical approaches to study the Hypr GGDEF enzymes in G. sulfurreducens. The experiments show that the Hypr GGDEF enzymes produced cGAMP, but not the other two signals, inside the cells. This cGAMP regulated the ability of G. sulfurreducens to grow by extracting electrical energy from the metallic minerals, which appears to be a new, biofilm-less lifestyle. Further experiments revealed how Hypr GGDEF enzymes have evolved to preferentially make cGAMP over the other two signals. Together, these findings demonstrate that enzymes with the ability to make several different signals, are capable of generating specific responses in bacterial cells. By understanding how bacteria make decisions, it may be possible to change their behaviors. The findings of Hallberg, Chan et al. help to identify the signaling pathways involved in this decision-making and provide new tools to study them in the future.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Chi Ho Chan
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, Minnesota, United States
| | - Todd A Wright
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Philip J Kranzusch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, United States
| | - Kevin W Doxzen
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - James J Park
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Daniel R Bond
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, Minnesota, United States
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
22
|
The PA3177 Gene Encodes an Active Diguanylate Cyclase That Contributes to Biofilm Antimicrobial Tolerance but Not Biofilm Formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.01049-18. [PMID: 30082282 PMCID: PMC6153807 DOI: 10.1128/aac.01049-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/28/2018] [Indexed: 01/16/2023] Open
Abstract
A hallmark of biofilms is their heightened resistance to antimicrobial agents. Recent findings suggested a role for bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) in the susceptibility of bacteria to antimicrobial agents; however, no c-di-GMP modulating enzyme(s) contributing to the drug tolerance phenotype of biofilms has been identified. The goal of this study was to determine whether c-di-GMP modulating enzyme(s) specifically contributes to the biofilm drug tolerance of Pseudomonas aeruginosa Using transcriptome sequencing combined with biofilm susceptibility assays, we identified PA3177 encoding a probable diguanylate cyclase. PA3177 was confirmed to be an active diguanylate cyclase, with overexpression affecting swimming and swarming motility, and inactivation affecting cellular c-di-GMP levels of biofilm but not planktonic cells. Inactivation of PA3177 rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin and hydrogen peroxide. Inactivation of PA3177 also eliminated the recalcitrance of biofilms to killing by tobramycin, with multicopy expression of PA3177 but not PA3177_GGAAF harboring substitutions in the active site, restoring tolerance to wild-type levels. Susceptibility was linked to BrlR, a previously described transcriptional regulator contributing to biofilm tolerance, with inactivation of PA3177 negatively impacting BrlR levels and BrlR-DNA binding. While PA3177 contributed to biofilm drug tolerance, inactivation of PA3177 had no effect on attachment and biofilm formation. Our findings demonstrate for the first time that biofilm drug tolerance by P. aeruginosa is linked to a specific c-di-GMP modulating enzyme, PA3177, with the pool of PA3177-generated c-di-GMP only contributing to biofilm drug tolerance but not to biofilm formation.
Collapse
|
23
|
Bharati BK, Mukherjee R, Chatterji D. Substrate-induced domain movement in a bifunctional protein, DcpA, regulates cyclic di-GMP turnover: Functional implications of a highly conserved motif. J Biol Chem 2018; 293:14065-14079. [PMID: 29980599 DOI: 10.1074/jbc.ra118.003917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
In eubacteria, cyclic di-GMP (c-di-GMP) signaling is involved in virulence, persistence, motility and generally orchestrates multicellular behavior in bacterial biofilms. Intracellular c-di-GMP levels are maintained by the opposing activities of diguanylate cyclases (DGCs) and cognate phosphodiesterases (PDEs). The c-di-GMP homeostasis in Mycobacterium smegmatis is supported by DcpA, a conserved, bifunctional protein with both DGC and PDE activities. DcpA is a multidomain protein whose GAF-GGDEF-EAL domains are arranged in tandem and are required for these two activities. To gain insight into how interactions among these three domains affect DcpA activity, here we studied its domain dynamics using real-time FRET. We demonstrate that substrate binding in DcpA results in domain movement that prompts a switch from an "open" to a "closed" conformation and alters its catalytic activity. We found that a single point mutation in the conserved EAL motif (E384A) results in complete loss of the PDE activity of the EAL domain and in a significant decrease in the DGC activity of the GGDEF domain. Structural analyses revealed multiple hydrophobic and aromatic residues around Cys579 that are necessary for proper DcpA folding and maintenance of the active conformation. On the basis of these observations and taking into account additional bioinformatics analysis of EAL domain-containing proteins, we identified a critical putatively conserved motif, GCXXXQGF, that plays an important role in c-di-GMP turnover. We conclude that a substrate-induced conformational switch involving movement of a loop containing a conserved motif in the bifunctional diguanylate cyclase-phosphodiesterase DcpA controls c-di-GMP turnover in M. smegmatis.
Collapse
Affiliation(s)
- Binod K Bharati
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India and
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research, Tirupati 517507, India
| | - Dipankar Chatterji
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
24
|
Teixeira RD, Guzzo CR, Arévalo SJ, Andrade MO, Abrahão J, de Souza RF, Farah CS. A bipartite periplasmic receptor-diguanylate cyclase pair (XAC2383-XAC2382) in the bacterium Xanthomonas citri. J Biol Chem 2018; 293:10767-10781. [PMID: 29728456 DOI: 10.1074/jbc.ra118.003475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/27/2018] [Indexed: 11/06/2022] Open
Abstract
The second messenger cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of bacterial lifestyle, controlling several behaviors, including the switch between sessile and motile states. The c-di-GMP levels are controlled by the interplay between diguanylate cyclases (DGCs) and phosphodiesterases, which synthesize and hydrolyze this second messenger, respectively. These enzymes often contain additional domains that regulate activity via binding of small molecules, covalent modification, or protein-protein interactions. A major challenge remains to understand how DGC activity is regulated by these additional domains or interaction partners in specific signaling pathways. Here, we identified a pair of co-transcribed genes (xac2382 and xac2383) in the phytopathogenic, Gram-negative bacterium Xanthomonas citri subsp. citri (Xac), whose mutations resulted in opposing motility phenotypes. We show that the periplasmic cache domain of XAC2382, a membrane-associated DGC, interacts with XAC2383, a periplasmic binding protein, and we provide evidence that this interaction regulates XAC2382 DGC activity. Moreover, we solved the crystal structure of XAC2383 with different ligands, indicating a preference for negatively charged phosphate-containing compounds. We propose that XAC2383 acts as a periplasmic sensor that, upon binding its ligand, inhibits the DGC activity of XAC2382. Of note, we also found that this previously uncharacterized signal transduction system is present in several other bacterial phyla, including Gram-positive bacteria. Phylogenetic analysis of homologs of the XAC2382-XAC2383 pair supports several independent origins that created new combinations of XAC2382 homologs with a conserved periplasmic cache domain with different cytoplasmic output module architectures.
Collapse
Affiliation(s)
- Raphael D Teixeira
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000
| | - Cristiane R Guzzo
- the Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, and
| | - Santiago Justo Arévalo
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000
| | - Maxuel O Andrade
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000
| | - Josielle Abrahão
- the Departamento de Química Orgânica, Instituto de Química, Universidade de Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Robson F de Souza
- the Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, and
| | - Chuck S Farah
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000,
| |
Collapse
|
25
|
The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in Mycobacterium smegmatis. Biochem J 2018; 475:1295-1308. [PMID: 29555845 DOI: 10.1042/bcj20180079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/03/2023]
Abstract
The second messenger c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate] plays a key role in bacterial growth, survival and pathogenesis, and thus its intracellular homeostasis should be finely maintained. Mycobacterium smegmatis encodes a GAF (mammalian cGMP-regulated phosphodiesterases, Anabaenaadenylyl cyclases and Escherichia coli transcription activator FhlA) domain containing bifunctional enzyme DcpA (diguanylate cyclase and phosphodiesterase A) that catalyzes the synthesis and hydrolysis of c-di-GMP. Here, we found that M. smegmatis DcpA catalyzes the hydrolysis of c-di-GMP at a higher velocity, compared with synthetic activity, resulting in a sum reaction from the ultimate substrate GTP to the final product pGpG [5'-phosphoguanylyl-(3'-5')-guanosine]. Fusion with the N-terminal GAF domain enables the GGDEF (Gly-Gly-Asp-Glu-Phe) domain of DcpA to dimerize and accordingly gain synthetic activity. Screening of putative metabolites revealed that GDP is the ligand of the GAF domain. Binding of GDP to the GAF domain down-regulates synthetic activity, but up-regulates hydrolytic activity, which, in consequence, might enable a timely response to the transient accumulation of c-di-GMP at the stationary phase or under stresses. Combined with the crystal structure of the EAL (Glu-Ala-Leu) domain and the small-angle X-ray scattering data, we propose a putative regulatory model of the GAF domain finely tuned by the intracellular GTP/GDP ratio. These findings help us to better understand the concerted control of the synthesis and hydrolysis of c-di-GMP in M. smegmatis in various microenvironments.
Collapse
|
26
|
Jain R, Sliusarenko O, Kazmierczak BI. Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly. PLoS Pathog 2017; 13:e1006594. [PMID: 28854278 PMCID: PMC5595344 DOI: 10.1371/journal.ppat.1006594] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/12/2017] [Accepted: 08/21/2017] [Indexed: 01/31/2023] Open
Abstract
Type IVa pili (T4P) are bacterial surface structures that enable motility, adhesion, biofilm formation and virulence. T4P are assembled by nanomachines that span the bacterial cell envelope. Cycles of T4P assembly and retraction, powered by the ATPases PilB and PilT, allow bacteria to attach to and pull themselves along surfaces, so-called “twitching motility”. These opposing ATPase activities must be coordinated and T4P assembly limited to one pole for bacteria to show directional movement. How this occurs is still incompletely understood. Herein, we show that the c-di-GMP binding protein FimX, which is required for T4P assembly in Pseudomonas aeruginosa, localizes to the leading pole of twitching bacteria. Polar FimX localization requires both the presence of T4P assembly machine proteins and the assembly ATPase PilB. PilB itself loses its polar localization pattern when FimX is absent. We use two different approaches to confirm that FimX and PilB interact in vivo and in vitro, and further show that point mutant alleles of FimX that do not bind c-di-GMP also do not interact with PilB. Lastly, we demonstrate that FimX positively regulates T4P assembly and twitching motility by promoting the activity of the PilB ATPase, and not by stabilizing assembled pili or by preventing PilT-mediated retraction. Mutated alleles of FimX that no longer bind c-di-GMP do not allow rapid T4P assembly in these assays. We propose that by virtue of its high-affinity for c-di-GMP, FimX can promote T4P assembly when intracellular levels of this cyclic nucleotide are low. As P. aeruginosa PilB is not itself a high-affinity c-di-GMP receptor, unlike many other assembly ATPases, FimX may play a key role in coupling T4P mediated motility and adhesion to levels of this second messenger. Type IV pili (T4P) are assembled on the surfaces of many bacterial pathogens and commensals through the action of specialized assembly machines whose components and structures are the subject of intense study. Repeated cycles of T4P assembly, attachment and retraction allow bacteria to move or “twitch” along surfaces, efficiently colonize and intoxicate host tissues, and elaborate multicellular structures such as biofilms. Assembly and retraction are powered by specific ATPases, PilB and PilT respectively, but the manner in which their activity is coordinated is still poorly understood. In this work, we provide evidence that a high-affinity c-di-GMP binding protein of Pseudomonas aeruginosa, FimX, interacts with the ATPase PilB and promotes PilB-dependent assembly of T4P. Live cell imaging of twitching bacteria shows that FimX localizes to the leading pole of motile P. aeruginosa and that its recruitment requires both components of the T4P assembly machine and the PilB ATPase. Our work highlights a novel regulatory strategy employed by P. aeruginosa to control assembly of this broadly conserved virulence factor.
Collapse
Affiliation(s)
- Ruchi Jain
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Oleksii Sliusarenko
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
27
|
Adaptive evolution by spontaneous domain fusion and protein relocalization. Nat Ecol Evol 2017; 1:1562-1568. [PMID: 29185504 DOI: 10.1038/s41559-017-0283-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/18/2017] [Indexed: 11/08/2022]
Abstract
Knowledge of adaptive processes encompasses understanding the emergence of new genes. Computational analyses of genomes suggest that new genes can arise by domain swapping; however, empirical evidence has been lacking. Here we describe a set of nine independent deletion mutations that arose during selection experiments with the bacterium Pseudomonas fluorescens in which the membrane-spanning domain of a fatty acid desaturase became translationally fused to a cytosolic di-guanylate cyclase, generating an adaptive 'wrinkly spreader' phenotype. Detailed genetic analysis of one gene fusion shows that the mutant phenotype is caused by relocalization of the di-guanylate cyclase domain to the cell membrane. The relative ease by which this new gene arose, along with its functional and regulatory effects, provides a glimpse of mutational events and their consequences that are likely to have a role in the evolution of new genes.
Collapse
|
28
|
Wan X, Saito JA, Newhouse JS, Hou S, Alam M. The importance of conserved amino acids in heme-based globin-coupled diguanylate cyclases. PLoS One 2017; 12:e0182782. [PMID: 28792538 PMCID: PMC5549716 DOI: 10.1371/journal.pone.0182782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 02/05/2023] Open
Abstract
Globin-coupled diguanylate cyclases contain globin, middle, and diguanylate cyclase domains that sense O2 to synthesize c-di-GMP and regulate bacterial motility, biofilm formation, and virulence. However, relatively few studies have extensively examined the roles of individual residues and domains of globin-coupled diguanylate cyclases, which can shed light on their signaling mechanisms and provide drug targets. Here, we report the critical residues of two globin-coupled diguanylate cyclases, EcGReg from Escherichia coli and BpeGReg from Bordetella pertussis, and show that their diguanylate cyclase activity requires an intact globin domain. In the distal heme pocket of the globin domain, residues Phe42, Tyr43, Ala68 (EcGReg)/Ser68 (BpeGReg), and Met69 are required to maintain full diguanylate cyclase activity. The highly conserved amino acids His223/His225 and Lys224/Lys226 in the middle domain of EcGReg/BpeGReg are essential to diguanylate cyclase activity. We also identified sixteen important residues (Leu300, Arg306, Asp333, Phe337, Lys338, Asn341, Asp342, Asp350, Leu353, Asp368, Arg372, Gly374, Gly375, Asp376, Glu377, and Phe378) in the active site and inhibitory site of the diguanylate cyclase domain of EcGReg. Moreover, BpeGReg266 (residues 1-266) and BpeGReg296 (residues 1-296), which only contain the globin and middle domains, can inhibit bacterial motility. Our findings suggest that the distal residues of the globin domain affect diguanylate cyclase activity and that BpeGReg may interact with other c-di-GMP-metabolizing proteins to form mixed signaling teams.
Collapse
Affiliation(s)
- Xuehua Wan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Jennifer A. Saito
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| | - James S. Newhouse
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Shaobin Hou
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Maqsudul Alam
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| |
Collapse
|
29
|
Chiu BK, Kato S, McAllister SM, Field EK, Chan CS. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone. Front Microbiol 2017; 8:1280. [PMID: 28769885 PMCID: PMC5513912 DOI: 10.3389/fmicb.2017.01280] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/26/2017] [Indexed: 01/11/2023] Open
Abstract
Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O2, as indicated by the presence of genes encoding aa3-type cytochrome c oxidases, but not the cbb3-type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II).
Collapse
Affiliation(s)
- Beverly K Chiu
- Department of Geological Sciences, University of Delaware, NewarkDE, United States
| | - Shingo Kato
- Project Team for Development of New-Generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and TechnologyKanagawa, Japan
| | - Sean M McAllister
- School of Marine Science and Policy, University of Delaware, NewarkDE, United States
| | - Erin K Field
- Department of Biology, East Carolina University, GreenvilleNC, United States
| | - Clara S Chan
- Department of Geological Sciences, University of Delaware, NewarkDE, United States.,School of Marine Science and Policy, University of Delaware, NewarkDE, United States
| |
Collapse
|
30
|
Bandekar D, Chouhan OP, Mohapatra S, Hazra M, Hazra S, Biswas S. Putative protein VC0395_0300 from Vibrio cholerae is a diguanylate cyclase with a role in biofilm formation. Microbiol Res 2017. [PMID: 28647124 DOI: 10.1016/j.micres.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hallmark of the lifecycle of Vibrio cholerae is its ability to switch between two lifestyles - the sessile, non-pathogenic form and the motile, infectious form in human hosts. One of these changes is in the formation of surface biofilms, when in sessile aquatic habitats. The cell-cell interactions within a V. cholerae biofilm are stabilized by the production of an exopolysachharide (EPS) matrix, which in turn is regulated by the ubiquitous secondary messenger, cyclic di-GMP (c-di-GMP), synthesized by proteins containing GGD(/E)EF domains in all prokaryotic systems. Here, we report the functional role of the VC0395_0300 protein (Sebox3) encoded by the chromosome I of V. cholerae, with a GGEEF signature sequence, in the formation of surface biofilms. In our study, we have shown that Escherichia coli containing the full-length Sebox3 displays enhanced biofilm forming ability with cellulose production as quantified and visualized by multiple assays, most notably using FEG-SEM. This has also been corroborated with the lack of motility of host containing Sebox3 in semi-solid media. Searching for the reasons for this biofilm formation, we have demonstrated in vitro that Sebox3 can synthesize c-di-GMP from GTP. The homology derived model of Sebox3 displayed significant conservation of the GGD(/E)EF architecture as well. Hence, we propose that the putative protein VC0395_0300 from V. cholerae is a diguanylate cyclase which has an active role in biofilm formation.
Collapse
Affiliation(s)
- Divya Bandekar
- VISTA Lab, BITS, Pilani - K K Birla Goa Campus, Zuarinagar, Goa, India
| | | | - Swati Mohapatra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mousumi Hazra
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sumit Biswas
- VISTA Lab, BITS, Pilani - K K Birla Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
31
|
Ahmad I, Cimdins A, Beske T, Römling U. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiol 2017; 17:27. [PMID: 28148244 PMCID: PMC5289004 DOI: 10.1186/s12866-017-0934-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/17/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The secondary messenger cyclic di-GMP promotes biofilm formation by up regulating the expression of csgD, encoding the major regulator of rdar biofilm formation in Salmonella typhimurium. The GGDEF/EAL domain proteins regulate the c-di-GMP turnover. There are twenty- two GGDEF/EAL domain proteins in the genome of S. typhimurium. In this study, we dissect the role of individual GGDEF/EAL proteins for csgD expression and rdar biofilm development. RESULTS Among twelve GGDEF domains, two proteins upregulate and among fifteen EAL domains, four proteins down regulate csgD expression. We identified two additional GGDEF proteins required to promote optimal csgD expression. With the exception of the EAL domain of STM1703, solely, diguanylate cyclase and phosphodiesterase activities are required to regulate csgD mediated rdar biofilm formation. Identification of corresponding phosphodiesterases and diguanylate cyclases interacting in the csgD regulatory network indicates various levels of regulation by c-di-GMP. The phosphodiesterase STM1703 represses transcription of csgD via a distinct promoter upstream region. CONCLUSION The enzymatic activity and the protein scaffold of GGDEF/EAL domain proteins regulate csgD expression. Thereby, c-di-GMP adjusts csgD expression at multiple levels presumably using a multitude of input signals.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Present Address: Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Annika Cimdins
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Timo Beske
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Present Address: Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Abstract
Microbial adaptation is conspicuous in essentially every environment, but the mechanisms of adaptive evolution are poorly understood. Studying evolution in the laboratory under controlled conditions can be a tractable approach, particularly when new, discernible phenotypes evolve rapidly. This is especially the case in the spatially structured environments of biofilms, which promote the occurrence and stability of new, heritable phenotypes. Further, diversity in biofilms can give rise to nascent social interactions among coexisting mutants and enable the study of the emerging field of sociomicrobiology. Here, we review findings from laboratory evolution experiments with either Pseudomonas fluorescens or Burkholderia cenocepacia in spatially structured environments that promote biofilm formation. In both systems, ecotypes with overlapping niches evolve and produce competitive or facilitative interactions that lead to novel community attributes, demonstrating the parallelism of adaptive processes captured in the lab.
Collapse
|
33
|
Valentini M, Filloux A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria. J Biol Chem 2016; 291:12547-12555. [PMID: 27129226 PMCID: PMC4933438 DOI: 10.1074/jbc.r115.711507] [Citation(s) in RCA: 393] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission.
Collapse
Affiliation(s)
- Martina Valentini
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
34
|
Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks. Infect Immun 2016; 84:1226-1238. [PMID: 26857572 DOI: 10.1128/iai.01525-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection.
Collapse
|
35
|
Rapid radiation in bacteria leads to a division of labour. Nat Commun 2016; 7:10508. [PMID: 26852925 PMCID: PMC4748119 DOI: 10.1038/ncomms10508] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/12/2015] [Indexed: 12/24/2022] Open
Abstract
The division of labour is a central feature of the most sophisticated biological systems, including genomes, multicellular organisms and societies, which took millions of years to evolve. Here we show that a well-organized and robust division of labour can evolve in a matter of days. Mutants emerge within bacterial colonies and work with the parent strain to gain new territory. The two strains self-organize in space: one provides a wetting polymer at the colony edge, whereas the other sits behind and pushes them both along. The emergence of the interaction is repeatable, bidirectional and only requires a single mutation to alter production of the intracellular messenger, cyclic-di-GMP. Our work demonstrates the power of the division of labour to rapidly solve biological problems without the need for long-term evolution or derived sociality. We predict that the division of labour will evolve frequently in microbial populations, where rapid genetic diversification is common.
Collapse
|
36
|
Adaptive Remodeling of the Bacterial Proteome by Specific Ribosomal Modification Regulates Pseudomonas Infection and Niche Colonisation. PLoS Genet 2016; 12:e1005837. [PMID: 26845436 PMCID: PMC4741518 DOI: 10.1371/journal.pgen.1005837] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome. Post-transcriptional control of protein abundance is a significant and underexplored regulatory process by which organisms respond to environmental change. We have discovered an important new mechanism for this control in bacteria, based on the covalent modification of a small ribosomal protein by the widespread enzyme RimK. Here we show that the activity of RimK has specific effects on the levels of ribosomal proteins in the cell, which in turn affects the abundance of the important translational regulator Hfq. RimK is itself controlled by binding to the small regulatory proteins RimA and RimB and the widespread signalling molecule cyclic-di-GMP. Deletion of rimK compromises motility, virulence and plant colonisation/infection in several different Pseudomonas species. We propose that changes in intracellular RimK activity enable Pseudomonas to respond to environmental pressures by changing the nature of their ribosomes, leading in turn to an adaptive phenotypic response to their surroundings. This promotes motility and virulence during the initial stages of plant contact, and phenotypes including attachment, metabolite transport and stress control during long-term environmental adaptation.
Collapse
|
37
|
Pérez-Mendoza D, Sanjuán J. Exploiting the commons: cyclic diguanylate regulation of bacterial exopolysaccharide production. Curr Opin Microbiol 2016; 30:36-43. [PMID: 26773798 DOI: 10.1016/j.mib.2015.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/01/2023]
Abstract
Nowadays, there is increasing interest for bacterial polysaccharides in a wide variety of industrial sectors. This is due to their chemical and reological properties, and also the possibility to be obtained by fermentation processes. Biosynthesis of a growing number of exopolysaccharides (EPS) has been reported to be regulated by the ubiquitous second messenger c-di-GMP in a limited number of bacterial species. Since most bacteria are yet unexplored, it is likely that an unsuspected number and variety of EPS structures activated by c-di-GMP await to be uncovered. In the search of new EPS, manipulation of bacterial c-di-GMP metabolism can be combined with high throughput approaches for screening of large collections of bacteria. In addition, c-di-GMP activation of EPS production and promotion of cell aggregation may have direct applications in environmental industries related with biofuel production or wastewater treatments.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC. Prof. Albareda N° 1, 18008 Granada, Spain
| | - Juan Sanjuán
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC. Prof. Albareda N° 1, 18008 Granada, Spain..
| |
Collapse
|
38
|
Ramírez-Mata A, López-Lara LI, Xiqui-Vázquez ML, Jijón-Moreno S, Romero-Osorio A, Baca BE. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense. Res Microbiol 2015; 167:190-201. [PMID: 26708984 DOI: 10.1016/j.resmic.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022]
Abstract
In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway.
Collapse
Affiliation(s)
- Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Lilia I López-Lara
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Ma Luisa Xiqui-Vázquez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Saúl Jijón-Moreno
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Angelica Romero-Osorio
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Beatriz E Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| |
Collapse
|
39
|
Fernicola S, Torquati I, Paiardini A, Giardina G, Rampioni G, Messina M, Leoni L, Del Bello F, Petrelli R, Rinaldo S, Cappellacci L, Cutruzzolà F. Synthesis of Triazole-Linked Analogues of c-di-GMP and Their Interactions with Diguanylate Cyclase. J Med Chem 2015; 58:8269-84. [PMID: 26426545 DOI: 10.1021/acs.jmedchem.5b01184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclic di-GMP (c-di-GMP) is a widespread second messenger that plays a key role in bacterial biofilm formation. The compound's ability to assume multiple conformations allows it to interact with a diverse set of target macromolecules. Here, we analyzed the binding mode of c-di-GMP to the allosteric inhibitory site (I-site) of diguanylate cyclases (DGCs) and compared it to the conformation adopted in the catalytic site of the EAL phosphodiesterases (PDEs). An array of novel molecules has been designed and synthesized by simplifying the native c-di-GMP structure and replacing the charged phosphodiester backbone with an isosteric nonhydrolyzable 1,2,3-triazole moiety. We developed the first neutral small molecule able to selectively target DGCs discriminating between the I-site of DGCs and the active site of PDEs; this molecule represents a novel tool for mechanistic studies, particularly on those proteins bearing both DGC and PDE modules, and for future optimization studies to target DGCs in vivo.
Collapse
Affiliation(s)
- Silvia Fernicola
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome , 00185 Rome, Italy
| | - Ilaria Torquati
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino , 62032 Camerino, MC, Italy
| | - Alessandro Paiardini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome , 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome , 00185 Rome, Italy
| | | | - Marco Messina
- Department of Science, University Roma Tre , 00154 Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre , 00154 Rome, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino , 62032 Camerino, MC, Italy
| | - Riccardo Petrelli
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino , 62032 Camerino, MC, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome , 00185 Rome, Italy
| | - Loredana Cappellacci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino , 62032 Camerino, MC, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome , 00185 Rome, Italy
| |
Collapse
|
40
|
In Silico Discovery and In Vitro Validation of Catechol-Containing Sulfonohydrazide Compounds as Potent Inhibitors of the Diguanylate Cyclase PleD. J Bacteriol 2015; 198:147-56. [PMID: 26416830 DOI: 10.1128/jb.00742-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Biofilm formation is responsible for increased antibiotic tolerance in pathogenic bacteria. Cyclic di-GMP (c-di-GMP) is a widely used second-messenger signal that plays a key role in bacterial biofilm formation. c-di-GMP is synthesized by diguanylate cyclases (DGCs), a conserved class of enzymes absent in mammals and hence considered attractive molecular targets for the development of antibiofilm agents. Here, the results of a virtual screening approach aimed at identifying small-molecule inhibitors of the DGC PleD from Caulobacter crescentus are described. A three-dimensional (3D) pharmacophore model, derived from the mode of binding of GTP to the active site of PleD, was exploited to screen the ZINC database of compounds. Seven virtual hits were tested in vitro for their ability to inhibit the activity of purified PleD by using circular dichroism spectroscopy. Two drug-like molecules with a catechol moiety and a sulfonohydrazide scaffold were shown to competitively inhibit PleD at the low-micromolar range (50% inhibitory concentration [IC50] of ∼11 μM). Their predicted binding mode highlighted key structural features presumably responsible for the efficient inhibition of PleD by both hits. These molecules represent the most potent in vitro inhibitors of PleD identified so far and could therefore result in useful leads for the development of novel classes of antimicrobials able to hamper biofilm formation. IMPORTANCE Biofilm-mediated infections are difficult to eradicate, posing a threatening health issue worldwide. The capability of bacteria to form biofilms is almost universally stimulated by the second messenger c-di-GMP. This evidence has boosted research in the last decade for the development of new antibiofilm strategies interfering with c-di-GMP metabolism. Here, two potent inhibitors of c-di-GMP synthesis have been identified in silico and characterized in vitro by using the well-characterized DGC enzyme PleD from C. crescentus as a structural template and molecular target. Given that the protein residues implied as crucial for enzyme inhibition are found to be highly conserved among DGCs, the outcome of this study could pave the way for the future development of broad-spectrum antibiofilm compounds.
Collapse
|
41
|
Liang ZX. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Prod Rep 2015; 32:663-83. [PMID: 25666534 DOI: 10.1039/c4np00086b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclic dinucleotide c-di-GMP has emerged in the last decade as a prevalent intracellular messenger that orchestrates the transition between the motile and sessile lifestyles of many bacterial species. The motile-to-sessile transition is often associated with the formation of extracellular matrix-encased biofilm, an organized community of bacterial cells that often contributes to antibiotic resistance and host-pathogen interaction. It is increasingly clear that c-di-GMP controls motility, biofilm formation and bacterial pathogenicity partially through regulating the production of exopolysaccharides (EPS) and small-molecule secondary metabolites. This review summarizes our current understanding of the regulation of EPS biosynthesis by c-di-GMP in a diversity of bacterial species and highlights the emerging role of c-di-GMP in the biosynthesis of small-molecule secondary metabolites.
Collapse
Affiliation(s)
- Zhao-Xun Liang
- Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551.
| |
Collapse
|
42
|
Burns JL, Deer DD, Weinert EE. Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors. MOLECULAR BIOSYSTEMS 2015; 10:2823-6. [PMID: 25174604 DOI: 10.1039/c4mb00366g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial biofilm formation is regulated by enzymes, such as diguanylate cyclases, that respond to environmental signals and alter c-di-GMP levels. Diguanylate cyclase activity of two globin coupled sensors is shown to be regulated by gaseous ligands, with cyclase activity and O2 dissociation affected by protein oligomeric state.
Collapse
Affiliation(s)
- Justin L Burns
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
43
|
Cursino L, Athinuwat D, Patel KR, Galvani CD, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ, Mowery P. Characterization of the Xylella fastidiosa PD1671 gene encoding degenerate c-di-GMP GGDEF/EAL domains, and its role in the development of Pierce's disease. PLoS One 2015; 10:e0121851. [PMID: 25811864 PMCID: PMC4374697 DOI: 10.1371/journal.pone.0121851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023] Open
Abstract
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Dusit Athinuwat
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Kelly R. Patel
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Cheryl D. Galvani
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Paulo A. Zaini
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Yaxin Li
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Leonardo De La Fuente
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Harvey C. Hoch
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Thomas J. Burr
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Lind PA, Farr AD, Rainey PB. Experimental evolution reveals hidden diversity in evolutionary pathways. eLife 2015; 4. [PMID: 25806684 PMCID: PMC4395868 DOI: 10.7554/elife.07074] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/24/2015] [Indexed: 11/13/2022] Open
Abstract
Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. DOI:http://dx.doi.org/10.7554/eLife.07074.001 Different living things often develop similar strategies to adapt to the environments in which they live. Sometimes two species that share a common ancestor independently evolve the same trait by changing the exact same genes. This is called ‘parallel evolution’, and it has led some scientists to ask: are there certain traits that can only evolve in a limited number of ways? Or are there other ways to evolve the same trait that, for some reason, are not explored? Experimentally, investigating these questions is challenging, but parallel evolution occurs in the laboratory as well as in the wild. Many commonly studied organisms—such as fruit flies or bacteria—can be used in relevant studies, because they can be grown in large numbers and then exposed to identical environments. However, if this method fails to find a new way that a trait can evolve, it doesn't mean that alternative mechanisms do not exist. Lind et al. used a different approach that instead relies on removing all of the known pathways that can be mutated to produce a given trait and then seeing if that trait can still evolve via mutations elsewhere. The experiments involved a bacterium called Pseudomonas fluorescens that can evolve to grow flattened and wrinkled colonies (instead of smooth, round ones) when it has to compete for access to oxygen. Previous experiments had shown that the evolution of the so-called ‘wrinkly spreader’ form can be caused by mutations in one of three biological pathways. But P. fluorescens can survive unharmed without these pathways, which enabled Lind et al. to ask if there might be other ways that this trait could evolve. Bacteria without these three pathways were engineered and then grown under oxygen-deprived conditions. This experiment produced 91 new mutants that each had the wrinkly spreader phenotype. Further experiments revealed that together these mutants represented 13 previously unrecognized ways that the ‘wrinkly spreader’ phenotype can evolve. The new rare mutants had similar fitness as the previously known, common ones—so this cannot explain why they hadn't been seen before. Lind et al. instead suggest a set of principles to explain why these newly discovered pathways are rarely mutated and how genetic constraints can bias the outcome of evolution. Further work could investigate whether these principles can help us to predict the course of evolution in other biological contexts, such as in the evolution of antibiotic resistance. DOI:http://dx.doi.org/10.7554/eLife.07074.002
Collapse
Affiliation(s)
- Peter A Lind
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Andrew D Farr
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| |
Collapse
|
45
|
Castro M, Deane SM, Ruiz L, Rawlings DE, Guiliani N. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus. PLoS One 2015; 10:e0116399. [PMID: 25689133 PMCID: PMC4331095 DOI: 10.1371/journal.pone.0116399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023] Open
Abstract
An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.
Collapse
Affiliation(s)
- Matías Castro
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Lina Ruiz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Douglas E. Rawlings
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Nicolas Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
46
|
Whiteley CG, Lee DJ. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development. Biotechnol Adv 2014; 33:124-141. [PMID: 25499693 DOI: 10.1016/j.biotechadv.2014.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
The ubiquitous bacterial cyclic di-guanosine monophosphate (c-di-GMP) emerges as an important messenger for the control of many bacterial cellular functions including virulence, motility, bioluminescence, cellulose biosynthesis, adhesion, secretion, community behaviour, biofilm formation and cell differentiation. The synthesis of this cyclic nucleotide arises from external stimuli on various signalling domains within the N-terminal region of a dimeric diguanylate cyclase. This initiates the condensation of two molecules of guanosine triphosphate juxtaposed to each other within the C-terminal region of the enzyme. The biofilm from pathogenic microbes is highly resistant to antimicrobial agents suggesting that diguanylate cyclase and its product - c-di-GMP - are key biomedical targets for the inhibition of biofilm development. Furthermore the formation and long-term stability of the aerobic granule, a superior biofilm for biological wastewater treatment, can be controlled by stimulation of c-di-GMP. Any modulation of the synthetic pathways for c-di-GMP is clearly advantageous in terms of medical, industrial and/or environmental bioremediation implications. This review discusses the structure and reaction of individual diguanylate cyclase enzymes with a focus on new directions in c-di-GMP research. Specific attention is made on the molecular mechanisms that control bacterial exopolysaccharide biofilm formation and aerobic granules.
Collapse
Affiliation(s)
- Chris G Whiteley
- Graduate Institute of Applied Science & Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Oliveira MC, Teixeira RD, Andrade MO, Pinheiro GMS, Ramos CHI, Farah CS. Cooperative substrate binding by a diguanylate cyclase. J Mol Biol 2014; 427:415-32. [PMID: 25463434 DOI: 10.1016/j.jmb.2014.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/12/2014] [Accepted: 11/15/2014] [Indexed: 01/17/2023]
Abstract
XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule. Analysis of a XacΔ0610 knockout strain revealed that XAC0610 plays a role in the regulation of Xac motility and resistance to H2O2. Site-directed mutagenesis of a conserved DGC lysine residue (Lys759 in XAC0610) resulted in a severe reduction in XAC0610 DGC activity. Furthermore, experimental and in silico analyses suggest that XAC0610 is not subject to allosteric product inhibition, a common regulatory mechanism for DGC activity control. Instead, steady-state kinetics of XAC0610 DGC activity revealed a positive cooperative effect of the GTP substrate with a dissociation constant for the binding of the first GTP molecule (K1) approximately 5× greater than the dissociation constant for the binding of the second GTP molecule (K2). We present a general kinetics scheme that should be used when analyzing DGC kinetics data and propose that cooperative GTP binding could be a common, though up to now overlooked, feature of these enzymes that may in some cases offer a physiologically relevant mechanism for regulation of DGC activity in vivo.
Collapse
Affiliation(s)
- Maycon C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Raphael D Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Maxuel O Andrade
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Chuck S Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil.
| |
Collapse
|
48
|
Rajeev L, Luning EG, Altenburg S, Zane GM, Baidoo EEK, Catena M, Keasling JD, Wall JD, Fields MW, Mukhopadhyay A. Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium. Front Microbiol 2014; 5:382. [PMID: 25120537 PMCID: PMC4114195 DOI: 10.3389/fmicb.2014.00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/09/2014] [Indexed: 01/02/2023] Open
Abstract
We surveyed the eight putative cyclic-di-GMP-modulating response regulators (RRs) in Desulfovibrio vulgaris Hildenborough that are predicted to function via two-component signaling. Using purified proteins, we examined cyclic-di-GMP (c-di-GMP) production or turnover in vitro of all eight proteins. The two RRs containing only GGDEF domains (DVU2067, DVU0636) demonstrated c-di-GMP production activity in vitro. Of the remaining proteins, three RRs with HD-GYP domains (DVU0722, DVUA0086, and DVU2933) were confirmed to be Mn2+-dependent phosphodiesterases (PDEs) in vitro and converted c-di-GMP to its linear form, pGpG. DVU0408, containing both c-di-GMP production (GGDEF) and degradation domains (EAL), showed c-di-GMP turnover activity in vitro also with production of pGpG. No c-di-GMP related activity could be assigned to the RR DVU0330, containing a metal-dependent phosphohydrolase HD-OD domain, or to the HD-GYP domain RR, DVU1181. Studies included examining the impact of overexpressed cyclic-di-GMP-modulating RRs in the heterologous host E. coli and led to the identification of one RR, DVU0636, with increased cellulose production. Evaluation of a transposon mutant in DVU0636 indicated that the strain was impaired in biofilm formation and demonstrated an altered carbohydrate:protein ratio relative to the D. vulgaris wild type biofilms. However, grown in liquid lactate/sulfate medium, the DVU0636 transposon mutant showed no growth impairment relative to the wild-type strain. Among the eight candidates, only the transposon disruption mutant in the DVU2067 RR presented a growth defect in liquid culture. Our results indicate that, of the two diguanylate cyclases (DGCs) that function as part of two-component signaling, DVU0636 plays an important role in biofilm formation while the function of DVU2067 has pertinence in planktonic growth.
Collapse
Affiliation(s)
- Lara Rajeev
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Eric G Luning
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Sara Altenburg
- Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
| | - Grant M Zane
- Department of Biochemistry, University of Missouri Columbia, MO, USA
| | - Edward E K Baidoo
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Michela Catena
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Jay D Keasling
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California Berkeley, CA, USA
| | - Judy D Wall
- Department of Biochemistry, University of Missouri Columbia, MO, USA
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Aindrila Mukhopadhyay
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| |
Collapse
|
49
|
Garbeva P, Hordijk C, Gerards S, de Boer W. Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 2014; 5:289. [PMID: 24966854 PMCID: PMC4052926 DOI: 10.3389/fmicb.2014.00289] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/25/2014] [Indexed: 12/01/2022] Open
Abstract
There is increasing evidence that organic volatiles play an important role in interactions between micro-organisms in the porous soil matrix. Here we report that volatile compounds emitted by different soil bacteria can affect the growth, antibiotic production and gene expression of the soil bacterium Pseudomonas fluorescens Pf0–1. We applied a novel cultivation approach that mimics the natural nutritional heterogeneity in soil in which P. fluorescens grown on nutrient-limited agar was exposed to volatiles produced by 4 phylogenetically different bacterial isolates (Collimonas pratensis, Serratia plymuthica, Paenibacillus sp., and Pedobacter sp.) growing in sand containing artificial root exudates. Contrary to our expectation, the produced volatiles stimulated rather than inhibited the growth of P. fluorescens. A genome-wide, microarray-based analysis revealed that volatiles of all four bacterial strains affected gene expression of P. fluorescens, but with a different pattern of gene expression for each strain. Based on the annotation of the differently expressed genes, bacterial volatiles appear to induce a chemotactic motility response in P. fluorescens, but also an oxidative stress response. A more detailed study revealed that volatiles produced by C. pratensis triggered, antimicrobial secondary metabolite production in P. fluorescens. Our results indicate that bacterial volatiles can have an important role in communication, trophic - and antagonistic interactions within the soil bacterial community.
Collapse
Affiliation(s)
- Paolina Garbeva
- Department Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Cornelis Hordijk
- Department Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Saskia Gerards
- Department Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Wietse de Boer
- Department Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Department of Soil Quality, Wageningen University and Research Centre Wageningen, Netherlands
| |
Collapse
|
50
|
The Pseudomonas aeruginosa diguanylate cyclase GcbA, a homolog of P. fluorescens GcbA, promotes initial attachment to surfaces, but not biofilm formation, via regulation of motility. J Bacteriol 2014; 196:2827-41. [PMID: 24891445 DOI: 10.1128/jb.01628-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cyclic di-GMP is a conserved signaling molecule regulating the transitions between motile and sessile modes of growth in a variety of bacterial species. Recent evidence suggests that Pseudomonas species harbor separate intracellular pools of c-di-GMP to control different phenotypic outputs associated with motility, attachment, and biofilm formation, with multiple diguanylate cyclases (DGCs) playing distinct roles in these processes, yet little is known about the potential conservation of functional DGCs across Pseudomonas species. In the present study, we demonstrate that the P. aeruginosa homolog of the P. fluorescens DGC GcbA involved in promoting biofilm formation via regulation of swimming motility likewise synthesizes c-di-GMP to regulate surface attachment via modulation of motility, however, without affecting subsequent biofilm formation. P. aeruginosa GcbA was found to regulate flagellum-driven motility by suppressing flagellar reversal rates in a manner independent of viscosity, surface hardness, and polysaccharide production. P. fluorescens GcbA was found to be functional in P. aeruginosa and was capable of restoring phenotypes associated with inactivation of gcbA in P. aeruginosa to wild-type levels. Motility and attachment of a gcbA mutant strain could be restored to wild-type levels via overexpression of the small regulatory RNA RsmZ. Furthermore, epistasis analysis revealed that while both contribute to the regulation of initial surface attachment and flagellum-driven motility, GcbA and the phosphodiesterase DipA act within different signaling networks to regulate these processes. Our findings expand the complexity of c-di-GMP signaling in the regulation of the motile-sessile switch by providing yet another potential link to the Gac/Rsm network and suggesting that distinct c-di-GMP-modulating signaling pathways can regulate a single phenotypic output.
Collapse
|